Here you can find the results of our study.

Set-Up

We first load the required packages.

# install packages devtools::install_github('https://github.com/tdienlin/td')

library(confintr)
library(corrplot)
library(easystats)
library(ggplot2)
library(kableExtra)
library(knitr)
library(lavaan)
library(magrittr)
library(MVN)
library(naniar)
library(PerFit)
library(psych)
library(sjlabelled)
library(semTools)
library(tidyverse)
library(td)

We then load the cleaned data.

load("data/workspace_2.RData")
source("custom_functions.R")

Items Characteristics

In what follows, we report item characteristics.

Sociodemographics

To improve privacy, we didn’t collect exact but binned measures of sociodemographics.

Age

d$age %>%
    sjlabelled::as_label() %>%
    data_tabulate()

No person indicated being younger than 18 years old. Hence, everybody could be included.

age_m <- mean(d$age)

The mean age was 45 to 54 years of age.

Gender

d$GEN %>%
    sjlabelled::as_label() %>%
    data_tabulate()

48 percent were male, 50 female, and 1 percent indicated third/other gender.

Education

d$COL %>%
    sjlabelled::as_label() %>%
    data_tabulate()

69% reported having a college degree.

Ethnicity

d$ETH %>%
    sjlabelled::as_label() %>%
    data_tabulate()

78 % percent were white, 22 % not white.

Political orientation

d$CON %>%
    sjlabelled::as_label() %>%
    data_tabulate()

We see a certain bias toward participants being liberal as opposed to conservative.

Personality

All following items were answered on a 7-point scale with the following options:

“To what extent do you agree or disagree with the following statements?”

(-3) Strongly Disagree, (-2) Disagree, (-1) Slightly Disagree, (0) Neutral, (1) Slightly Agree (2) Agree, (3) Strongly Agree

Ceiling/Floor effects

Let’s first check for ceiling and floor effects.

d_extremes <- d %>%
    select(paste0(rep(vars_pers_pri, each = 4), "_0", 1:4)) %>%
    apply(2, mean, na.rm = T) %>%
    as.data.frame() %>%
    select(Mean = ".") %>%
    arrange(Mean)

Lowest values:

head(d_extremes)

No item below floor (1.5) threshold.

Highest values:

tail(d_extremes)

No item above ceiling (6.5) thresholds.

Honesty Humility

Sincerity

  1. If I want something from a person I dislike, I will act very nicely toward that person in order to get it.
  2. I wouldn’t use flattery to get a raise or promotion at work, even if I thought it would succeed.
  3. If I want something from someone, I will laugh at that person’s worst jokes.
  4. I wouldn’t pretend to like someone just to get that person to do favors for me.
name <- "HEX_HOH_SIN"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  2.1   skew =  544  with probability  <=  2.2e-102
##  small sample skew =  545  with probability <=  1.1e-102
## b2p =  30.4   kurtosis =  18.3  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "HEX_HOH_SIN =~ HEX_HOH_SIN_01 + HEX_HOH_SIN_02 + HEX_HOH_SIN_03 + HEX_HOH_SIN_04"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 24 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                62.319      36.781
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.694
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1970.756    1605.416
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.228
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.969       0.978
##   Tucker-Lewis Index (TLI)                       0.908       0.935
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.970
##   Robust Tucker-Lewis Index (TLI)                            0.910
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11205.958  -11205.958
##   Loglikelihood unrestricted model (H1)     -11174.799  -11174.799
##                                                                   
##   Akaike (AIC)                               22427.916   22427.916
##   Bayesian (BIC)                             22470.684   22470.684
##   Sample-size adjusted Bayesian (SABIC)      22445.270   22445.270
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.139       0.106
##   90 Percent confidence interval - lower         0.111       0.084
##   90 Percent confidence interval - upper         0.170       0.130
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    1.000       0.973
##                                                                   
##   Robust RMSEA                                               0.138
##   90 Percent confidence interval - lower                     0.101
##   90 Percent confidence interval - upper                     0.179
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         0.994
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.036       0.036
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_HOH_SIN =~                                                        
##     HEX_HOH_SIN_01    1.000                               1.329    0.785
##     HEX_HOH_SIN_02    0.860    0.039   22.018    0.000    1.143    0.635
##     HEX_HOH_SIN_03    0.984    0.035   27.934    0.000    1.308    0.814
##     HEX_HOH_SIN_04    0.790    0.038   20.818    0.000    1.050    0.587
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_HOH_SIN_01    1.099    0.082   13.398    0.000    1.099    0.384
##    .HEX_HOH_SIN_02    1.930    0.105   18.443    0.000    1.930    0.596
##    .HEX_HOH_SIN_03    0.871    0.068   12.797    0.000    0.871    0.337
##    .HEX_HOH_SIN_04    2.096    0.127   16.477    0.000    2.096    0.655
##     HEX_HOH_SIN       1.766    0.099   17.845    0.000    1.000    1.000

Fit is okay, but RMSEA is significantly above .10. Let’s hence inspect modification indices to see if there are potential fixes.

modindices(fit_HEX_HOH_SIN)

Suggests that item 1 & 3, and item 2 & 4 build subdimensions. Let’s allow covariances.

model <- "HEX_HOH_SIN =~ HEX_HOH_SIN_01 + HEX_HOH_SIN_02 + HEX_HOH_SIN_03 + HEX_HOH_SIN_04
  HEX_HOH_SIN_01 ~~ a*HEX_HOH_SIN_03
  HEX_HOH_SIN_02 ~~ a*HEX_HOH_SIN_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 28 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
##   Number of equality constraints                     1
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 6.777       4.394
##   Degrees of freedom                                 1           1
##   P-value (Chi-square)                           0.009       0.036
##   Scaling correction factor                                  1.542
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1970.756    1605.416
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.228
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.997       0.998
##   Tucker-Lewis Index (TLI)                       0.982       0.987
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.997
##   Robust Tucker-Lewis Index (TLI)                            0.984
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11178.187  -11178.187
##   Loglikelihood unrestricted model (H1)     -11174.799  -11174.799
##                                                                   
##   Akaike (AIC)                               22374.374   22374.374
##   Bayesian (BIC)                             22422.489   22422.489
##   Sample-size adjusted Bayesian (SABIC)      22393.898   22393.898
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.061       0.047
##   90 Percent confidence interval - lower         0.024       0.015
##   90 Percent confidence interval - upper         0.108       0.085
##   P-value H_0: RMSEA <= 0.050                    0.263       0.481
##   P-value H_0: RMSEA >= 0.080                    0.292       0.082
##                                                                   
##   Robust RMSEA                                               0.058
##   90 Percent confidence interval - lower                     0.012
##   90 Percent confidence interval - upper                     0.118
##   P-value H_0: Robust RMSEA <= 0.050                         0.305
##   P-value H_0: Robust RMSEA >= 0.080                         0.330
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.009       0.009
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_HOH_SIN =~                                                        
##     HEX_HOH_SIN_01    1.000                               1.235    0.730
##     HEX_HOH_SIN_02    0.951    0.046   20.608    0.000    1.174    0.653
##     HEX_HOH_SIN_03    0.996    0.037   26.573    0.000    1.231    0.766
##     HEX_HOH_SIN_04    0.862    0.043   20.047    0.000    1.064    0.595
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_HOH_SIN_01 ~~                                                      
##    .HEX_HOH_SI (a)     0.271    0.053    5.164    0.000    0.271    0.227
##  .HEX_HOH_SIN_02 ~~                                                      
##    .HEX_HOH_SI (a)     0.271    0.053    5.164    0.000    0.271    0.138
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_HOH_SIN_01    1.340    0.090   14.840    0.000    1.340    0.468
##    .HEX_HOH_SIN_02    1.857    0.108   17.196    0.000    1.857    0.574
##    .HEX_HOH_SIN_03    1.068    0.074   14.394    0.000    1.068    0.414
##    .HEX_HOH_SIN_04    2.066    0.130   15.894    0.000    2.066    0.646
##     HEX_HOH_SIN       1.526    0.104   14.624    0.000    1.000    1.000

Fit is now great.

Fairness

  1. If I knew that I could never get caught, I would be willing to steal a million dollars.
  2. I would be tempted to buy stolen property if I were financially tight.
  3. I would never accept a bribe, even if it were very large.
  4. I’d be tempted to use counterfeit money, if I were sure I could get away with it.
name <- "HEX_HOH_FAI"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  4.08   skew =  1053  with probability  <=  1.7e-210
##  small sample skew =  1056  with probability <=  4.2e-211
## b2p =  34   kurtosis =  28.5  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "HEX_HOH_FAI =~ HEX_HOH_FAI_01 + HEX_HOH_FAI_02 + HEX_HOH_FAI_03 + HEX_HOH_FAI_04"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 24 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                26.635      16.846
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.581
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              3014.655    2267.754
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.329
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.992       0.993
##   Tucker-Lewis Index (TLI)                       0.975       0.980
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.992
##   Robust Tucker-Lewis Index (TLI)                            0.977
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11113.823  -11113.823
##   Loglikelihood unrestricted model (H1)     -11100.505  -11100.505
##                                                                   
##   Akaike (AIC)                               22243.645   22243.645
##   Bayesian (BIC)                             22286.413   22286.413
##   Sample-size adjusted Bayesian (SABIC)      22260.999   22260.999
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.089       0.069
##   90 Percent confidence interval - lower         0.061       0.046
##   90 Percent confidence interval - upper         0.121       0.095
##   P-value H_0: RMSEA <= 0.050                    0.012       0.080
##   P-value H_0: RMSEA >= 0.080                    0.726       0.260
##                                                                   
##   Robust RMSEA                                               0.087
##   90 Percent confidence interval - lower                     0.052
##   90 Percent confidence interval - upper                     0.127
##   P-value H_0: Robust RMSEA <= 0.050                         0.042
##   P-value H_0: Robust RMSEA >= 0.080                         0.666
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.016       0.016
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_HOH_FAI =~                                                        
##     HEX_HOH_FAI_01    1.000                               1.792    0.854
##     HEX_HOH_FAI_02    0.692    0.025   27.711    0.000    1.239    0.735
##     HEX_HOH_FAI_03    0.678    0.024   28.367    0.000    1.216    0.698
##     HEX_HOH_FAI_04    0.907    0.025   35.949    0.000    1.626    0.857
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_HOH_FAI_01    1.186    0.104   11.448    0.000    1.186    0.270
##    .HEX_HOH_FAI_02    1.310    0.076   17.326    0.000    1.310    0.460
##    .HEX_HOH_FAI_03    1.553    0.094   16.515    0.000    1.553    0.512
##    .HEX_HOH_FAI_04    0.958    0.081   11.775    0.000    0.958    0.266
##     HEX_HOH_FAI       3.210    0.137   23.454    0.000    1.000    1.000

Fit is good.

Greed Avoidance

  1. Having a lot of money is not especially important to me.
  2. I would like to live in a very expensive, high-class neighborhood.
  3. I would like to be seen driving around in a very expensive car.
  4. I would get a lot of pleasure from owning expensive luxury goods.
name <- "HEX_HOH_GRE"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  0.54   skew =  139  with probability  <=  7.9e-20
##  small sample skew =  139  with probability <=  6.7e-20
## b2p =  25.2   kurtosis =  3.51  with probability <=  0.00045

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "HEX_HOH_GRE =~ HEX_HOH_GRE_01 + HEX_HOH_GRE_02 + HEX_HOH_GRE_03 + HEX_HOH_GRE_04"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 26 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                71.894      56.183
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.280
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2039.091    1847.669
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.104
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.966       0.971
##   Tucker-Lewis Index (TLI)                       0.897       0.912
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.966
##   Robust Tucker-Lewis Index (TLI)                            0.898
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11485.841  -11485.841
##   Loglikelihood unrestricted model (H1)     -11449.895  -11449.895
##                                                                   
##   Akaike (AIC)                               22987.683   22987.683
##   Bayesian (BIC)                             23030.451   23030.451
##   Sample-size adjusted Bayesian (SABIC)      23005.037   23005.037
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.150       0.132
##   90 Percent confidence interval - lower         0.122       0.107
##   90 Percent confidence interval - upper         0.181       0.159
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    1.000       1.000
##                                                                   
##   Robust RMSEA                                               0.150
##   90 Percent confidence interval - lower                     0.117
##   90 Percent confidence interval - upper                     0.184
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.040       0.040
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_HOH_GRE =~                                                        
##     HEX_HOH_GRE_01    1.000                               0.798    0.451
##     HEX_HOH_GRE_02    1.681    0.103   16.255    0.000    1.342    0.724
##     HEX_HOH_GRE_03    1.773    0.114   15.548    0.000    1.415    0.791
##     HEX_HOH_GRE_04    1.875    0.120   15.648    0.000    1.497    0.822
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_HOH_GRE_01    2.500    0.087   28.774    0.000    2.500    0.797
##    .HEX_HOH_GRE_02    1.632    0.091   17.993    0.000    1.632    0.475
##    .HEX_HOH_GRE_03    1.197    0.081   14.807    0.000    1.197    0.374
##    .HEX_HOH_GRE_04    1.075    0.089   12.126    0.000    1.075    0.324
##     HEX_HOH_GRE       0.637    0.078    8.214    0.000    1.000    1.000

Fit is okaish, but RMSEA above .10. Let’s inspect modification indices.

modindices(fit_HEX_HOH_GRE)

Item 1 & 2, and item 3 & 4 form subdimensions.

model <- "
  HEX_HOH_GRE =~ HEX_HOH_GRE_01 + HEX_HOH_GRE_02 + HEX_HOH_GRE_03 + HEX_HOH_GRE_04
  HEX_HOH_GRE_01 ~~ a*HEX_HOH_GRE_02
  HEX_HOH_GRE_03 ~~ a*HEX_HOH_GRE_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 31 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
##   Number of equality constraints                     1
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.707       0.589
##   Degrees of freedom                                 1           1
##   P-value (Chi-square)                           0.400       0.443
##   Scaling correction factor                                  1.200
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2039.091    1847.669
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.104
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       1.001       1.001
##                                                                   
##   Robust Comparative Fit Index (CFI)                         1.000
##   Robust Tucker-Lewis Index (TLI)                            1.001
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11450.248  -11450.248
##   Loglikelihood unrestricted model (H1)     -11449.895  -11449.895
##                                                                   
##   Akaike (AIC)                               22918.496   22918.496
##   Bayesian (BIC)                             22966.611   22966.611
##   Sample-size adjusted Bayesian (SABIC)      22938.020   22938.020
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.000
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.063       0.056
##   P-value H_0: RMSEA <= 0.050                    0.873       0.920
##   P-value H_0: RMSEA >= 0.080                    0.010       0.004
##                                                                   
##   Robust RMSEA                                               0.000
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.067
##   P-value H_0: Robust RMSEA <= 0.050                         0.853
##   P-value H_0: Robust RMSEA >= 0.080                         0.017
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.003       0.003
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_HOH_GRE =~                                                        
##     HEX_HOH_GRE_01    1.000                               0.773    0.436
##     HEX_HOH_GRE_02    1.824    0.126   14.474    0.000    1.410    0.761
##     HEX_HOH_GRE_03    1.698    0.115   14.701    0.000    1.312    0.734
##     HEX_HOH_GRE_04    1.804    0.122   14.775    0.000    1.394    0.766
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_HOH_GRE_01 ~~                                                      
##    .HEX_HOH_GR (a)     0.347    0.052    6.728    0.000    0.347    0.181
##  .HEX_HOH_GRE_03 ~~                                                      
##    .HEX_HOH_GR (a)     0.347    0.052    6.728    0.000    0.347    0.243
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_HOH_GRE_01    2.540    0.089   28.527    0.000    2.540    0.810
##    .HEX_HOH_GRE_02    1.445    0.094   15.365    0.000    1.445    0.421
##    .HEX_HOH_GRE_03    1.478    0.086   17.268    0.000    1.478    0.462
##    .HEX_HOH_GRE_04    1.371    0.096   14.263    0.000    1.371    0.414
##     HEX_HOH_GRE       0.597    0.080    7.481    0.000    1.000    1.000

Fit is now great.

Modesty

  1. I am an ordinary person who is no better than others.
  2. I wouldn’t want people to treat me as though I were superior to them.
  3. I think that I am entitled to more respect than the average person is.
  4. I want people to know that I am an important person of high status.
name <- "HEX_HOH_MOD"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  5.38   skew =  1390  with probability  <=  1.6e-282
##  small sample skew =  1394  with probability <=  2.5e-283
## b2p =  35.9   kurtosis =  33.8  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "HEX_HOH_MOD =~ HEX_HOH_MOD_01 + HEX_HOH_MOD_02 + HEX_HOH_MOD_03 + HEX_HOH_MOD_04"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 27 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                23.418      15.131
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.001
##   Scaling correction factor                                  1.548
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1437.605     970.785
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.481
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.985       0.986
##   Tucker-Lewis Index (TLI)                       0.955       0.959
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.986
##   Robust Tucker-Lewis Index (TLI)                            0.957
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10604.757  -10604.757
##   Loglikelihood unrestricted model (H1)     -10593.048  -10593.048
##                                                                   
##   Akaike (AIC)                               21225.515   21225.515
##   Bayesian (BIC)                             21268.283   21268.283
##   Sample-size adjusted Bayesian (SABIC)      21242.869   21242.869
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.083       0.065
##   90 Percent confidence interval - lower         0.055       0.042
##   90 Percent confidence interval - upper         0.115       0.091
##   P-value H_0: RMSEA <= 0.050                    0.027       0.132
##   P-value H_0: RMSEA >= 0.080                    0.609       0.183
##                                                                   
##   Robust RMSEA                                               0.081
##   90 Percent confidence interval - lower                     0.046
##   90 Percent confidence interval - upper                     0.121
##   P-value H_0: Robust RMSEA <= 0.050                         0.069
##   P-value H_0: Robust RMSEA >= 0.080                         0.569
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.022       0.022
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_HOH_MOD =~                                                        
##     HEX_HOH_MOD_01    1.000                               0.947    0.674
##     HEX_HOH_MOD_02    0.818    0.056   14.638    0.000    0.775    0.505
##     HEX_HOH_MOD_03    1.190    0.066   17.943    0.000    1.128    0.764
##     HEX_HOH_MOD_04    1.147    0.069   16.675    0.000    1.087    0.684
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_HOH_MOD_01    1.080    0.073   14.860    0.000    1.080    0.546
##    .HEX_HOH_MOD_02    1.759    0.113   15.591    0.000    1.759    0.745
##    .HEX_HOH_MOD_03    0.909    0.081   11.255    0.000    0.909    0.417
##    .HEX_HOH_MOD_04    1.340    0.089   15.047    0.000    1.340    0.532
##     HEX_HOH_MOD       0.897    0.082   10.947    0.000    1.000    1.000

Fit is good.

Honesty Humility

Let’s also look at the dimension itself.

model_hex_hoh <- "
# Personality Factors
HEX_HOH =~ HEX_HOH_SIN + HEX_HOH_FAI + HEX_HOH_GRE + HEX_HOH_MOD
HEX_HOH_SIN =~ HEX_HOH_SIN_01 + HEX_HOH_SIN_02 + HEX_HOH_SIN_03 + HEX_HOH_SIN_04
HEX_HOH_FAI =~ HEX_HOH_FAI_01 + HEX_HOH_FAI_02 + HEX_HOH_FAI_03 + HEX_HOH_FAI_04
HEX_HOH_GRE =~ HEX_HOH_GRE_01 + HEX_HOH_GRE_02 + HEX_HOH_GRE_03 + HEX_HOH_GRE_04
HEX_HOH_MOD =~ HEX_HOH_MOD_01 + HEX_HOH_MOD_02 + HEX_HOH_MOD_03 + HEX_HOH_MOD_04

# Covariances
HEX_HOH_SIN_01 ~~ HEX_HOH_SIN_03
HEX_HOH_SIN_02 ~~ HEX_HOH_SIN_04
HEX_HOH_GRE_01 ~~ HEX_HOH_GRE_02
HEX_HOH_GRE_03 ~~ HEX_HOH_GRE_04
"
fit_hex_hoh <- sem(model_hex_hoh, d, estimator = "MLM", fixed.x = TRUE)
summary(fit_hex_hoh, standardized = TRUE, fit = TRUE)
## lavaan 0.6.17 ended normally after 64 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        40
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               711.127     570.161
##   Degrees of freedom                                96          96
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.247
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              9874.849    8294.321
##   Degrees of freedom                               120         120
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.191
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.937       0.942
##   Tucker-Lewis Index (TLI)                       0.921       0.927
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.939
##   Robust Tucker-Lewis Index (TLI)                            0.924
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -43967.439  -43967.439
##   Loglikelihood unrestricted model (H1)     -43611.875  -43611.875
##                                                                   
##   Akaike (AIC)                               88014.878   88014.878
##   Bayesian (BIC)                             88228.718   88228.718
##   Sample-size adjusted Bayesian (SABIC)      88101.647   88101.647
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.064       0.056
##   90 Percent confidence interval - lower         0.060       0.052
##   90 Percent confidence interval - upper         0.069       0.060
##   P-value H_0: RMSEA <= 0.050                    0.000       0.004
##   P-value H_0: RMSEA >= 0.080                    0.000       0.000
##                                                                   
##   Robust RMSEA                                               0.063
##   90 Percent confidence interval - lower                     0.058
##   90 Percent confidence interval - upper                     0.068
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.065       0.065
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_HOH =~                                                            
##     HEX_HOH_SIN       1.000                               0.596    0.596
##     HEX_HOH_FAI       1.008    0.091   11.052    0.000    0.422    0.422
##     HEX_HOH_GRE       0.792    0.080    9.907    0.000    0.769    0.769
##     HEX_HOH_MOD       0.863    0.081   10.667    0.000    0.736    0.736
##   HEX_HOH_SIN =~                                                        
##     HEX_HOH_SIN_01    1.000                               1.257    0.742
##     HEX_HOH_SIN_02    0.926    0.069   13.382    0.000    1.164    0.647
##     HEX_HOH_SIN_03    0.983    0.035   28.175    0.000    1.236    0.769
##     HEX_HOH_SIN_04    0.837    0.067   12.541    0.000    1.052    0.588
##   HEX_HOH_FAI =~                                                        
##     HEX_HOH_FAI_01    1.000                               1.791    0.854
##     HEX_HOH_FAI_02    0.693    0.025   27.917    0.000    1.241    0.736
##     HEX_HOH_FAI_03    0.682    0.024   28.801    0.000    1.221    0.702
##     HEX_HOH_FAI_04    0.906    0.024   36.992    0.000    1.622    0.854
##   HEX_HOH_GRE =~                                                        
##     HEX_HOH_GRE_01    1.000                               0.772    0.436
##     HEX_HOH_GRE_02    1.747    0.113   15.401    0.000    1.349    0.728
##     HEX_HOH_GRE_03    1.802    0.144   12.483    0.000    1.392    0.778
##     HEX_HOH_GRE_04    1.843    0.147   12.533    0.000    1.423    0.782
##   HEX_HOH_MOD =~                                                        
##     HEX_HOH_MOD_01    1.000                               0.879    0.625
##     HEX_HOH_MOD_02    0.890    0.059   15.019    0.000    0.782    0.509
##     HEX_HOH_MOD_03    1.188    0.063   18.762    0.000    1.044    0.707
##     HEX_HOH_MOD_04    1.386    0.076   18.278    0.000    1.218    0.767
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_HOH_SIN_01 ~~                                                      
##    .HEX_HOH_SIN_03     0.238    0.104    2.285    0.022    0.238    0.205
##  .HEX_HOH_SIN_02 ~~                                                      
##    .HEX_HOH_SIN_04     0.296    0.109    2.725    0.006    0.296    0.149
##  .HEX_HOH_GRE_01 ~~                                                      
##    .HEX_HOH_GRE_02     0.394    0.079    5.021    0.000    0.394    0.195
##  .HEX_HOH_GRE_03 ~~                                                      
##    .HEX_HOH_GRE_04     0.196    0.098    1.988    0.047    0.196    0.153
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_HOH_SIN_01    1.286    0.123   10.458    0.000    1.286    0.449
##    .HEX_HOH_SIN_02    1.882    0.132   14.204    0.000    1.882    0.581
##    .HEX_HOH_SIN_03    1.056    0.110    9.603    0.000    1.056    0.409
##    .HEX_HOH_SIN_04    2.092    0.147   14.220    0.000    2.092    0.654
##    .HEX_HOH_FAI_01    1.190    0.101   11.746    0.000    1.190    0.271
##    .HEX_HOH_FAI_02    1.305    0.075   17.362    0.000    1.305    0.459
##    .HEX_HOH_FAI_03    1.539    0.094   16.451    0.000    1.539    0.508
##    .HEX_HOH_FAI_04    0.973    0.079   12.379    0.000    0.973    0.270
##    .HEX_HOH_GRE_01    2.541    0.091   27.817    0.000    2.541    0.810
##    .HEX_HOH_GRE_02    1.613    0.111   14.510    0.000    1.613    0.470
##    .HEX_HOH_GRE_03    1.263    0.108   11.646    0.000    1.263    0.395
##    .HEX_HOH_GRE_04    1.289    0.121   10.618    0.000    1.289    0.389
##    .HEX_HOH_MOD_01    1.205    0.071   17.014    0.000    1.205    0.609
##    .HEX_HOH_MOD_02    1.748    0.112   15.625    0.000    1.748    0.741
##    .HEX_HOH_MOD_03    1.090    0.072   15.108    0.000    1.090    0.500
##    .HEX_HOH_MOD_04    1.037    0.079   13.202    0.000    1.037    0.411
##     HEX_HOH           0.561    0.072    7.796    0.000    1.000    1.000
##    .HEX_HOH_SIN       1.018    0.113    9.025    0.000    0.644    0.644
##    .HEX_HOH_FAI       2.637    0.139   19.025    0.000    0.822    0.822
##    .HEX_HOH_GRE       0.244    0.042    5.762    0.000    0.409    0.409
##    .HEX_HOH_MOD       0.354    0.054    6.526    0.000    0.459    0.459

Emotionality

Fearfulness

  1. I would feel afraid if I had to travel in bad weather conditions.
  2. I don’t mind doing jobs that involve dangerous work.
  3. When it comes to physical danger, I am very fearful.
  4. Even in an emergency I wouldn’t feel like panicking.
name <- "HEX_EMO_FEA"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1549   num.vars =  4 
## b1p =  1.02   skew =  262  with probability  <=  3.7e-44
##  small sample skew =  263  with probability <=  2.6e-44
## b2p =  24.1   kurtosis =  0.42  with probability <=  0.67

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "HEX_EMO_FEA =~ HEX_EMO_FEA_01 + HEX_EMO_FEA_02 + HEX_EMO_FEA_03 + HEX_EMO_FEA_04"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLR", missing = "FIML"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        12
## 
##   Number of observations                          1550
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.752       0.573
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.687       0.751
##   Scaling correction factor                                  1.312
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Model Test Baseline Model:
## 
##   Test statistic                               982.924     757.476
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.298
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       1.004       1.006
##                                                                   
##   Robust Comparative Fit Index (CFI)                         1.000
##   Robust Tucker-Lewis Index (TLI)                            1.006
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11626.793  -11626.793
##   Scaling correction factor                                  0.956
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)     -11626.417  -11626.417
##   Scaling correction factor                                  1.006
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                               23277.586   23277.586
##   Bayesian (BIC)                             23341.738   23341.738
##   Sample-size adjusted Bayesian (SABIC)      23303.617   23303.617
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.000
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.038       0.028
##   P-value H_0: RMSEA <= 0.050                    0.988       0.998
##   P-value H_0: RMSEA >= 0.080                    0.000       0.000
##                                                                   
##   Robust RMSEA                                               0.000
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.040
##   P-value H_0: Robust RMSEA <= 0.050                         0.981
##   P-value H_0: Robust RMSEA >= 0.080                         0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.004       0.004
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_EMO_FEA =~                                                        
##     HEX_EMO_FEA_01    1.000                               1.126    0.662
##     HEX_EMO_FEA_02    0.842    0.052   16.269    0.000    0.948    0.564
##     HEX_EMO_FEA_03    1.046    0.059   17.723    0.000    1.178    0.680
##     HEX_EMO_FEA_04    0.768    0.053   14.447    0.000    0.864    0.502
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_EMO_FEA_01    4.799    0.043  111.008    0.000    4.799    2.820
##    .HEX_EMO_FEA_02    5.068    0.043  118.694    0.000    5.068    3.015
##    .HEX_EMO_FEA_03    4.504    0.044  102.424    0.000    4.504    2.602
##    .HEX_EMO_FEA_04    4.072    0.044   93.087    0.000    4.072    2.364
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_EMO_FEA_01    1.627    0.095   17.198    0.000    1.627    0.562
##    .HEX_EMO_FEA_02    1.928    0.094   20.587    0.000    1.928    0.682
##    .HEX_EMO_FEA_03    1.610    0.108   14.958    0.000    1.610    0.537
##    .HEX_EMO_FEA_04    2.219    0.089   24.978    0.000    2.219    0.748
##     HEX_EMO_FEA       1.268    0.105   12.049    0.000    1.000    1.000

Fit is great.

Anxiety

  1. I sometimes can’t help worrying about little things.
  2. I worry a lot less than most people do.
  3. I rarely, if ever, have trouble sleeping due to stress or anxiety.
  4. I get very anxious when waiting to hear about an important decision.
name <- "HEX_EMO_ANX"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  1.98   skew =  512  with probability  <=  7.9e-96
##  small sample skew =  514  with probability <=  4e-96
## b2p =  29.2   kurtosis =  14.8  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "HEX_EMO_ANX =~ HEX_EMO_ANX_01 + HEX_EMO_ANX_02 + HEX_EMO_ANX_03 + HEX_EMO_ANX_04"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 26 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                16.547      12.915
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.002
##   Scaling correction factor                                  1.281
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1894.628    1635.691
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.158
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.992       0.993
##   Tucker-Lewis Index (TLI)                       0.977       0.980
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.993
##   Robust Tucker-Lewis Index (TLI)                            0.978
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11228.767  -11228.767
##   Loglikelihood unrestricted model (H1)     -11220.494  -11220.494
##                                                                   
##   Akaike (AIC)                               22473.534   22473.534
##   Bayesian (BIC)                             22516.302   22516.302
##   Sample-size adjusted Bayesian (SABIC)      22490.888   22490.888
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.069       0.059
##   90 Percent confidence interval - lower         0.041       0.034
##   90 Percent confidence interval - upper         0.101       0.088
##   P-value H_0: RMSEA <= 0.050                    0.128       0.243
##   P-value H_0: RMSEA >= 0.080                    0.307       0.126
##                                                                   
##   Robust RMSEA                                               0.067
##   90 Percent confidence interval - lower                     0.036
##   90 Percent confidence interval - upper                     0.104
##   P-value H_0: Robust RMSEA <= 0.050                         0.168
##   P-value H_0: Robust RMSEA >= 0.080                         0.317
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.016       0.016
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_EMO_ANX =~                                                        
##     HEX_EMO_ANX_01    1.000                               1.405    0.818
##     HEX_EMO_ANX_02    0.984    0.039   25.074    0.000    1.382    0.776
##     HEX_EMO_ANX_03    0.800    0.038   20.864    0.000    1.124    0.593
##     HEX_EMO_ANX_04    0.675    0.034   19.968    0.000    0.948    0.624
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_EMO_ANX_01    0.975    0.091   10.772    0.000    0.975    0.331
##    .HEX_EMO_ANX_02    1.260    0.096   13.176    0.000    1.260    0.398
##    .HEX_EMO_ANX_03    2.328    0.099   23.467    0.000    2.328    0.648
##    .HEX_EMO_ANX_04    1.408    0.078   18.064    0.000    1.408    0.610
##     HEX_EMO_ANX       1.973    0.116   17.068    0.000    1.000    1.000

Fit is great.

Dependence

  1. When I suffer from a painful experience, I need someone to make me feel comfortable.
  2. I can handle difficult situations without needing emotional support from anyone else.
  3. Whenever I feel worried about something, I want to share my concern with another person.
  4. I rarely discuss my problems with other people.
name <- "HEX_EMO_DEP"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  0.78   skew =  203  with probability  <=  3.5e-32
##  small sample skew =  203  with probability <=  2.7e-32
## b2p =  26.5   kurtosis =  6.99  with probability <=  2.7e-12

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  HEX_EMO_DEP =~ HEX_EMO_DEP_01 + HEX_EMO_DEP_02 + HEX_EMO_DEP_03 + HEX_EMO_DEP_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 26 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               102.069      72.428
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.409
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1328.622    1116.840
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.190
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.924       0.937
##   Tucker-Lewis Index (TLI)                       0.773       0.810
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.925
##   Robust Tucker-Lewis Index (TLI)                            0.775
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11092.268  -11092.268
##   Loglikelihood unrestricted model (H1)     -11041.233  -11041.233
##                                                                   
##   Akaike (AIC)                               22200.535   22200.535
##   Bayesian (BIC)                             22243.303   22243.303
##   Sample-size adjusted Bayesian (SABIC)      22217.889   22217.889
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.180       0.151
##   90 Percent confidence interval - lower         0.151       0.126
##   90 Percent confidence interval - upper         0.210       0.176
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    1.000       1.000
##                                                                   
##   Robust RMSEA                                               0.179
##   90 Percent confidence interval - lower                     0.145
##   90 Percent confidence interval - upper                     0.215
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.046       0.046
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_EMO_DEP =~                                                        
##     HEX_EMO_DEP_01    1.000                               1.178    0.731
##     HEX_EMO_DEP_02    0.702    0.043   16.381    0.000    0.827    0.538
##     HEX_EMO_DEP_03    0.953    0.050   19.231    0.000    1.124    0.718
##     HEX_EMO_DEP_04    0.785    0.044   17.692    0.000    0.925    0.549
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_EMO_DEP_01    1.212    0.084   14.428    0.000    1.212    0.466
##    .HEX_EMO_DEP_02    1.678    0.079   21.357    0.000    1.678    0.710
##    .HEX_EMO_DEP_03    1.185    0.086   13.761    0.000    1.185    0.484
##    .HEX_EMO_DEP_04    1.979    0.083   23.723    0.000    1.979    0.698
##     HEX_EMO_DEP       1.389    0.098   14.136    0.000    1.000    1.000

Fit is bad; TLI and RMSEA outside thresholds.

modindices(fit_HEX_EMO_DEP)

Not entirely clear. Let’s allow items 1 & 4 to correlate, and items 2 & 3.

model <- "
HEX_EMO_DEP =~ HEX_EMO_DEP_01 + HEX_EMO_DEP_02 + HEX_EMO_DEP_03 + HEX_EMO_DEP_04
HEX_EMO_DEP_01 ~~ a*HEX_EMO_DEP_04
HEX_EMO_DEP_02 ~~ a*HEX_EMO_DEP_03
"
assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 29 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
##   Number of equality constraints                     1
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                12.630       8.968
##   Degrees of freedom                                 1           1
##   P-value (Chi-square)                           0.000       0.003
##   Scaling correction factor                                  1.408
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1328.622    1116.840
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.190
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.991       0.993
##   Tucker-Lewis Index (TLI)                       0.947       0.957
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.992
##   Robust Tucker-Lewis Index (TLI)                            0.949
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11047.548  -11047.548
##   Loglikelihood unrestricted model (H1)     -11041.233  -11041.233
##                                                                   
##   Akaike (AIC)                               22113.096   22113.096
##   Bayesian (BIC)                             22161.210   22161.210
##   Sample-size adjusted Bayesian (SABIC)      22132.619   22132.619
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.087       0.072
##   90 Percent confidence interval - lower         0.048       0.039
##   90 Percent confidence interval - upper         0.132       0.110
##   P-value H_0: RMSEA <= 0.050                    0.056       0.126
##   P-value H_0: RMSEA >= 0.080                    0.657       0.405
##                                                                   
##   Robust RMSEA                                               0.085
##   90 Percent confidence interval - lower                     0.041
##   90 Percent confidence interval - upper                     0.140
##   P-value H_0: Robust RMSEA <= 0.050                         0.091
##   P-value H_0: Robust RMSEA >= 0.080                         0.633
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.020       0.020
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_EMO_DEP =~                                                        
##     HEX_EMO_DEP_01    1.000                               1.195    0.741
##     HEX_EMO_DEP_02    0.755    0.042   18.039    0.000    0.902    0.587
##     HEX_EMO_DEP_03    0.964    0.045   21.235    0.000    1.151    0.736
##     HEX_EMO_DEP_04    0.836    0.043   19.344    0.000    0.999    0.593
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_EMO_DEP_01 ~~                                                      
##    .HEX_EMO_DE (a)    -0.296    0.034   -8.644    0.000   -0.296   -0.202
##  .HEX_EMO_DEP_02 ~~                                                      
##    .HEX_EMO_DE (a)    -0.296    0.034   -8.644    0.000   -0.296   -0.225
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_EMO_DEP_01    1.174    0.080   14.656    0.000    1.174    0.451
##    .HEX_EMO_DEP_02    1.549    0.080   19.334    0.000    1.549    0.656
##    .HEX_EMO_DEP_03    1.121    0.084   13.419    0.000    1.121    0.458
##    .HEX_EMO_DEP_04    1.836    0.084   21.768    0.000    1.836    0.648
##     HEX_EMO_DEP       1.427    0.094   15.158    0.000    1.000    1.000

Fit not great, but okay.

Sentimentality

  1. I feel like crying when I see other people crying.
  2. When someone I know well is unhappy, I can almost feel that person’s pain myself.
  3. I feel strong emotions when someone close to me is going away for a long time.
  4. I remain unemotional even in situations where most people get very sentimental.
name <- "HEX_EMO_SEN"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  1.93   skew =  499  with probability  <=  5e-93
##  small sample skew =  500  with probability <=  2.6e-93
## b2p =  28.5   kurtosis =  12.9  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
HEX_EMO_SEN =~ HEX_EMO_SEN_01 + HEX_EMO_SEN_02 + HEX_EMO_SEN_03 + HEX_EMO_SEN_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 26 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                50.977      37.302
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.367
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1313.496    1008.151
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.303
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.963       0.965
##   Tucker-Lewis Index (TLI)                       0.888       0.894
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.963
##   Robust Tucker-Lewis Index (TLI)                            0.889
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10810.891  -10810.891
##   Loglikelihood unrestricted model (H1)     -10785.403  -10785.403
##                                                                   
##   Akaike (AIC)                               21637.782   21637.782
##   Bayesian (BIC)                             21680.550   21680.550
##   Sample-size adjusted Bayesian (SABIC)      21655.136   21655.136
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.126       0.107
##   90 Percent confidence interval - lower         0.097       0.082
##   90 Percent confidence interval - upper         0.157       0.133
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    0.995       0.963
##                                                                   
##   Robust RMSEA                                               0.125
##   90 Percent confidence interval - lower                     0.092
##   90 Percent confidence interval - upper                     0.161
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         0.986
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.032       0.032
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_EMO_SEN =~                                                        
##     HEX_EMO_SEN_01    1.000                               1.256    0.736
##     HEX_EMO_SEN_02    0.788    0.042   18.773    0.000    0.990    0.709
##     HEX_EMO_SEN_03    0.648    0.037   17.406    0.000    0.814    0.581
##     HEX_EMO_SEN_04    0.700    0.042   16.571    0.000    0.879    0.533
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_EMO_SEN_01    1.336    0.090   14.887    0.000    1.336    0.458
##    .HEX_EMO_SEN_02    0.967    0.072   13.394    0.000    0.967    0.497
##    .HEX_EMO_SEN_03    1.298    0.072   18.119    0.000    1.298    0.662
##    .HEX_EMO_SEN_04    1.953    0.088   22.159    0.000    1.953    0.716
##     HEX_EMO_SEN       1.578    0.105   14.977    0.000    1.000    1.000

Fit not terrible, but TLI and RSMEA outside of thresholds.

modindices(fit_HEX_EMO_SEN)

Items 1 & 3, and items 2 & 4 want to covary.

model <- "
  HEX_EMO_SEN =~ HEX_EMO_SEN_01 + HEX_EMO_SEN_02 + HEX_EMO_SEN_03 + HEX_EMO_SEN_04
  HEX_EMO_SEN_01 ~~ a*HEX_EMO_SEN_03
  HEX_EMO_SEN_02 ~~ a*HEX_EMO_SEN_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 29 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
##   Number of equality constraints                     1
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 2.862       2.059
##   Degrees of freedom                                 1           1
##   P-value (Chi-square)                           0.091       0.151
##   Scaling correction factor                                  1.390
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1313.496    1008.151
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.303
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.999       0.999
##   Tucker-Lewis Index (TLI)                       0.991       0.994
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.999
##   Robust Tucker-Lewis Index (TLI)                            0.993
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10786.834  -10786.834
##   Loglikelihood unrestricted model (H1)     -10785.403  -10785.403
##                                                                   
##   Akaike (AIC)                               21591.668   21591.668
##   Bayesian (BIC)                             21639.782   21639.782
##   Sample-size adjusted Bayesian (SABIC)      21611.191   21611.191
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.035       0.026
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.085       0.070
##   P-value H_0: RMSEA <= 0.050                    0.609       0.768
##   P-value H_0: RMSEA >= 0.080                    0.072       0.018
##                                                                   
##   Robust RMSEA                                               0.031
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.092
##   P-value H_0: Robust RMSEA <= 0.050                         0.594
##   P-value H_0: Robust RMSEA >= 0.080                         0.108
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.009       0.009
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_EMO_SEN =~                                                        
##     HEX_EMO_SEN_01    1.000                               1.282    0.751
##     HEX_EMO_SEN_02    0.777    0.039   20.171    0.000    0.996    0.714
##     HEX_EMO_SEN_03    0.677    0.036   18.678    0.000    0.868    0.620
##     HEX_EMO_SEN_04    0.727    0.041   17.686    0.000    0.932    0.564
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_EMO_SEN_01 ~~                                                      
##    .HEX_EMO_SE (a)    -0.203    0.032   -6.410    0.000   -0.203   -0.163
##  .HEX_EMO_SEN_02 ~~                                                      
##    .HEX_EMO_SE (a)    -0.203    0.032   -6.410    0.000   -0.203   -0.152
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_EMO_SEN_01    1.271    0.087   14.619    0.000    1.271    0.436
##    .HEX_EMO_SEN_02    0.954    0.070   13.687    0.000    0.954    0.490
##    .HEX_EMO_SEN_03    1.208    0.073   16.526    0.000    1.208    0.616
##    .HEX_EMO_SEN_04    1.858    0.091   20.468    0.000    1.858    0.681
##     HEX_EMO_SEN       1.643    0.104   15.858    0.000    1.000    1.000

Fit is now good.

Emotionality

Let’s look at overall dimension.

model_hex_emo <- "
HEX_EMO =~ HEX_EMO_FEA + HEX_EMO_ANX + HEX_EMO_DEP + HEX_EMO_SEN
HEX_EMO_FEA =~ HEX_EMO_FEA_01 + HEX_EMO_FEA_02 + HEX_EMO_FEA_03 + HEX_EMO_FEA_04
HEX_EMO_ANX =~ HEX_EMO_ANX_01 + HEX_EMO_ANX_02 + HEX_EMO_ANX_03 + HEX_EMO_ANX_04
HEX_EMO_DEP =~ HEX_EMO_DEP_01 + HEX_EMO_DEP_02 + HEX_EMO_DEP_03 + HEX_EMO_DEP_04
HEX_EMO_SEN =~ HEX_EMO_SEN_01 + HEX_EMO_SEN_02 + HEX_EMO_SEN_03 + HEX_EMO_SEN_04
HEX_EMO_DEP_01 ~~ HEX_EMO_DEP_04
HEX_EMO_DEP_02 ~~ HEX_EMO_DEP_03
HEX_EMO_SEN_01 ~~ HEX_EMO_SEN_03
HEX_EMO_SEN_02 ~~ HEX_EMO_SEN_04
"
fit_hex_emo <- sem(model_hex_emo, d, estimator = "MLM", fixed.x = TRUE)
summary(fit_hex_emo, standardized = TRUE, fit = TRUE)
## lavaan 0.6.17 ended normally after 53 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        40
## 
##                                                   Used       Total
##   Number of observations                          1549        1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1114.760     886.884
##   Degrees of freedom                                96          96
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.257
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              7625.433    6414.824
##   Degrees of freedom                               120         120
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.189
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.864       0.874
##   Tucker-Lewis Index (TLI)                       0.830       0.843
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.867
##   Robust Tucker-Lewis Index (TLI)                            0.834
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -44150.593  -44150.593
##   Loglikelihood unrestricted model (H1)     -43593.213  -43593.213
##                                                                   
##   Akaike (AIC)                               88381.187   88381.187
##   Bayesian (BIC)                             88595.001   88595.001
##   Sample-size adjusted Bayesian (SABIC)      88467.931   88467.931
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.083       0.073
##   90 Percent confidence interval - lower         0.078       0.069
##   90 Percent confidence interval - upper         0.087       0.077
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    0.855       0.002
##                                                                   
##   Robust RMSEA                                               0.082
##   90 Percent confidence interval - lower                     0.077
##   90 Percent confidence interval - upper                     0.087
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         0.728
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.070       0.070
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_EMO =~                                                            
##     HEX_EMO_FEA       1.000                               0.854    0.854
##     HEX_EMO_ANX       1.013    0.071   14.223    0.000    0.698    0.698
##     HEX_EMO_DEP       0.666    0.057   11.646    0.000    0.596    0.596
##     HEX_EMO_SEN       0.845    0.063   13.341    0.000    0.607    0.607
##   HEX_EMO_FEA =~                                                        
##     HEX_EMO_FEA_01    1.000                               1.118    0.657
##     HEX_EMO_FEA_02    0.753    0.044   17.015    0.000    0.842    0.501
##     HEX_EMO_FEA_03    1.006    0.049   20.361    0.000    1.125    0.650
##     HEX_EMO_FEA_04    0.908    0.051   17.795    0.000    1.015    0.589
##   HEX_EMO_ANX =~                                                        
##     HEX_EMO_ANX_01    1.000                               1.385    0.806
##     HEX_EMO_ANX_02    0.992    0.035   28.365    0.000    1.374    0.771
##     HEX_EMO_ANX_03    0.806    0.037   21.982    0.000    1.117    0.589
##     HEX_EMO_ANX_04    0.714    0.032   22.089    0.000    0.989    0.651
##   HEX_EMO_DEP =~                                                        
##     HEX_EMO_DEP_01    1.000                               1.066    0.660
##     HEX_EMO_DEP_02    1.026    0.064   15.974    0.000    1.093    0.711
##     HEX_EMO_DEP_03    1.178    0.072   16.337    0.000    1.255    0.802
##     HEX_EMO_DEP_04    0.801    0.042   18.999    0.000    0.854    0.507
##   HEX_EMO_SEN =~                                                        
##     HEX_EMO_SEN_01    1.000                               1.328    0.778
##     HEX_EMO_SEN_02    0.703    0.044   16.118    0.000    0.934    0.670
##     HEX_EMO_SEN_03    0.692    0.035   20.042    0.000    0.919    0.656
##     HEX_EMO_SEN_04    0.695    0.046   15.218    0.000    0.923    0.559
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_EMO_DEP_01 ~~                                                      
##    .HEX_EMO_DEP_04    -0.012    0.074   -0.160    0.873   -0.012   -0.007
##  .HEX_EMO_DEP_02 ~~                                                      
##    .HEX_EMO_DEP_03    -0.628    0.082   -7.685    0.000   -0.628   -0.622
##  .HEX_EMO_SEN_01 ~~                                                      
##    .HEX_EMO_SEN_03    -0.311    0.071   -4.383    0.000   -0.311   -0.275
##  .HEX_EMO_SEN_02 ~~                                                      
##    .HEX_EMO_SEN_04    -0.137    0.058   -2.356    0.018   -0.137   -0.097
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_EMO_FEA_01    1.644    0.084   19.528    0.000    1.644    0.568
##    .HEX_EMO_FEA_02    2.116    0.085   24.753    0.000    2.116    0.749
##    .HEX_EMO_FEA_03    1.732    0.091   19.038    0.000    1.732    0.578
##    .HEX_EMO_FEA_04    1.938    0.084   23.007    0.000    1.938    0.653
##    .HEX_EMO_ANX_01    1.031    0.081   12.768    0.000    1.031    0.350
##    .HEX_EMO_ANX_02    1.285    0.089   14.507    0.000    1.285    0.405
##    .HEX_EMO_ANX_03    2.343    0.097   24.205    0.000    2.343    0.653
##    .HEX_EMO_ANX_04    1.329    0.076   17.499    0.000    1.329    0.576
##    .HEX_EMO_DEP_01    1.467    0.083   17.751    0.000    1.467    0.564
##    .HEX_EMO_DEP_02    1.168    0.094   12.387    0.000    1.168    0.494
##    .HEX_EMO_DEP_03    0.871    0.107    8.155    0.000    0.871    0.356
##    .HEX_EMO_DEP_04    2.105    0.086   24.559    0.000    2.105    0.743
##    .HEX_EMO_SEN_01    1.151    0.110   10.442    0.000    1.151    0.395
##    .HEX_EMO_SEN_02    1.069    0.074   14.443    0.000    1.069    0.551
##    .HEX_EMO_SEN_03    1.117    0.076   14.661    0.000    1.117    0.569
##    .HEX_EMO_SEN_04    1.877    0.087   21.576    0.000    1.877    0.688
##     HEX_EMO           0.912    0.089   10.289    0.000    1.000    1.000
##    .HEX_EMO_FEA       0.339    0.059    5.719    0.000    0.271    0.271
##    .HEX_EMO_ANX       0.984    0.088   11.209    0.000    0.513    0.513
##    .HEX_EMO_DEP       0.732    0.059   12.327    0.000    0.644    0.644
##    .HEX_EMO_SEN       1.114    0.109   10.192    0.000    0.631    0.631

Fit is subpar. Let’s inspect.

modindices(fit_hex_emo, minimum.value = 40)

Suggests one major cross-loading:

  1. HEX_EMO with HEX_EMO_FEA_04
model_hex_emo <- "
HEX_EMO =~ HEX_EMO_FEA + HEX_EMO_ANX + HEX_EMO_DEP + HEX_EMO_SEN
HEX_EMO_FEA =~ HEX_EMO_FEA_01 + HEX_EMO_FEA_02 + HEX_EMO_FEA_03 + HEX_EMO_FEA_04
HEX_EMO_ANX =~ HEX_EMO_ANX_01 + HEX_EMO_ANX_02 + HEX_EMO_ANX_03 + HEX_EMO_ANX_04 + HEX_EMO_FEA_04
HEX_EMO_DEP =~ HEX_EMO_DEP_01 + HEX_EMO_DEP_02 + HEX_EMO_DEP_03 + HEX_EMO_DEP_04
HEX_EMO_SEN =~ HEX_EMO_SEN_01 + HEX_EMO_SEN_02 + HEX_EMO_SEN_03 + HEX_EMO_SEN_04

HEX_EMO_DEP_01 ~~ HEX_EMO_DEP_04
HEX_EMO_DEP_02 ~~ HEX_EMO_DEP_03
HEX_EMO_SEN_01 ~~ HEX_EMO_SEN_03
HEX_EMO_SEN_02 ~~ HEX_EMO_SEN_04
"
fit_hex_emo <- sem(model_hex_emo, d, estimator = "MLM", fixed.x = TRUE)
summary(fit_hex_emo, standardized = TRUE, fit = TRUE)
## lavaan 0.6.17 ended normally after 54 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        41
## 
##                                                   Used       Total
##   Number of observations                          1549        1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               956.208     760.448
##   Degrees of freedom                                95          95
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.257
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              7625.433    6414.824
##   Degrees of freedom                               120         120
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.189
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.885       0.894
##   Tucker-Lewis Index (TLI)                       0.855       0.866
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.888
##   Robust Tucker-Lewis Index (TLI)                            0.859
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -44071.317  -44071.317
##   Loglikelihood unrestricted model (H1)     -43593.213  -43593.213
##                                                                   
##   Akaike (AIC)                               88224.634   88224.634
##   Bayesian (BIC)                             88443.794   88443.794
##   Sample-size adjusted Bayesian (SABIC)      88313.547   88313.547
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.077       0.067
##   90 Percent confidence interval - lower         0.072       0.063
##   90 Percent confidence interval - upper         0.081       0.071
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    0.098       0.000
##                                                                   
##   Robust RMSEA                                               0.075
##   90 Percent confidence interval - lower                     0.070
##   90 Percent confidence interval - upper                     0.080
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         0.067
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.063       0.063
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_EMO =~                                                            
##     HEX_EMO_FEA       1.000                               0.733    0.733
##     HEX_EMO_ANX       1.004    0.077   12.996    0.000    0.623    0.623
##     HEX_EMO_DEP       0.833    0.070   11.821    0.000    0.653    0.653
##     HEX_EMO_SEN       1.036    0.080   12.956    0.000    0.670    0.670
##   HEX_EMO_FEA =~                                                        
##     HEX_EMO_FEA_01    1.000                               1.162    0.683
##     HEX_EMO_FEA_02    0.767    0.046   16.819    0.000    0.892    0.530
##     HEX_EMO_FEA_03    1.017    0.051   19.879    0.000    1.181    0.682
##     HEX_EMO_FEA_04    0.432    0.050    8.558    0.000    0.502    0.293
##   HEX_EMO_ANX =~                                                        
##     HEX_EMO_ANX_01    1.000                               1.371    0.799
##     HEX_EMO_ANX_02    1.012    0.035   28.622    0.000    1.388    0.779
##     HEX_EMO_ANX_03    0.823    0.037   22.392    0.000    1.129    0.596
##     HEX_EMO_ANX_04    0.714    0.032   22.092    0.000    0.980    0.645
##     HEX_EMO_FEA_04    0.511    0.039   13.019    0.000    0.700    0.408
##   HEX_EMO_DEP =~                                                        
##     HEX_EMO_DEP_01    1.000                               1.085    0.673
##     HEX_EMO_DEP_02    0.983    0.059   16.632    0.000    1.067    0.694
##     HEX_EMO_DEP_03    1.145    0.066   17.419    0.000    1.242    0.794
##     HEX_EMO_DEP_04    0.797    0.042   19.054    0.000    0.865    0.514
##   HEX_EMO_SEN =~                                                        
##     HEX_EMO_SEN_01    1.000                               1.316    0.770
##     HEX_EMO_SEN_02    0.713    0.043   16.727    0.000    0.938    0.673
##     HEX_EMO_SEN_03    0.697    0.034   20.309    0.000    0.917    0.655
##     HEX_EMO_SEN_04    0.709    0.045   15.888    0.000    0.933    0.565
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_EMO_DEP_01 ~~                                                      
##    .HEX_EMO_DEP_04    -0.041    0.072   -0.564    0.573   -0.041   -0.024
##  .HEX_EMO_DEP_02 ~~                                                      
##    .HEX_EMO_DEP_03    -0.581    0.076   -7.670    0.000   -0.581   -0.552
##  .HEX_EMO_SEN_01 ~~                                                      
##    .HEX_EMO_SEN_03    -0.297    0.068   -4.386    0.000   -0.297   -0.257
##  .HEX_EMO_SEN_02 ~~                                                      
##    .HEX_EMO_SEN_04    -0.150    0.057   -2.640    0.008   -0.150   -0.107
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_EMO_FEA_01    1.545    0.089   17.291    0.000    1.545    0.534
##    .HEX_EMO_FEA_02    2.030    0.090   22.480    0.000    2.030    0.719
##    .HEX_EMO_FEA_03    1.603    0.097   16.540    0.000    1.603    0.535
##    .HEX_EMO_FEA_04    1.879    0.074   25.449    0.000    1.879    0.638
##    .HEX_EMO_ANX_01    1.069    0.080   13.348    0.000    1.069    0.362
##    .HEX_EMO_ANX_02    1.246    0.087   14.312    0.000    1.246    0.393
##    .HEX_EMO_ANX_03    2.316    0.096   24.093    0.000    2.316    0.645
##    .HEX_EMO_ANX_04    1.348    0.076   17.722    0.000    1.348    0.584
##    .HEX_EMO_DEP_01    1.424    0.081   17.535    0.000    1.424    0.547
##    .HEX_EMO_DEP_02    1.226    0.090   13.580    0.000    1.226    0.519
##    .HEX_EMO_DEP_03    0.904    0.100    9.065    0.000    0.904    0.369
##    .HEX_EMO_DEP_04    2.086    0.085   24.544    0.000    2.086    0.736
##    .HEX_EMO_SEN_01    1.185    0.104   11.350    0.000    1.185    0.406
##    .HEX_EMO_SEN_02    1.062    0.072   14.655    0.000    1.062    0.547
##    .HEX_EMO_SEN_03    1.121    0.074   15.185    0.000    1.121    0.571
##    .HEX_EMO_SEN_04    1.858    0.086   21.595    0.000    1.858    0.681
##     HEX_EMO           0.724    0.080    9.057    0.000    1.000    1.000
##    .HEX_EMO_FEA       0.626    0.073    8.511    0.000    0.463    0.463
##    .HEX_EMO_ANX       1.150    0.091   12.643    0.000    0.611    0.611
##    .HEX_EMO_DEP       0.675    0.059   11.354    0.000    0.573    0.573
##    .HEX_EMO_SEN       0.953    0.102    9.332    0.000    0.551    0.551

Still not great. Let’s reinspect.

modindices(fit_hex_emo, minimum.value = 50)

No clear candidate emerges. Will keep it that way.

Extraversion

Social Self-Esteem

  1. I feel reasonably satisfied with myself overall.
  2. I think that most people like some aspects of my personality.
  3. I feel that I am an unpopular person.
  4. I sometimes feel that I am a worthless person.
name <- "HEX_EXT_SSE"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1548   num.vars =  4 
## b1p =  3.24   skew =  837  with probability  <=  2.4e-164
##  small sample skew =  839  with probability <=  7.9e-165
## b2p =  31.1   kurtosis =  20.1  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  HEX_EXT_SSE =~ HEX_EXT_SSE_01 + HEX_EXT_SSE_02 + HEX_EXT_SSE_03 + HEX_EXT_SSE_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLR", missing = "FIML"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 29 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        12
## 
##   Number of observations                          1550
##   Number of missing patterns                         3
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                98.476      69.992
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.407
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1995.699    1289.202
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.548
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.952       0.947
##   Tucker-Lewis Index (TLI)                       0.855       0.841
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.952
##   Robust Tucker-Lewis Index (TLI)                            0.856
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10663.494  -10663.494
##   Scaling correction factor                                  1.229
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)     -10614.256  -10614.256
##   Scaling correction factor                                  1.255
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                               21350.988   21350.988
##   Bayesian (BIC)                             21415.140   21415.140
##   Sample-size adjusted Bayesian (SABIC)      21377.019   21377.019
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.176       0.148
##   90 Percent confidence interval - lower         0.148       0.124
##   90 Percent confidence interval - upper         0.207       0.174
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    1.000       1.000
##                                                                   
##   Robust RMSEA                                               0.175
##   90 Percent confidence interval - lower                     0.140
##   90 Percent confidence interval - upper                     0.214
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.039       0.039
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_EXT_SSE =~                                                        
##     HEX_EXT_SSE_01    1.000                               1.310    0.815
##     HEX_EXT_SSE_02    0.464    0.030   15.258    0.000    0.607    0.530
##     HEX_EXT_SSE_03    0.856    0.042   20.416    0.000    1.121    0.649
##     HEX_EXT_SSE_04    1.189    0.036   33.260    0.000    1.557    0.802
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_EXT_SSE_01    4.990    0.041  122.349    0.000    4.990    3.108
##    .HEX_EXT_SSE_02    5.503    0.029  189.053    0.000    5.503    4.806
##    .HEX_EXT_SSE_03    4.620    0.044  105.232    0.000    4.620    2.673
##    .HEX_EXT_SSE_04    5.079    0.049  103.077    0.000    5.079    2.618
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_EXT_SSE_01    0.864    0.068   12.779    0.000    0.864    0.335
##    .HEX_EXT_SSE_02    0.943    0.057   16.579    0.000    0.943    0.719
##    .HEX_EXT_SSE_03    1.730    0.090   19.151    0.000    1.730    0.579
##    .HEX_EXT_SSE_04    1.340    0.096   13.945    0.000    1.340    0.356
##     HEX_EXT_SSE       1.715    0.105   16.397    0.000    1.000    1.000

Fit is not good. Let’s inspect.

modindices(fit_HEX_EXT_SSE)

Items 1 & 4 and 2 & 3 want to covary.

model <- "
  HEX_EXT_SSE =~ HEX_EXT_SSE_01 + HEX_EXT_SSE_02 + HEX_EXT_SSE_03 + HEX_EXT_SSE_04
  HEX_EXT_SSE_01 ~~ a*HEX_EXT_SSE_04
  HEX_EXT_SSE_02 ~~ a*HEX_EXT_SSE_03
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLR", missing = "FIML"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 31 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
##   Number of equality constraints                     1
## 
##   Number of observations                          1550
##   Number of missing patterns                         3
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                20.839      15.776
##   Degrees of freedom                                 1           1
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.321
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1995.699    1289.202
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.548
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.990       0.988
##   Tucker-Lewis Index (TLI)                       0.940       0.931
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.990
##   Robust Tucker-Lewis Index (TLI)                            0.942
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10624.676  -10624.676
##   Scaling correction factor                                  1.160
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)     -10614.256  -10614.256
##   Scaling correction factor                                  1.255
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                               21275.351   21275.351
##   Bayesian (BIC)                             21344.849   21344.849
##   Sample-size adjusted Bayesian (SABIC)      21303.551   21303.551
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.113       0.098
##   90 Percent confidence interval - lower         0.074       0.064
##   90 Percent confidence interval - upper         0.158       0.137
##   P-value H_0: RMSEA <= 0.050                    0.005       0.012
##   P-value H_0: RMSEA >= 0.080                    0.922       0.817
##                                                                   
##   Robust RMSEA                                               0.112
##   90 Percent confidence interval - lower                     0.064
##   90 Percent confidence interval - upper                     0.168
##   P-value H_0: Robust RMSEA <= 0.050                         0.018
##   P-value H_0: Robust RMSEA >= 0.080                         0.873
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.013       0.013
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_EXT_SSE =~                                                        
##     HEX_EXT_SSE_01    1.000                               1.240    0.772
##     HEX_EXT_SSE_02    0.479    0.030   15.978    0.000    0.594    0.518
##     HEX_EXT_SSE_03    0.915    0.045   20.485    0.000    1.135    0.657
##     HEX_EXT_SSE_04    1.198    0.046   26.038    0.000    1.486    0.766
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_EXT_SSE_01 ~~                                                      
##    .HEX_EXT_SS (a)     0.254    0.040    6.344    0.000    0.254    0.200
##  .HEX_EXT_SSE_02 ~~                                                      
##    .HEX_EXT_SS (a)     0.254    0.040    6.344    0.000    0.254    0.199
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_EXT_SSE_01    4.990    0.041  122.349    0.000    4.990    3.108
##    .HEX_EXT_SSE_02    5.503    0.029  189.042    0.000    5.503    4.806
##    .HEX_EXT_SSE_03    4.620    0.044  105.228    0.000    4.620    2.673
##    .HEX_EXT_SSE_04    5.079    0.049  103.077    0.000    5.079    2.618
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_EXT_SSE_01    1.040    0.078   13.340    0.000    1.040    0.403
##    .HEX_EXT_SSE_02    0.959    0.057   16.747    0.000    0.959    0.731
##    .HEX_EXT_SSE_03    1.697    0.088   19.268    0.000    1.697    0.568
##    .HEX_EXT_SSE_04    1.556    0.104   14.929    0.000    1.556    0.413
##     HEX_EXT_SSE       1.539    0.106   14.481    0.000    1.000    1.000

Fit is now okay.

Social Boldness

  1. I rarely express my opinions in group meetings.
  2. In social situations, I’m usually the one who makes the first move.
  3. When I’m in a group of people, I’m often the one who speaks on behalf of the group.
  4. I tend to feel quite self-conscious when speaking in front of a group of people.
name <- "HEX_EXT_BOL"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  0.95   skew =  245  with probability  <=  1.3e-40
##  small sample skew =  245  with probability <=  9.4e-41
## b2p =  26.3   kurtosis =  6.47  with probability <=  9.8e-11

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  HEX_EXT_BOL =~ HEX_EXT_BOL_01 + HEX_EXT_BOL_02 + HEX_EXT_BOL_03 + HEX_EXT_BOL_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 27 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                50.814      40.336
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.260
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1723.445    1599.787
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.077
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.972       0.976
##   Tucker-Lewis Index (TLI)                       0.915       0.928
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.972
##   Robust Tucker-Lewis Index (TLI)                            0.916
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11395.306  -11395.306
##   Loglikelihood unrestricted model (H1)     -11369.899  -11369.899
##                                                                   
##   Akaike (AIC)                               22806.613   22806.613
##   Bayesian (BIC)                             22849.381   22849.381
##   Sample-size adjusted Bayesian (SABIC)      22823.967   22823.967
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.125       0.111
##   90 Percent confidence interval - lower         0.097       0.086
##   90 Percent confidence interval - upper         0.156       0.139
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    0.995       0.977
##                                                                   
##   Robust RMSEA                                               0.125
##   90 Percent confidence interval - lower                     0.093
##   90 Percent confidence interval - upper                     0.160
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         0.989
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.036       0.036
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_EXT_BOL =~                                                        
##     HEX_EXT_BOL_01    1.000                               1.035    0.594
##     HEX_EXT_BOL_02    1.209    0.061   19.754    0.000    1.252    0.743
##     HEX_EXT_BOL_03    1.414    0.069   20.430    0.000    1.464    0.852
##     HEX_EXT_BOL_04    0.894    0.053   16.835    0.000    0.925    0.509
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_EXT_BOL_01    1.968    0.085   23.069    0.000    1.968    0.647
##    .HEX_EXT_BOL_02    1.274    0.090   14.109    0.000    1.274    0.448
##    .HEX_EXT_BOL_03    0.806    0.095    8.456    0.000    0.806    0.273
##    .HEX_EXT_BOL_04    2.444    0.100   24.438    0.000    2.444    0.741
##     HEX_EXT_BOL       1.072    0.091   11.789    0.000    1.000    1.000

RMSEA significantly larger than .10, will hence check modification indices.

modindices(fit_HEX_EXT_BOL)

Let’s allow 1 & 4, and 2 & 3 to covary.

model <- "
  HEX_EXT_BOL =~ HEX_EXT_BOL_01 + HEX_EXT_BOL_02 + HEX_EXT_BOL_03 + HEX_EXT_BOL_04
  HEX_EXT_BOL_01 ~~ a*HEX_EXT_BOL_04
  HEX_EXT_BOL_02 ~~ a*HEX_EXT_BOL_03
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 31 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
##   Number of equality constraints                     1
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 9.357       6.982
##   Degrees of freedom                                 1           1
##   P-value (Chi-square)                           0.002       0.008
##   Scaling correction factor                                  1.340
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1723.445    1599.787
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.077
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.995       0.996
##   Tucker-Lewis Index (TLI)                       0.971       0.977
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.995
##   Robust Tucker-Lewis Index (TLI)                            0.972
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11374.578  -11374.578
##   Loglikelihood unrestricted model (H1)     -11369.899  -11369.899
##                                                                   
##   Akaike (AIC)                               22767.156   22767.156
##   Bayesian (BIC)                             22815.270   22815.270
##   Sample-size adjusted Bayesian (SABIC)      22786.679   22786.679
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.073       0.062
##   90 Percent confidence interval - lower         0.036       0.029
##   90 Percent confidence interval - upper         0.119       0.102
##   P-value H_0: RMSEA <= 0.050                    0.138       0.238
##   P-value H_0: RMSEA >= 0.080                    0.464       0.261
##                                                                   
##   Robust RMSEA                                               0.072
##   90 Percent confidence interval - lower                     0.029
##   90 Percent confidence interval - upper                     0.126
##   P-value H_0: Robust RMSEA <= 0.050                         0.173
##   P-value H_0: Robust RMSEA >= 0.080                         0.469
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.012       0.012
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_EXT_BOL =~                                                        
##     HEX_EXT_BOL_01    1.000                               1.072    0.615
##     HEX_EXT_BOL_02    1.070    0.056   18.946    0.000    1.147    0.681
##     HEX_EXT_BOL_03    1.299    0.064   20.140    0.000    1.392    0.811
##     HEX_EXT_BOL_04    0.871    0.054   16.197    0.000    0.934    0.514
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_EXT_BOL_01 ~~                                                      
##    .HEX_EXT_BO (a)     0.271    0.049    5.530    0.000    0.271    0.126
##  .HEX_EXT_BOL_02 ~~                                                      
##    .HEX_EXT_BO (a)     0.271    0.049    5.530    0.000    0.271    0.218
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_EXT_BOL_01    1.891    0.087   21.628    0.000    1.891    0.622
##    .HEX_EXT_BOL_02    1.526    0.095   16.039    0.000    1.526    0.537
##    .HEX_EXT_BOL_03    1.011    0.098   10.294    0.000    1.011    0.343
##    .HEX_EXT_BOL_04    2.428    0.102   23.882    0.000    2.428    0.736
##     HEX_EXT_BOL       1.149    0.096   11.947    0.000    1.000    1.000

Fit is good.

Sociability

  1. I avoid making “small talk” with people.
  2. I enjoy having lots of people around to talk with.
  3. I prefer jobs that involve active social interaction to those that involve working alone.
  4. The first thing that I always do in a new place is to make friends.
name <- "HEX_EXT_SOC"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  0.27   skew =  68.5  with probability  <=  3.2e-07
##  small sample skew =  68.7  with probability <=  3e-07
## b2p =  25.7   kurtosis =  4.95  with probability <=  7.4e-07

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
HEX_EXT_SOC =~ HEX_EXT_SOC_01 + HEX_EXT_SOC_02 + HEX_EXT_SOC_03 + HEX_EXT_SOC_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 23 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                14.322       9.942
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.001       0.007
##   Scaling correction factor                                  1.441
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2061.134    1951.550
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.056
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.994       0.996
##   Tucker-Lewis Index (TLI)                       0.982       0.988
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.994
##   Robust Tucker-Lewis Index (TLI)                            0.983
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11131.346  -11131.346
##   Loglikelihood unrestricted model (H1)     -11124.185  -11124.185
##                                                                   
##   Akaike (AIC)                               22278.692   22278.692
##   Bayesian (BIC)                             22321.460   22321.460
##   Sample-size adjusted Bayesian (SABIC)      22296.046   22296.046
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.063       0.051
##   90 Percent confidence interval - lower         0.035       0.027
##   90 Percent confidence interval - upper         0.096       0.078
##   P-value H_0: RMSEA <= 0.050                    0.199       0.430
##   P-value H_0: RMSEA >= 0.080                    0.214       0.038
##                                                                   
##   Robust RMSEA                                               0.061
##   90 Percent confidence interval - lower                     0.027
##   90 Percent confidence interval - upper                     0.101
##   P-value H_0: Robust RMSEA <= 0.050                         0.259
##   P-value H_0: Robust RMSEA >= 0.080                         0.240
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.016       0.016
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_EXT_SOC =~                                                        
##     HEX_EXT_SOC_01    1.000                               1.075    0.595
##     HEX_EXT_SOC_02    1.200    0.057   21.158    0.000    1.291    0.780
##     HEX_EXT_SOC_03    1.282    0.060   21.521    0.000    1.379    0.785
##     HEX_EXT_SOC_04    1.121    0.052   21.533    0.000    1.206    0.727
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_EXT_SOC_01    2.112    0.090   23.540    0.000    2.112    0.646
##    .HEX_EXT_SOC_02    1.076    0.074   14.594    0.000    1.076    0.392
##    .HEX_EXT_SOC_03    1.185    0.078   15.210    0.000    1.185    0.384
##    .HEX_EXT_SOC_04    1.295    0.067   19.240    0.000    1.295    0.471
##     HEX_EXT_SOC       1.157    0.096   11.997    0.000    1.000    1.000

Fit is good.

Liveliness

  1. I am energetic nearly all the time.
  2. On most days, I feel cheerful and optimistic.
  3. People often tell me that I should try to cheer up.
  4. Most people are more upbeat and dynamic than I generally am.
name <- "HEX_EXT_LIV"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  1.69   skew =  436  with probability  <=  8.1e-80
##  small sample skew =  437  with probability <=  4.6e-80
## b2p =  26.9   kurtosis =  8.15  with probability <=  4.4e-16

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  HEX_EXT_LIV =~ HEX_EXT_LIV_01 + HEX_EXT_LIV_02 + HEX_EXT_LIV_03 + HEX_EXT_LIV_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 25 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               161.906     106.026
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.527
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1904.312    1672.338
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.139
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.916       0.938
##   Tucker-Lewis Index (TLI)                       0.747       0.813
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.916
##   Robust Tucker-Lewis Index (TLI)                            0.749
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11069.148  -11069.148
##   Loglikelihood unrestricted model (H1)     -10988.195  -10988.195
##                                                                   
##   Akaike (AIC)                               22154.296   22154.296
##   Bayesian (BIC)                             22197.064   22197.064
##   Sample-size adjusted Bayesian (SABIC)      22171.649   22171.649
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.227       0.183
##   90 Percent confidence interval - lower         0.198       0.160
##   90 Percent confidence interval - upper         0.257       0.208
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    1.000       1.000
##                                                                   
##   Robust RMSEA                                               0.226
##   90 Percent confidence interval - lower                     0.191
##   90 Percent confidence interval - upper                     0.264
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.057       0.057
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_EXT_LIV =~                                                        
##     HEX_EXT_LIV_01    1.000                               1.222    0.703
##     HEX_EXT_LIV_02    1.085    0.045   24.372    0.000    1.326    0.827
##     HEX_EXT_LIV_03    0.734    0.040   18.210    0.000    0.897    0.555
##     HEX_EXT_LIV_04    0.935    0.038   24.769    0.000    1.143    0.678
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_EXT_LIV_01    1.530    0.078   19.577    0.000    1.530    0.506
##    .HEX_EXT_LIV_02    0.810    0.077   10.520    0.000    0.810    0.315
##    .HEX_EXT_LIV_03    1.812    0.088   20.614    0.000    1.812    0.692
##    .HEX_EXT_LIV_04    1.535    0.074   20.699    0.000    1.535    0.540
##     HEX_EXT_LIV       1.493    0.092   16.199    0.000    1.000    1.000

Fit is supar, let’s inspect.

modindices(fit_HEX_EXT_LIV)
model <- "
  HEX_EXT_LIV =~ HEX_EXT_LIV_01 + HEX_EXT_LIV_02 + HEX_EXT_LIV_03 + HEX_EXT_LIV_04
  HEX_EXT_LIV_01 ~~ a*HEX_EXT_LIV_03
  HEX_EXT_LIV_02 ~~ a*HEX_EXT_LIV_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 27 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
##   Number of equality constraints                     1
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                34.475      21.944
##   Degrees of freedom                                 1           1
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.571
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1904.312    1672.338
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.139
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.982       0.987
##   Tucker-Lewis Index (TLI)                       0.894       0.925
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.983
##   Robust Tucker-Lewis Index (TLI)                            0.896
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11005.432  -11005.432
##   Loglikelihood unrestricted model (H1)     -10988.195  -10988.195
##                                                                   
##   Akaike (AIC)                               22028.865   22028.865
##   Bayesian (BIC)                             22076.979   22076.979
##   Sample-size adjusted Bayesian (SABIC)      22048.388   22048.388
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.147       0.116
##   90 Percent confidence interval - lower         0.107       0.084
##   90 Percent confidence interval - upper         0.191       0.151
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    0.997       0.969
##                                                                   
##   Robust RMSEA                                               0.146
##   90 Percent confidence interval - lower                     0.097
##   90 Percent confidence interval - upper                     0.202
##   P-value H_0: Robust RMSEA <= 0.050                         0.001
##   P-value H_0: Robust RMSEA >= 0.080                         0.985
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.028       0.028
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_EXT_LIV =~                                                        
##     HEX_EXT_LIV_01    1.000                               1.190    0.684
##     HEX_EXT_LIV_02    1.154    0.044   26.113    0.000    1.373    0.857
##     HEX_EXT_LIV_03    0.793    0.039   20.291    0.000    0.944    0.583
##     HEX_EXT_LIV_04    1.080    0.042   25.987    0.000    1.285    0.762
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_EXT_LIV_01 ~~                                                      
##    .HEX_EXT_LI (a)    -0.355    0.035  -10.042    0.000   -0.355   -0.213
##  .HEX_EXT_LIV_02 ~~                                                      
##    .HEX_EXT_LI (a)    -0.355    0.035  -10.042    0.000   -0.355   -0.394
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_EXT_LIV_01    1.607    0.075   21.442    0.000    1.607    0.532
##    .HEX_EXT_LIV_02    0.683    0.078    8.790    0.000    0.683    0.266
##    .HEX_EXT_LIV_03    1.726    0.084   20.560    0.000    1.726    0.660
##    .HEX_EXT_LIV_04    1.190    0.079   15.013    0.000    1.190    0.419
##     HEX_EXT_LIV       1.415    0.086   16.437    0.000    1.000    1.000

Again, fit is not really good –> but it seems preferable to stick to this more parsimoneous solution.

Extraversion

Let’s analyze main model.

model_hex_ext <- "
HEX_EXT =~ HEX_EXT_SSE + HEX_EXT_BOL + HEX_EXT_SOC + HEX_EXT_LIV
HEX_EXT_SSE =~ HEX_EXT_SSE_01 + HEX_EXT_SSE_02 + HEX_EXT_SSE_03 + HEX_EXT_SSE_04
HEX_EXT_BOL =~ HEX_EXT_BOL_01 + HEX_EXT_BOL_02 + HEX_EXT_BOL_03 + HEX_EXT_BOL_04
HEX_EXT_SOC =~ HEX_EXT_SOC_01 + HEX_EXT_SOC_02 + HEX_EXT_SOC_03 + HEX_EXT_SOC_04
HEX_EXT_LIV =~ HEX_EXT_LIV_01 + HEX_EXT_LIV_02 + HEX_EXT_LIV_03 + HEX_EXT_LIV_04

HEX_EXT_SSE_01 ~~ HEX_EXT_SSE_04
HEX_EXT_SSE_02 ~~ HEX_EXT_SSE_03
HEX_EXT_BOL_01 ~~ HEX_EXT_BOL_04
HEX_EXT_BOL_02 ~~ HEX_EXT_BOL_03
HEX_EXT_LIV_01 ~~ HEX_EXT_LIV_03
HEX_EXT_LIV_02 ~~ HEX_EXT_LIV_04
"
fit_hex_ext <- sem(model_hex_ext, d, estimator = "MLM", fixed.x = TRUE)
summary(fit_hex_ext, standardized = TRUE, fit = TRUE)
## lavaan 0.6.17 ended normally after 45 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        42
## 
##                                                   Used       Total
##   Number of observations                          1548        1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1608.171    1271.382
##   Degrees of freedom                                94          94
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.265
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                             11390.743    9961.709
##   Degrees of freedom                               120         120
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.143
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.866       0.880
##   Tucker-Lewis Index (TLI)                       0.828       0.847
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.868
##   Robust Tucker-Lewis Index (TLI)                            0.831
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -42977.339  -42977.339
##   Loglikelihood unrestricted model (H1)     -42173.253  -42173.253
##                                                                   
##   Akaike (AIC)                               86038.677   86038.677
##   Bayesian (BIC)                             86263.155   86263.155
##   Sample-size adjusted Bayesian (SABIC)      86129.731   86129.731
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.102       0.090
##   90 Percent confidence interval - lower         0.098       0.086
##   90 Percent confidence interval - upper         0.106       0.094
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    1.000       1.000
##                                                                   
##   Robust RMSEA                                               0.101
##   90 Percent confidence interval - lower                     0.096
##   90 Percent confidence interval - upper                     0.106
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.079       0.079
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_EXT =~                                                            
##     HEX_EXT_SSE       1.000                               0.939    0.939
##     HEX_EXT_BOL       0.732    0.045   16.361    0.000    0.737    0.737
##     HEX_EXT_SOC       0.679    0.042   16.074    0.000    0.676    0.676
##     HEX_EXT_LIV       1.006    0.048   20.984    0.000    0.917    0.917
##   HEX_EXT_SSE =~                                                        
##     HEX_EXT_SSE_01    1.000                               1.195    0.746
##     HEX_EXT_SSE_02    0.532    0.032   16.827    0.000    0.636    0.556
##     HEX_EXT_SSE_03    0.991    0.041   24.087    0.000    1.185    0.687
##     HEX_EXT_SSE_04    1.144    0.033   34.737    0.000    1.368    0.706
##   HEX_EXT_BOL =~                                                        
##     HEX_EXT_BOL_01    1.000                               1.116    0.640
##     HEX_EXT_BOL_02    1.051    0.058   18.086    0.000    1.173    0.696
##     HEX_EXT_BOL_03    1.120    0.058   19.408    0.000    1.250    0.728
##     HEX_EXT_BOL_04    0.902    0.050   17.931    0.000    1.007    0.554
##   HEX_EXT_SOC =~                                                        
##     HEX_EXT_SOC_01    1.000                               1.128    0.624
##     HEX_EXT_SOC_02    1.125    0.049   22.798    0.000    1.269    0.767
##     HEX_EXT_SOC_03    1.190    0.051   23.351    0.000    1.342    0.764
##     HEX_EXT_SOC_04    1.090    0.048   22.873    0.000    1.229    0.742
##   HEX_EXT_LIV =~                                                        
##     HEX_EXT_LIV_01    1.000                               1.231    0.708
##     HEX_EXT_LIV_02    1.090    0.035   30.836    0.000    1.342    0.839
##     HEX_EXT_LIV_03    0.768    0.037   20.642    0.000    0.946    0.585
##     HEX_EXT_LIV_04    1.018    0.036   28.374    0.000    1.253    0.744
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_EXT_SSE_01 ~~                                                      
##    .HEX_EXT_SSE_04     0.452    0.068    6.655    0.000    0.452    0.309
##  .HEX_EXT_SSE_02 ~~                                                      
##    .HEX_EXT_SSE_03     0.171    0.044    3.847    0.000    0.171    0.143
##  .HEX_EXT_BOL_01 ~~                                                      
##    .HEX_EXT_BOL_04     0.148    0.076    1.948    0.051    0.148    0.073
##  .HEX_EXT_BOL_02 ~~                                                      
##    .HEX_EXT_BOL_03     0.401    0.076    5.258    0.000    0.401    0.281
##  .HEX_EXT_LIV_01 ~~                                                      
##    .HEX_EXT_LIV_03    -0.396    0.054   -7.378    0.000   -0.396   -0.246
##  .HEX_EXT_LIV_02 ~~                                                      
##    .HEX_EXT_LIV_04    -0.277    0.044   -6.249    0.000   -0.277   -0.282
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_EXT_SSE_01    1.142    0.068   16.875    0.000    1.142    0.444
##    .HEX_EXT_SSE_02    0.905    0.056   16.091    0.000    0.905    0.691
##    .HEX_EXT_SSE_03    1.575    0.084   18.800    0.000    1.575    0.529
##    .HEX_EXT_SSE_04    1.883    0.101   18.617    0.000    1.883    0.502
##    .HEX_EXT_BOL_01    1.793    0.092   19.500    0.000    1.793    0.590
##    .HEX_EXT_BOL_02    1.465    0.095   15.349    0.000    1.465    0.516
##    .HEX_EXT_BOL_03    1.388    0.092   15.040    0.000    1.388    0.471
##    .HEX_EXT_BOL_04    2.288    0.107   21.297    0.000    2.288    0.693
##    .HEX_EXT_SOC_01    1.995    0.088   22.601    0.000    1.995    0.611
##    .HEX_EXT_SOC_02    1.131    0.069   16.464    0.000    1.131    0.412
##    .HEX_EXT_SOC_03    1.284    0.071   17.962    0.000    1.284    0.416
##    .HEX_EXT_SOC_04    1.234    0.065   19.055    0.000    1.234    0.449
##    .HEX_EXT_LIV_01    1.507    0.064   23.518    0.000    1.507    0.499
##    .HEX_EXT_LIV_02    0.760    0.064   11.887    0.000    0.760    0.297
##    .HEX_EXT_LIV_03    1.722    0.082   20.944    0.000    1.722    0.658
##    .HEX_EXT_LIV_04    1.267    0.072   17.689    0.000    1.267    0.447
##     HEX_EXT           1.260    0.092   13.637    0.000    1.000    1.000
##    .HEX_EXT_SSE       0.169    0.052    3.249    0.001    0.118    0.118
##    .HEX_EXT_BOL       0.569    0.060    9.507    0.000    0.457    0.457
##    .HEX_EXT_SOC       0.692    0.057   12.062    0.000    0.544    0.544
##    .HEX_EXT_LIV       0.240    0.046    5.182    0.000    0.158    0.158

Fit is subpar. Let’s inspect.

modindices(fit_hex_ext, minimum.value = 50)

One clear cross-loading emerges plus one covariance.

  • HEX_EXT_SOC =~ HEX_EXT_BOL_02
  • HEX_EXT_SSE_01 ~~ HEX_EXT_LIV_02
model_hex_ext <- "
HEX_EXT =~ HEX_EXT_SSE + HEX_EXT_BOL + HEX_EXT_SOC + HEX_EXT_LIV
HEX_EXT_SSE =~ HEX_EXT_SSE_01 + HEX_EXT_SSE_02 + HEX_EXT_SSE_03 + HEX_EXT_SSE_04
HEX_EXT_BOL =~ HEX_EXT_BOL_01 + HEX_EXT_BOL_02 + HEX_EXT_BOL_03 + HEX_EXT_BOL_04
HEX_EXT_SOC =~ HEX_EXT_SOC_01 + HEX_EXT_SOC_02 + HEX_EXT_SOC_03 + HEX_EXT_SOC_04 + HEX_EXT_BOL_02
HEX_EXT_LIV =~ HEX_EXT_LIV_01 + HEX_EXT_LIV_02 + HEX_EXT_LIV_03 + HEX_EXT_LIV_04

HEX_EXT_SSE_01 ~~ HEX_EXT_SSE_04
HEX_EXT_SSE_02 ~~ HEX_EXT_SSE_03
HEX_EXT_BOL_01 ~~ HEX_EXT_BOL_04
HEX_EXT_BOL_02 ~~ HEX_EXT_BOL_03
HEX_EXT_LIV_01 ~~ HEX_EXT_LIV_03
HEX_EXT_LIV_02 ~~ HEX_EXT_LIV_04
HEX_EXT_SSE_01 ~~\tHEX_EXT_LIV_02
"
fit_hex_ext <- sem(model_hex_ext, d, estimator = "MLM", fixed.x = TRUE)
summary(fit_hex_ext, standardized = TRUE, fit = TRUE)
## lavaan 0.6.17 ended normally after 46 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        44
## 
##                                                   Used       Total
##   Number of observations                          1548        1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1193.485     941.380
##   Degrees of freedom                                92          92
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.268
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                             11390.743    9961.709
##   Degrees of freedom                               120         120
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.143
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.902       0.914
##   Tucker-Lewis Index (TLI)                       0.873       0.887
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.904
##   Robust Tucker-Lewis Index (TLI)                            0.875
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -42769.996  -42769.996
##   Loglikelihood unrestricted model (H1)     -42173.253  -42173.253
##                                                                   
##   Akaike (AIC)                               85627.992   85627.992
##   Bayesian (BIC)                             85863.160   85863.160
##   Sample-size adjusted Bayesian (SABIC)      85723.382   85723.382
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.088       0.077
##   90 Percent confidence interval - lower         0.084       0.073
##   90 Percent confidence interval - upper         0.092       0.081
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    0.998       0.128
##                                                                   
##   Robust RMSEA                                               0.087
##   90 Percent confidence interval - lower                     0.082
##   90 Percent confidence interval - upper                     0.092
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         0.989
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.064       0.064
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_EXT =~                                                            
##     HEX_EXT_SSE       1.000                               0.929    0.929
##     HEX_EXT_BOL       0.809    0.049   16.624    0.000    0.711    0.711
##     HEX_EXT_SOC       0.717    0.045   15.906    0.000    0.669    0.669
##     HEX_EXT_LIV       1.041    0.051   20.343    0.000    0.910    0.910
##   HEX_EXT_SSE =~                                                        
##     HEX_EXT_SSE_01    1.000                               1.153    0.726
##     HEX_EXT_SSE_02    0.555    0.033   16.769    0.000    0.640    0.560
##     HEX_EXT_SSE_03    1.067    0.045   23.909    0.000    1.231    0.713
##     HEX_EXT_SSE_04    1.194    0.036   33.278    0.000    1.377    0.710
##   HEX_EXT_BOL =~                                                        
##     HEX_EXT_BOL_01    1.000                               1.219    0.699
##     HEX_EXT_BOL_02    0.475    0.046   10.295    0.000    0.578    0.353
##     HEX_EXT_BOL_03    1.006    0.051   19.626    0.000    1.226    0.714
##     HEX_EXT_BOL_04    0.873    0.048   18.364    0.000    1.063    0.585
##   HEX_EXT_SOC =~                                                        
##     HEX_EXT_SOC_01    1.000                               1.148    0.635
##     HEX_EXT_SOC_02    1.087    0.046   23.650    0.000    1.247    0.753
##     HEX_EXT_SOC_03    1.147    0.048   23.970    0.000    1.317    0.750
##     HEX_EXT_SOC_04    1.098    0.046   23.634    0.000    1.260    0.761
##     HEX_EXT_BOL_02    0.671    0.043   15.691    0.000    0.770    0.470
##   HEX_EXT_LIV =~                                                        
##     HEX_EXT_LIV_01    1.000                               1.225    0.704
##     HEX_EXT_LIV_02    1.060    0.036   29.723    0.000    1.299    0.814
##     HEX_EXT_LIV_03    0.795    0.038   20.947    0.000    0.973    0.602
##     HEX_EXT_LIV_04    1.029    0.036   28.269    0.000    1.260    0.748
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_EXT_SSE_01 ~~                                                      
##    .HEX_EXT_SSE_04     0.405    0.064    6.333    0.000    0.405    0.272
##  .HEX_EXT_SSE_02 ~~                                                      
##    .HEX_EXT_SSE_03     0.136    0.044    3.082    0.002    0.136    0.119
##  .HEX_EXT_BOL_01 ~~                                                      
##    .HEX_EXT_BOL_04    -0.024    0.081   -0.299    0.765   -0.024   -0.013
##  .HEX_EXT_BOL_02 ~~                                                      
##    .HEX_EXT_BOL_03     0.505    0.062    8.178    0.000    0.505    0.364
##  .HEX_EXT_LIV_01 ~~                                                      
##    .HEX_EXT_LIV_03    -0.424    0.055   -7.719    0.000   -0.424   -0.266
##  .HEX_EXT_LIV_02 ~~                                                      
##    .HEX_EXT_LIV_04    -0.213    0.042   -5.077    0.000   -0.213   -0.206
##  .HEX_EXT_SSE_01 ~~                                                      
##    .HEX_EXT_LIV_02     0.351    0.038    9.121    0.000    0.351    0.346
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_EXT_SSE_01    1.194    0.068   17.544    0.000    1.194    0.473
##    .HEX_EXT_SSE_02    0.900    0.057   15.814    0.000    0.900    0.687
##    .HEX_EXT_SSE_03    1.464    0.084   17.478    0.000    1.464    0.492
##    .HEX_EXT_SSE_04    1.860    0.101   18.462    0.000    1.860    0.495
##    .HEX_EXT_BOL_01    1.553    0.100   15.490    0.000    1.553    0.511
##    .HEX_EXT_BOL_02    1.332    0.069   19.183    0.000    1.332    0.496
##    .HEX_EXT_BOL_03    1.445    0.090   16.122    0.000    1.445    0.490
##    .HEX_EXT_BOL_04    2.170    0.113   19.140    0.000    2.170    0.658
##    .HEX_EXT_SOC_01    1.950    0.087   22.472    0.000    1.950    0.597
##    .HEX_EXT_SOC_02    1.185    0.066   17.865    0.000    1.185    0.432
##    .HEX_EXT_SOC_03    1.351    0.071   18.945    0.000    1.351    0.438
##    .HEX_EXT_SOC_04    1.156    0.062   18.766    0.000    1.156    0.421
##    .HEX_EXT_LIV_01    1.523    0.066   22.985    0.000    1.523    0.504
##    .HEX_EXT_LIV_02    0.861    0.065   13.185    0.000    0.861    0.338
##    .HEX_EXT_LIV_03    1.670    0.081   20.512    0.000    1.670    0.638
##    .HEX_EXT_LIV_04    1.250    0.071   17.574    0.000    1.250    0.441
##     HEX_EXT           1.147    0.089   12.906    0.000    1.000    1.000
##    .HEX_EXT_SSE       0.182    0.046    3.939    0.000    0.137    0.137
##    .HEX_EXT_BOL       0.734    0.079    9.309    0.000    0.494    0.494
##    .HEX_EXT_SOC       0.728    0.059   12.412    0.000    0.552    0.552
##    .HEX_EXT_LIV       0.257    0.045    5.672    0.000    0.172    0.172

Fit not great, but improved.

Agreeableness

Forgiveness

  1. I rarely hold a grudge, even against people who have badly wronged me.
  2. My attitude toward people who have treated me badly is “forgive and forget”.
  3. If someone has cheated me once, I will always feel suspicious of that person.
  4. I find it hard to fully forgive someone who has done something mean to me.
name <- "HEX_AGR_FOR"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  2.14   skew =  553  with probability  <=  2.5e-104
##  small sample skew =  554  with probability <=  1.2e-104
## b2p =  31   kurtosis =  19.8  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  HEX_AGR_FOR =~ HEX_AGR_FOR_01 + HEX_AGR_FOR_02 + HEX_AGR_FOR_03 + HEX_AGR_FOR_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 22 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                22.402      15.259
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.468
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2407.853    2103.000
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.145
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.992       0.994
##   Tucker-Lewis Index (TLI)                       0.975       0.981
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.992
##   Robust Tucker-Lewis Index (TLI)                            0.976
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10290.867  -10290.867
##   Loglikelihood unrestricted model (H1)     -10279.666  -10279.666
##                                                                   
##   Akaike (AIC)                               20597.734   20597.734
##   Bayesian (BIC)                             20640.502   20640.502
##   Sample-size adjusted Bayesian (SABIC)      20615.088   20615.088
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.081       0.065
##   90 Percent confidence interval - lower         0.053       0.042
##   90 Percent confidence interval - upper         0.113       0.092
##   P-value H_0: RMSEA <= 0.050                    0.035       0.132
##   P-value H_0: RMSEA >= 0.080                    0.567       0.196
##                                                                   
##   Robust RMSEA                                               0.079
##   90 Percent confidence interval - lower                     0.045
##   90 Percent confidence interval - upper                     0.118
##   P-value H_0: Robust RMSEA <= 0.050                         0.075
##   P-value H_0: Robust RMSEA >= 0.080                         0.538
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.022       0.022
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_AGR_FOR =~                                                        
##     HEX_AGR_FOR_01    1.000                               1.477    0.857
##     HEX_AGR_FOR_02    0.950    0.027   35.455    0.000    1.403    0.843
##     HEX_AGR_FOR_03    0.311    0.022   14.011    0.000    0.460    0.394
##     HEX_AGR_FOR_04    0.866    0.027   31.570    0.000    1.280    0.757
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_AGR_FOR_01    0.787    0.069   11.366    0.000    0.787    0.265
##    .HEX_AGR_FOR_02    0.803    0.066   12.077    0.000    0.803    0.290
##    .HEX_AGR_FOR_03    1.152    0.059   19.637    0.000    1.152    0.845
##    .HEX_AGR_FOR_04    1.218    0.077   15.838    0.000    1.218    0.427
##     HEX_AGR_FOR       2.181    0.094   23.320    0.000    1.000    1.000

Fit is good.

Gentleness

  1. People sometimes tell me that I am too critical of others.
  2. I generally accept people’s faults without complaining about them.
  3. I tend to be lenient in judging other people.
  4. Even when people make a lot of mistakes, I rarely say anything negative.
name <- "HEX_AGR_GEN"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  0.86   skew =  222  with probability  <=  4.8e-36
##  small sample skew =  223  with probability <=  3.7e-36
## b2p =  27.8   kurtosis =  10.8  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  HEX_AGR_GEN =~ HEX_AGR_GEN_01 + HEX_AGR_GEN_02 + HEX_AGR_GEN_03 + HEX_AGR_GEN_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 28 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                25.526      17.316
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.474
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1401.889    1073.851
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.305
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.983       0.986
##   Tucker-Lewis Index (TLI)                       0.949       0.957
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.984
##   Robust Tucker-Lewis Index (TLI)                            0.951
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10580.438  -10580.438
##   Loglikelihood unrestricted model (H1)     -10567.675  -10567.675
##                                                                   
##   Akaike (AIC)                               21176.877   21176.877
##   Bayesian (BIC)                             21219.645   21219.645
##   Sample-size adjusted Bayesian (SABIC)      21194.231   21194.231
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.087       0.070
##   90 Percent confidence interval - lower         0.059       0.047
##   90 Percent confidence interval - upper         0.119       0.097
##   P-value H_0: RMSEA <= 0.050                    0.016       0.075
##   P-value H_0: RMSEA >= 0.080                    0.689       0.293
##                                                                   
##   Robust RMSEA                                               0.085
##   90 Percent confidence interval - lower                     0.051
##   90 Percent confidence interval - upper                     0.124
##   P-value H_0: Robust RMSEA <= 0.050                         0.044
##   P-value H_0: Robust RMSEA >= 0.080                         0.642
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.023       0.023
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_AGR_GEN =~                                                        
##     HEX_AGR_GEN_01    1.000                               0.860    0.513
##     HEX_AGR_GEN_02    1.191    0.072   16.647    0.000    1.024    0.748
##     HEX_AGR_GEN_03    1.211    0.073   16.689    0.000    1.041    0.703
##     HEX_AGR_GEN_04    1.094    0.068   16.081    0.000    0.941    0.649
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_AGR_GEN_01    2.073    0.087   23.819    0.000    2.073    0.737
##    .HEX_AGR_GEN_02    0.823    0.061   13.459    0.000    0.823    0.440
##    .HEX_AGR_GEN_03    1.110    0.076   14.661    0.000    1.110    0.506
##    .HEX_AGR_GEN_04    1.216    0.069   17.635    0.000    1.216    0.579
##     HEX_AGR_GEN       0.739    0.078    9.437    0.000    1.000    1.000

Fit is okay.

Flexibility

  1. People sometimes tell me that I’m too stubborn.
  2. I am usually quite flexible in my opinions when people disagree with me.
  3. When people tell me that I’m wrong, my first reaction is to argue with them.
  4. I find it hard to compromise with people when I really think I’m right.
name <- "HEX_AGR_FLX"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  0.47   skew =  122  with probability  <=  1.1e-16
##  small sample skew =  123  with probability <=  9.5e-17
## b2p =  24.3   kurtosis =  0.78  with probability <=  0.44

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  HEX_AGR_FLX =~ HEX_AGR_FLX_01 + HEX_AGR_FLX_02 + HEX_AGR_FLX_03 + HEX_AGR_FLX_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 31 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                13.273      11.048
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.001       0.004
##   Scaling correction factor                                  1.201
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                               825.818     679.111
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.216
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.986       0.987
##   Tucker-Lewis Index (TLI)                       0.959       0.960
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.987
##   Robust Tucker-Lewis Index (TLI)                            0.960
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11110.286  -11110.286
##   Loglikelihood unrestricted model (H1)     -11103.649  -11103.649
##                                                                   
##   Akaike (AIC)                               22236.571   22236.571
##   Bayesian (BIC)                             22279.339   22279.339
##   Sample-size adjusted Bayesian (SABIC)      22253.925   22253.925
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.060       0.054
##   90 Percent confidence interval - lower         0.032       0.028
##   90 Percent confidence interval - upper         0.093       0.084
##   P-value H_0: RMSEA <= 0.050                    0.242       0.352
##   P-value H_0: RMSEA >= 0.080                    0.175       0.080
##                                                                   
##   Robust RMSEA                                               0.059
##   90 Percent confidence interval - lower                     0.029
##   90 Percent confidence interval - upper                     0.095
##   P-value H_0: Robust RMSEA <= 0.050                         0.271
##   P-value H_0: Robust RMSEA >= 0.080                         0.190
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.021       0.021
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_AGR_FLX =~                                                        
##     HEX_AGR_FLX_01    1.000                               0.789    0.442
##     HEX_AGR_FLX_02    0.883    0.086   10.305    0.000    0.696    0.504
##     HEX_AGR_FLX_03    1.264    0.103   12.247    0.000    0.997    0.646
##     HEX_AGR_FLX_04    1.316    0.109   12.046    0.000    1.038    0.684
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_AGR_FLX_01    2.562    0.095   27.026    0.000    2.562    0.805
##    .HEX_AGR_FLX_02    1.425    0.072   19.882    0.000    1.425    0.746
##    .HEX_AGR_FLX_03    1.391    0.081   17.256    0.000    1.391    0.583
##    .HEX_AGR_FLX_04    1.226    0.087   14.055    0.000    1.226    0.532
##     HEX_AGR_FLX       0.622    0.087    7.138    0.000    1.000    1.000

Fit is okay.

Patience

  1. People think of me as someone who has a quick temper.
  2. I rarely feel anger, even when people treat me quite badly.
  3. Most people tend to get angry more quickly than I do.
  4. I find it hard to keep my temper when people insult me.
name <- "HEX_AGR_PAT"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  1.92   skew =  496  with probability  <=  2.4e-92
##  small sample skew =  497  with probability <=  1.2e-92
## b2p =  27.1   kurtosis =  8.89  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  HEX_AGR_PAT =~ HEX_AGR_PAT_01 + HEX_AGR_PAT_02 + HEX_AGR_PAT_03 + HEX_AGR_PAT_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 26 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               106.892      77.231
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.384
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1569.516    1315.229
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.193
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.933       0.943
##   Tucker-Lewis Index (TLI)                       0.799       0.828
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.933
##   Robust Tucker-Lewis Index (TLI)                            0.800
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10897.588  -10897.588
##   Loglikelihood unrestricted model (H1)     -10844.142  -10844.142
##                                                                   
##   Akaike (AIC)                               21811.176   21811.176
##   Bayesian (BIC)                             21853.944   21853.944
##   Sample-size adjusted Bayesian (SABIC)      21828.530   21828.530
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.184       0.156
##   90 Percent confidence interval - lower         0.155       0.131
##   90 Percent confidence interval - upper         0.214       0.182
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    1.000       1.000
##                                                                   
##   Robust RMSEA                                               0.183
##   90 Percent confidence interval - lower                     0.150
##   90 Percent confidence interval - upper                     0.219
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.044       0.044
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_AGR_PAT =~                                                        
##     HEX_AGR_PAT_01    1.000                               1.049    0.694
##     HEX_AGR_PAT_02    0.872    0.050   17.318    0.000    0.915    0.562
##     HEX_AGR_PAT_03    1.099    0.050   22.193    0.000    1.153    0.771
##     HEX_AGR_PAT_04    1.021    0.055   18.462    0.000    1.072    0.634
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_AGR_PAT_01    1.183    0.078   15.099    0.000    1.183    0.518
##    .HEX_AGR_PAT_02    1.811    0.076   23.883    0.000    1.811    0.684
##    .HEX_AGR_PAT_03    0.905    0.070   12.927    0.000    0.905    0.405
##    .HEX_AGR_PAT_04    1.710    0.089   19.139    0.000    1.710    0.598
##     HEX_AGR_PAT       1.101    0.085   12.945    0.000    1.000    1.000

Fit is subpar. Let’s check for potential improvements.

modindices(fit_HEX_AGR_PAT)

Items 1 & 2 and Items 3 & 4 want to covary.

model <- "
HEX_AGR_PAT =~ HEX_AGR_PAT_01 + HEX_AGR_PAT_02 + HEX_AGR_PAT_03 + HEX_AGR_PAT_04
HEX_AGR_PAT_01 ~~ a*HEX_AGR_PAT_02
HEX_AGR_PAT_03 ~~ a*HEX_AGR_PAT_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 29 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
##   Number of equality constraints                     1
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 1.001       0.688
##   Degrees of freedom                                 1           1
##   P-value (Chi-square)                           0.317       0.407
##   Scaling correction factor                                  1.455
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1569.516    1315.229
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.193
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       1.000       1.001
##                                                                   
##   Robust Comparative Fit Index (CFI)                         1.000
##   Robust Tucker-Lewis Index (TLI)                            1.002
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10844.643  -10844.643
##   Loglikelihood unrestricted model (H1)     -10844.142  -10844.142
##                                                                   
##   Akaike (AIC)                               21707.285   21707.285
##   Bayesian (BIC)                             21755.399   21755.399
##   Sample-size adjusted Bayesian (SABIC)      21726.808   21726.808
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.001       0.000
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.067       0.052
##   P-value H_0: RMSEA <= 0.050                    0.835       0.937
##   P-value H_0: RMSEA >= 0.080                    0.016       0.002
##                                                                   
##   Robust RMSEA                                               0.000
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.076
##   P-value H_0: Robust RMSEA <= 0.050                         0.796
##   P-value H_0: Robust RMSEA >= 0.080                         0.037
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.005       0.005
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_AGR_PAT =~                                                        
##     HEX_AGR_PAT_01    1.000                               1.053    0.697
##     HEX_AGR_PAT_02    0.915    0.049   18.757    0.000    0.963    0.592
##     HEX_AGR_PAT_03    1.132    0.047   24.157    0.000    1.192    0.798
##     HEX_AGR_PAT_04    1.113    0.056   19.827    0.000    1.172    0.693
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_AGR_PAT_01 ~~                                                      
##    .HEX_AGR_PA (a)    -0.299    0.030  -10.120    0.000   -0.299   -0.210
##  .HEX_AGR_PAT_03 ~~                                                      
##    .HEX_AGR_PA (a)    -0.299    0.030  -10.120    0.000   -0.299   -0.272
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_AGR_PAT_01    1.175    0.075   15.576    0.000    1.175    0.515
##    .HEX_AGR_PAT_02    1.720    0.075   22.798    0.000    1.720    0.650
##    .HEX_AGR_PAT_03    0.812    0.068   11.890    0.000    0.812    0.364
##    .HEX_AGR_PAT_04    1.485    0.092   16.072    0.000    1.485    0.520
##     HEX_AGR_PAT       1.109    0.081   13.679    0.000    1.000    1.000

Fit is good.

Agreeableness

Let’s analyze main model.

model_hex_agr <- "
HEX_AGR =~ HEX_AGR_FOR + HEX_AGR_GEN + HEX_AGR_FLX + HEX_AGR_PAT
HEX_AGR_FOR =~ HEX_AGR_FOR_01 + HEX_AGR_FOR_02 + HEX_AGR_FOR_03 + HEX_AGR_FOR_04
HEX_AGR_GEN =~ HEX_AGR_GEN_01 + HEX_AGR_GEN_02 + HEX_AGR_GEN_03 + HEX_AGR_GEN_04
HEX_AGR_FLX =~ HEX_AGR_FLX_01 + HEX_AGR_FLX_02 + HEX_AGR_FLX_03 + HEX_AGR_FLX_04
HEX_AGR_PAT =~ HEX_AGR_PAT_01 + HEX_AGR_PAT_02 + HEX_AGR_PAT_03 + HEX_AGR_PAT_04

HEX_AGR_PAT_01 ~~ HEX_AGR_PAT_02
HEX_AGR_PAT_03 ~~ HEX_AGR_PAT_04
"
fit_hex_agr <- sem(model_hex_agr, d, estimator = "MLM", fixed.x = TRUE)
summary(fit_hex_agr, standardized = TRUE, fit = TRUE)
## lavaan 0.6.17 ended normally after 45 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        38
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1200.659     931.535
##   Degrees of freedom                                98          98
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.289
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              9026.275    7600.900
##   Degrees of freedom                               120         120
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.188
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.876       0.889
##   Tucker-Lewis Index (TLI)                       0.848       0.864
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.879
##   Robust Tucker-Lewis Index (TLI)                            0.852
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -41984.862  -41984.862
##   Loglikelihood unrestricted model (H1)     -41384.533  -41384.533
##                                                                   
##   Akaike (AIC)                               84045.725   84045.725
##   Bayesian (BIC)                             84248.873   84248.873
##   Sample-size adjusted Bayesian (SABIC)      84128.156   84128.156
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.085       0.074
##   90 Percent confidence interval - lower         0.081       0.070
##   90 Percent confidence interval - upper         0.090       0.078
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    0.977       0.006
##                                                                   
##   Robust RMSEA                                               0.084
##   90 Percent confidence interval - lower                     0.079
##   90 Percent confidence interval - upper                     0.089
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         0.917
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.063       0.063
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_AGR =~                                                            
##     HEX_AGR_FOR       1.000                               0.710    0.710
##     HEX_AGR_GEN       0.785    0.046   17.192    0.000    0.869    0.869
##     HEX_AGR_FLX       0.644    0.049   13.079    0.000    0.818    0.818
##     HEX_AGR_PAT       0.775    0.045   17.106    0.000    0.761    0.761
##   HEX_AGR_FOR =~                                                        
##     HEX_AGR_FOR_01    1.000                               1.491    0.866
##     HEX_AGR_FOR_02    0.932    0.023   40.284    0.000    1.390    0.835
##     HEX_AGR_FOR_03    0.302    0.022   13.877    0.000    0.451    0.386
##     HEX_AGR_FOR_04    0.859    0.025   33.933    0.000    1.281    0.758
##   HEX_AGR_GEN =~                                                        
##     HEX_AGR_GEN_01    1.000                               0.957    0.571
##     HEX_AGR_GEN_02    1.019    0.049   20.881    0.000    0.975    0.713
##     HEX_AGR_GEN_03    1.084    0.055   19.797    0.000    1.037    0.700
##     HEX_AGR_GEN_04    0.975    0.051   19.197    0.000    0.933    0.644
##   HEX_AGR_FLX =~                                                        
##     HEX_AGR_FLX_01    1.000                               0.833    0.467
##     HEX_AGR_FLX_02    0.919    0.076   12.076    0.000    0.766    0.554
##     HEX_AGR_FLX_03    1.181    0.085   13.900    0.000    0.984    0.637
##     HEX_AGR_FLX_04    1.143    0.083   13.813    0.000    0.952    0.628
##   HEX_AGR_PAT =~                                                        
##     HEX_AGR_PAT_01    1.000                               1.078    0.713
##     HEX_AGR_PAT_02    1.020    0.049   20.626    0.000    1.100    0.676
##     HEX_AGR_PAT_03    1.017    0.046   22.300    0.000    1.096    0.733
##     HEX_AGR_PAT_04    1.029    0.053   19.343    0.000    1.109    0.656
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_AGR_PAT_01 ~~                                                      
##    .HEX_AGR_PAT_02    -0.471    0.052   -9.121    0.000   -0.471   -0.370
##  .HEX_AGR_PAT_03 ~~                                                      
##    .HEX_AGR_PAT_04    -0.117    0.050   -2.327    0.020   -0.117   -0.091
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_AGR_FOR_01    0.745    0.060   12.402    0.000    0.745    0.251
##    .HEX_AGR_FOR_02    0.839    0.062   13.431    0.000    0.839    0.303
##    .HEX_AGR_FOR_03    1.160    0.059   19.749    0.000    1.160    0.851
##    .HEX_AGR_FOR_04    1.213    0.073   16.575    0.000    1.213    0.425
##    .HEX_AGR_GEN_01    1.897    0.081   23.296    0.000    1.897    0.675
##    .HEX_AGR_GEN_02    0.921    0.054   17.147    0.000    0.921    0.492
##    .HEX_AGR_GEN_03    1.118    0.072   15.630    0.000    1.118    0.509
##    .HEX_AGR_GEN_04    1.230    0.060   20.370    0.000    1.230    0.585
##    .HEX_AGR_FLX_01    2.490    0.093   26.645    0.000    2.490    0.782
##    .HEX_AGR_FLX_02    1.325    0.066   20.040    0.000    1.325    0.693
##    .HEX_AGR_FLX_03    1.416    0.069   20.590    0.000    1.416    0.594
##    .HEX_AGR_FLX_04    1.396    0.069   20.282    0.000    1.396    0.606
##    .HEX_AGR_PAT_01    1.122    0.076   14.823    0.000    1.122    0.491
##    .HEX_AGR_PAT_02    1.438    0.073   19.741    0.000    1.438    0.543
##    .HEX_AGR_PAT_03    1.032    0.066   15.721    0.000    1.032    0.462
##    .HEX_AGR_PAT_04    1.629    0.082   19.813    0.000    1.629    0.570
##     HEX_AGR           1.122    0.086   13.047    0.000    1.000    1.000
##    .HEX_AGR_FOR       1.102    0.075   14.769    0.000    0.496    0.496
##    .HEX_AGR_GEN       0.224    0.037    6.097    0.000    0.245    0.245
##    .HEX_AGR_FLX       0.229    0.038    6.016    0.000    0.330    0.330
##    .HEX_AGR_PAT       0.489    0.052    9.449    0.000    0.421    0.421

Fit subpar, let’s inspect.

modindices(fit_hex_agr, minimum.value = 50)

One cross-loading and one covariance emerges.

  • HEX_AGR_FOR =~ HEX_AGR_PAT_02
  • HEX_AGR_GEN_01 ~~ HEX_AGR_FLX_01
model_hex_agr <- "
HEX_AGR =~ HEX_AGR_FOR + HEX_AGR_GEN + HEX_AGR_FLX + HEX_AGR_PAT
HEX_AGR_FOR =~ HEX_AGR_FOR_01 + HEX_AGR_FOR_02 + HEX_AGR_FOR_03 + HEX_AGR_FOR_04 + HEX_AGR_PAT_02
HEX_AGR_GEN =~ HEX_AGR_GEN_01 + HEX_AGR_GEN_02 + HEX_AGR_GEN_03 + HEX_AGR_GEN_04
HEX_AGR_FLX =~ HEX_AGR_FLX_01 + HEX_AGR_FLX_02 + HEX_AGR_FLX_03 + HEX_AGR_FLX_04
HEX_AGR_PAT =~ HEX_AGR_PAT_01 + HEX_AGR_PAT_02 + HEX_AGR_PAT_03 + HEX_AGR_PAT_04

HEX_AGR_PAT_01 ~~ HEX_AGR_PAT_02
HEX_AGR_PAT_03 ~~ HEX_AGR_PAT_04
HEX_AGR_GEN_01\t~~\tHEX_AGR_FLX_01
"
fit_hex_agr <- sem(model_hex_agr, d, estimator = "MLM", fixed.x = TRUE)
summary(fit_hex_agr, standardized = TRUE, fit = TRUE)
## lavaan 0.6.17 ended normally after 51 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        40
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               877.655     680.665
##   Degrees of freedom                                96          96
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.289
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              9026.275    7600.900
##   Degrees of freedom                               120         120
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.188
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.912       0.922
##   Tucker-Lewis Index (TLI)                       0.890       0.902
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.915
##   Robust Tucker-Lewis Index (TLI)                            0.894
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -41823.361  -41823.361
##   Loglikelihood unrestricted model (H1)     -41384.533  -41384.533
##                                                                   
##   Akaike (AIC)                               83726.721   83726.721
##   Bayesian (BIC)                             83940.562   83940.562
##   Sample-size adjusted Bayesian (SABIC)      83813.491   83813.491
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.072       0.063
##   90 Percent confidence interval - lower         0.068       0.059
##   90 Percent confidence interval - upper         0.077       0.067
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    0.003       0.000
##                                                                   
##   Robust RMSEA                                               0.071
##   90 Percent confidence interval - lower                     0.066
##   90 Percent confidence interval - upper                     0.076
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         0.002
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.052       0.052
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_AGR =~                                                            
##     HEX_AGR_FOR       1.000                               0.688    0.688
##     HEX_AGR_GEN       0.794    0.049   16.358    0.000    0.872    0.872
##     HEX_AGR_FLX       0.600    0.051   11.841    0.000    0.833    0.833
##     HEX_AGR_PAT       0.660    0.047   14.087    0.000    0.675    0.675
##   HEX_AGR_FOR =~                                                        
##     HEX_AGR_FOR_01    1.000                               1.500    0.871
##     HEX_AGR_FOR_02    0.925    0.022   41.695    0.000    1.388    0.834
##     HEX_AGR_FOR_03    0.303    0.022   14.015    0.000    0.455    0.389
##     HEX_AGR_FOR_04    0.846    0.025   33.814    0.000    1.269    0.751
##     HEX_AGR_PAT_02    0.422    0.033   12.811    0.000    0.634    0.390
##   HEX_AGR_GEN =~                                                        
##     HEX_AGR_GEN_01    1.000                               0.940    0.560
##     HEX_AGR_GEN_02    1.050    0.051   20.683    0.000    0.987    0.722
##     HEX_AGR_GEN_03    1.116    0.057   19.687    0.000    1.049    0.709
##     HEX_AGR_GEN_04    0.993    0.053   18.831    0.000    0.933    0.644
##   HEX_AGR_FLX =~                                                        
##     HEX_AGR_FLX_01    1.000                               0.744    0.420
##     HEX_AGR_FLX_02    1.060    0.092   11.572    0.000    0.788    0.570
##     HEX_AGR_FLX_03    1.310    0.102   12.873    0.000    0.974    0.631
##     HEX_AGR_FLX_04    1.272    0.100   12.780    0.000    0.946    0.623
##   HEX_AGR_PAT =~                                                        
##     HEX_AGR_PAT_01    1.000                               1.010    0.669
##     HEX_AGR_PAT_02    0.622    0.051   12.204    0.000    0.628    0.386
##     HEX_AGR_PAT_03    1.218    0.062   19.706    0.000    1.230    0.823
##     HEX_AGR_PAT_04    1.230    0.071   17.216    0.000    1.243    0.735
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_AGR_PAT_02 ~~                                                      
##    .HEX_AGR_PAT_01    -0.180    0.046   -3.901    0.000   -0.180   -0.132
##  .HEX_AGR_PAT_03 ~~                                                      
##    .HEX_AGR_PAT_04    -0.431    0.069   -6.262    0.000   -0.431   -0.443
##  .HEX_AGR_GEN_01 ~~                                                      
##    .HEX_AGR_FLX_01     0.739    0.069   10.738    0.000    0.739    0.330
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_AGR_FOR_01    0.718    0.058   12.324    0.000    0.718    0.242
##    .HEX_AGR_FOR_02    0.843    0.061   13.866    0.000    0.843    0.304
##    .HEX_AGR_FOR_03    1.157    0.058   19.796    0.000    1.157    0.848
##    .HEX_AGR_FOR_04    1.244    0.073   16.983    0.000    1.244    0.436
##    .HEX_AGR_PAT_02    1.478    0.062   23.732    0.000    1.478    0.559
##    .HEX_AGR_GEN_01    1.938    0.082   23.657    0.000    1.938    0.687
##    .HEX_AGR_GEN_02    0.897    0.053   16.792    0.000    0.897    0.479
##    .HEX_AGR_GEN_03    1.093    0.071   15.416    0.000    1.093    0.498
##    .HEX_AGR_GEN_04    1.229    0.061   20.068    0.000    1.229    0.585
##    .HEX_AGR_FLX_01    2.582    0.088   29.205    0.000    2.582    0.824
##    .HEX_AGR_FLX_02    1.289    0.066   19.402    0.000    1.289    0.675
##    .HEX_AGR_FLX_03    1.435    0.070   20.423    0.000    1.435    0.602
##    .HEX_AGR_FLX_04    1.408    0.069   20.472    0.000    1.408    0.612
##    .HEX_AGR_PAT_01    1.263    0.076   16.632    0.000    1.263    0.553
##    .HEX_AGR_PAT_03    0.721    0.084    8.588    0.000    0.721    0.323
##    .HEX_AGR_PAT_04    1.314    0.107   12.272    0.000    1.314    0.460
##     HEX_AGR           1.067    0.086   12.421    0.000    1.000    1.000
##    .HEX_AGR_FOR       1.184    0.078   15.259    0.000    0.526    0.526
##    .HEX_AGR_GEN       0.212    0.036    5.822    0.000    0.239    0.239
##    .HEX_AGR_FLX       0.169    0.030    5.610    0.000    0.306    0.306
##    .HEX_AGR_PAT       0.555    0.048   11.491    0.000    0.544    0.544

Fit is now quite good.

Conscientiousness

Organization

  1. I clean my office or home quite frequently.
  2. I plan ahead and organize things, to avoid scrambling at the last minute.
  3. People often joke with me about the messiness of my room or desk.
  4. When working, I sometimes have difficulties due to being disorganized.
name <- "HEX_CNS_ORG"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  3.59   skew =  929  with probability  <=  6.7e-184
##  small sample skew =  931  with probability <=  1.9e-184
## b2p =  30.7   kurtosis =  19  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  HEX_CNS_ORG =~ HEX_CNS_ORG_01 + HEX_CNS_ORG_02 + HEX_CNS_ORG_03 + HEX_CNS_ORG_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 23 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                41.313      28.928
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.428
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1711.128    1243.205
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.376
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.977       0.978
##   Tucker-Lewis Index (TLI)                       0.931       0.935
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.977
##   Robust Tucker-Lewis Index (TLI)                            0.932
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10879.259  -10879.259
##   Loglikelihood unrestricted model (H1)     -10858.602  -10858.602
##                                                                   
##   Akaike (AIC)                               21774.518   21774.518
##   Bayesian (BIC)                             21817.286   21817.286
##   Sample-size adjusted Bayesian (SABIC)      21791.872   21791.872
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.113       0.093
##   90 Percent confidence interval - lower         0.084       0.069
##   90 Percent confidence interval - upper         0.144       0.119
##   P-value H_0: RMSEA <= 0.050                    0.000       0.002
##   P-value H_0: RMSEA >= 0.080                    0.970       0.828
##                                                                   
##   Robust RMSEA                                               0.111
##   90 Percent confidence interval - lower                     0.078
##   90 Percent confidence interval - upper                     0.149
##   P-value H_0: Robust RMSEA <= 0.050                         0.002
##   P-value H_0: Robust RMSEA >= 0.080                         0.938
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.026       0.026
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_CNS_ORG =~                                                        
##     HEX_CNS_ORG_01    1.000                               0.987    0.594
##     HEX_CNS_ORG_02    0.830    0.049   16.927    0.000    0.819    0.610
##     HEX_CNS_ORG_03    1.346    0.070   19.171    0.000    1.328    0.767
##     HEX_CNS_ORG_04    1.330    0.070   18.991    0.000    1.312    0.772
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_CNS_ORG_01    1.789    0.085   21.136    0.000    1.789    0.647
##    .HEX_CNS_ORG_02    1.134    0.060   18.855    0.000    1.134    0.628
##    .HEX_CNS_ORG_03    1.231    0.096   12.823    0.000    1.231    0.411
##    .HEX_CNS_ORG_04    1.164    0.092   12.720    0.000    1.164    0.403
##     HEX_CNS_ORG       0.974    0.088   11.067    0.000    1.000    1.000

Fit only “just” above thresholds. #### Diligence

  1. When working, I often set ambitious goals for myself.
  2. I often push myself very hard when trying to achieve a goal.
  3. Often when I set a goal, I end up quitting without having reached it.
  4. I do only the minimum amount of work needed to get by.
name <- "HEX_CNS_DIL"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1549   num.vars =  4 
## b1p =  3.12   skew =  806  with probability  <=  8.4e-158
##  small sample skew =  808  with probability <=  2.9e-158
## b2p =  33   kurtosis =  25.6  with probability <=  0

Assumption of multivariate normality violated. Hence we should use the robust estimator. However, if we do so, one participant will be excluded, because MLM doesn’t allow imputation. Will hence use ML but with FIML imputation.

model <- "
  HEX_CNS_DIL =~ HEX_CNS_DIL_01 + HEX_CNS_DIL_02 + HEX_CNS_DIL_03 + HEX_CNS_DIL_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLR", missing = "FIML"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        12
## 
##   Number of observations                          1550
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                69.799      45.295
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.541
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1599.576     917.410
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.744
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.957       0.952
##   Tucker-Lewis Index (TLI)                       0.872       0.857
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.958
##   Robust Tucker-Lewis Index (TLI)                            0.874
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10397.341  -10397.341
##   Scaling correction factor                                  1.287
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)     -10362.442  -10362.442
##   Scaling correction factor                                  1.323
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                               20818.682   20818.682
##   Bayesian (BIC)                             20882.834   20882.834
##   Sample-size adjusted Bayesian (SABIC)      20844.713   20844.713
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.148       0.118
##   90 Percent confidence interval - lower         0.119       0.095
##   90 Percent confidence interval - upper         0.179       0.143
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    1.000       0.996
##                                                                   
##   Robust RMSEA                                               0.147
##   90 Percent confidence interval - lower                     0.110
##   90 Percent confidence interval - upper                     0.186
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         0.998
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.034       0.034
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_CNS_DIL =~                                                        
##     HEX_CNS_DIL_01    1.000                               0.985    0.704
##     HEX_CNS_DIL_02    1.074    0.047   22.882    0.000    1.058    0.797
##     HEX_CNS_DIL_03    0.963    0.063   15.396    0.000    0.949    0.606
##     HEX_CNS_DIL_04    0.930    0.061   15.252    0.000    0.916    0.579
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_CNS_DIL_01    5.052    0.036  142.109    0.000    5.052    3.610
##    .HEX_CNS_DIL_02    5.328    0.034  158.015    0.000    5.328    4.014
##    .HEX_CNS_DIL_03    5.069    0.040  127.397    0.000    5.069    3.236
##    .HEX_CNS_DIL_04    5.257    0.040  130.821    0.000    5.257    3.324
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_CNS_DIL_01    0.989    0.069   14.379    0.000    0.989    0.505
##    .HEX_CNS_DIL_02    0.644    0.062   10.361    0.000    0.644    0.365
##    .HEX_CNS_DIL_03    1.554    0.085   18.361    0.000    1.554    0.633
##    .HEX_CNS_DIL_04    1.663    0.098   17.039    0.000    1.663    0.665
##     HEX_CNS_DIL       0.970    0.080   12.072    0.000    1.000    1.000

Fit is bad. Let’s inspect.

modindices(fit_HEX_CNS_DIL)

Items 1 & 2, and items 3 & 4 want to covary.

model <- "
  HEX_CNS_DIL =~ HEX_CNS_DIL_01 + HEX_CNS_DIL_02 + HEX_CNS_DIL_03 + HEX_CNS_DIL_04
  HEX_CNS_DIL_01 ~~ a*HEX_CNS_DIL_02
  HEX_CNS_DIL_03 ~~ a*HEX_CNS_DIL_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLR", missing = "FIML"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 37 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
##   Number of equality constraints                     1
## 
##   Number of observations                          1550
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 3.790       2.515
##   Degrees of freedom                                 1           1
##   P-value (Chi-square)                           0.052       0.113
##   Scaling correction factor                                  1.507
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1599.576     917.410
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.744
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.998       0.998
##   Tucker-Lewis Index (TLI)                       0.989       0.990
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.999
##   Robust Tucker-Lewis Index (TLI)                            0.992
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10364.337  -10364.337
##   Scaling correction factor                                  1.215
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)     -10362.442  -10362.442
##   Scaling correction factor                                  1.323
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                               20754.674   20754.674
##   Bayesian (BIC)                             20824.172   20824.172
##   Sample-size adjusted Bayesian (SABIC)      20782.874   20782.874
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.042       0.031
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.091       0.072
##   P-value H_0: RMSEA <= 0.050                    0.509       0.723
##   P-value H_0: RMSEA >= 0.080                    0.115       0.022
##                                                                   
##   Robust RMSEA                                               0.038
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.101
##   P-value H_0: Robust RMSEA <= 0.050                         0.508
##   P-value H_0: Robust RMSEA >= 0.080                         0.167
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.006       0.006
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_CNS_DIL =~                                                        
##     HEX_CNS_DIL_01    1.000                               0.880    0.629
##     HEX_CNS_DIL_02    1.119    0.062   17.910    0.000    0.985    0.742
##     HEX_CNS_DIL_03    1.109    0.074   14.947    0.000    0.977    0.623
##     HEX_CNS_DIL_04    1.056    0.067   15.856    0.000    0.929    0.588
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_CNS_DIL_01 ~~                                                      
##    .HEX_CNS_DI (a)     0.229    0.040    5.742    0.000    0.229    0.237
##  .HEX_CNS_DIL_03 ~~                                                      
##    .HEX_CNS_DI (a)     0.229    0.040    5.742    0.000    0.229    0.146
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_CNS_DIL_01    5.052    0.036  142.109    0.000    5.052    3.610
##    .HEX_CNS_DIL_02    5.328    0.034  158.015    0.000    5.328    4.014
##    .HEX_CNS_DIL_03    5.069    0.040  127.397    0.000    5.069    3.236
##    .HEX_CNS_DIL_04    5.257    0.040  130.797    0.000    5.257    3.323
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_CNS_DIL_01    1.183    0.073   16.152    0.000    1.183    0.604
##    .HEX_CNS_DIL_02    0.791    0.066   11.905    0.000    0.791    0.449
##    .HEX_CNS_DIL_03    1.500    0.081   18.554    0.000    1.500    0.611
##    .HEX_CNS_DIL_04    1.638    0.095   17.330    0.000    1.638    0.655
##     HEX_CNS_DIL       0.775    0.081    9.573    0.000    1.000    1.000

Fit is now good.

Perfectionism

  1. I often check my work over repeatedly to find any mistakes.
  2. When working on something, I don’t pay much attention to small details.
  3. I always try to be accurate in my work, even at the expense of time.
  4. People often call me a perfectionist.
name <- "HEX_CNS_PER"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  4.38   skew =  1131  with probability  <=  4.7e-227
##  small sample skew =  1134  with probability <=  1e-227
## b2p =  32.2   kurtosis =  23.2  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  HEX_CNS_PER =~ HEX_CNS_PER_01 + HEX_CNS_PER_02 + HEX_CNS_PER_03 + HEX_CNS_PER_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 31 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                35.758      29.441
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.215
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                               796.990     621.458
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.282
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.957       0.955
##   Tucker-Lewis Index (TLI)                       0.872       0.866
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.958
##   Robust Tucker-Lewis Index (TLI)                            0.873
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10205.612  -10205.612
##   Loglikelihood unrestricted model (H1)     -10187.733  -10187.733
##                                                                   
##   Akaike (AIC)                               20427.224   20427.224
##   Bayesian (BIC)                             20469.992   20469.992
##   Sample-size adjusted Bayesian (SABIC)      20444.578   20444.578
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.104       0.094
##   90 Percent confidence interval - lower         0.076       0.068
##   90 Percent confidence interval - upper         0.136       0.123
##   P-value H_0: RMSEA <= 0.050                    0.001       0.003
##   P-value H_0: RMSEA >= 0.080                    0.923       0.826
##                                                                   
##   Robust RMSEA                                               0.104
##   90 Percent confidence interval - lower                     0.073
##   90 Percent confidence interval - upper                     0.138
##   P-value H_0: Robust RMSEA <= 0.050                         0.003
##   P-value H_0: Robust RMSEA >= 0.080                         0.899
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.036       0.036
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_CNS_PER =~                                                        
##     HEX_CNS_PER_01    1.000                               0.691    0.524
##     HEX_CNS_PER_02    1.065    0.088   12.081    0.000    0.736    0.604
##     HEX_CNS_PER_03    1.156    0.096   12.008    0.000    0.799    0.720
##     HEX_CNS_PER_04    0.941    0.094   10.024    0.000    0.651    0.367
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_CNS_PER_01    1.264    0.081   15.578    0.000    1.264    0.726
##    .HEX_CNS_PER_02    0.943    0.073   12.872    0.000    0.943    0.635
##    .HEX_CNS_PER_03    0.595    0.061    9.778    0.000    0.595    0.482
##    .HEX_CNS_PER_04    2.727    0.087   31.492    0.000    2.727    0.866
##     HEX_CNS_PER       0.478    0.063    7.564    0.000    1.000    1.000

Fit subpar, needs to be improved.

modindices(fit_HEX_CNS_PER)

Items 1 & 4 and items 2 & 3 want to covary.

model <- "
  HEX_CNS_PER =~ HEX_CNS_PER_01 + HEX_CNS_PER_02 + HEX_CNS_PER_03 + HEX_CNS_PER_04
  HEX_CNS_PER_01 ~~ a*HEX_CNS_PER_04
  HEX_CNS_PER_02 ~~ a*HEX_CNS_PER_03
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
##   Number of equality constraints                     1
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 4.236       3.566
##   Degrees of freedom                                 1           1
##   P-value (Chi-square)                           0.040       0.059
##   Scaling correction factor                                  1.188
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                               796.990     621.458
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.282
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.996       0.996
##   Tucker-Lewis Index (TLI)                       0.975       0.975
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.996
##   Robust Tucker-Lewis Index (TLI)                            0.977
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10189.851  -10189.851
##   Loglikelihood unrestricted model (H1)     -10187.733  -10187.733
##                                                                   
##   Akaike (AIC)                               20397.702   20397.702
##   Bayesian (BIC)                             20445.817   20445.817
##   Sample-size adjusted Bayesian (SABIC)      20417.226   20417.226
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.046       0.041
##   90 Percent confidence interval - lower         0.008       0.000
##   90 Percent confidence interval - upper         0.094       0.085
##   P-value H_0: RMSEA <= 0.050                    0.464       0.553
##   P-value H_0: RMSEA >= 0.080                    0.138       0.079
##                                                                   
##   Robust RMSEA                                               0.044
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.098
##   P-value H_0: Robust RMSEA <= 0.050                         0.467
##   P-value H_0: Robust RMSEA >= 0.080                         0.158
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.011       0.011
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_CNS_PER =~                                                        
##     HEX_CNS_PER_01    1.000                               0.757    0.573
##     HEX_CNS_PER_02    0.816    0.082    9.996    0.000    0.617    0.507
##     HEX_CNS_PER_03    0.942    0.091   10.396    0.000    0.713    0.642
##     HEX_CNS_PER_04    0.865    0.096    9.031    0.000    0.655    0.369
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_CNS_PER_01 ~~                                                      
##    .HEX_CNS_PE (a)     0.176    0.036    4.884    0.000    0.176    0.099
##  .HEX_CNS_PER_02 ~~                                                      
##    .HEX_CNS_PE (a)     0.176    0.036    4.884    0.000    0.176    0.197
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_CNS_PER_01    1.170    0.087   13.455    0.000    1.170    0.671
##    .HEX_CNS_PER_02    1.104    0.076   14.471    0.000    1.104    0.743
##    .HEX_CNS_PER_03    0.725    0.063   11.418    0.000    0.725    0.588
##    .HEX_CNS_PER_04    2.722    0.090   30.149    0.000    2.722    0.864
##     HEX_CNS_PER       0.573    0.077    7.459    0.000    1.000    1.000

Fit is now great.

Prudence

  1. I make decisions based on the feeling of the moment rather than on careful thought.
  2. I make a lot of mistakes because I don’t think before I act.
  3. I don’t allow my impulses to govern my behavior.
  4. I prefer to do whatever comes to mind, rather than stick to a plan.
name <- "HEX_CNS_PRU"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  2.6   skew =  672  with probability  <=  1.7e-129
##  small sample skew =  674  with probability <=  7.1e-130
## b2p =  31.2   kurtosis =  20.4  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  HEX_CNS_PRU =~ HEX_CNS_PRU_01 + HEX_CNS_PRU_02 + HEX_CNS_PRU_03 + HEX_CNS_PRU_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 24 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                47.926      31.781
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.508
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1284.194     967.994
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.327
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.964       0.969
##   Tucker-Lewis Index (TLI)                       0.892       0.907
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.965
##   Robust Tucker-Lewis Index (TLI)                            0.894
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10363.325  -10363.325
##   Loglikelihood unrestricted model (H1)     -10339.362  -10339.362
##                                                                   
##   Akaike (AIC)                               20742.650   20742.650
##   Bayesian (BIC)                             20785.418   20785.418
##   Sample-size adjusted Bayesian (SABIC)      20760.004   20760.004
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.122       0.098
##   90 Percent confidence interval - lower         0.093       0.075
##   90 Percent confidence interval - upper         0.153       0.123
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    0.991       0.901
##                                                                   
##   Robust RMSEA                                               0.120
##   90 Percent confidence interval - lower                     0.086
##   90 Percent confidence interval - upper                     0.159
##   P-value H_0: Robust RMSEA <= 0.050                         0.001
##   P-value H_0: Robust RMSEA >= 0.080                         0.971
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.036       0.036
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_CNS_PRU =~                                                        
##     HEX_CNS_PRU_01    1.000                               1.135    0.790
##     HEX_CNS_PRU_02    0.753    0.045   16.818    0.000    0.855    0.618
##     HEX_CNS_PRU_03    0.658    0.046   14.336    0.000    0.747    0.525
##     HEX_CNS_PRU_04    0.775    0.046   16.831    0.000    0.880    0.607
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_CNS_PRU_01    0.774    0.077   10.033    0.000    0.774    0.375
##    .HEX_CNS_PRU_02    1.181    0.064   18.410    0.000    1.181    0.618
##    .HEX_CNS_PRU_03    1.463    0.080   18.359    0.000    1.463    0.724
##    .HEX_CNS_PRU_04    1.327    0.078   17.053    0.000    1.327    0.632
##     HEX_CNS_PRU       1.289    0.090   14.359    0.000    1.000    1.000

Although not great, fit is within of thresholds.

Conscientiousness

Let’s analyze main model as well.

model_hex_cns <- "
HEX_CNS =~ HEX_CNS_ORG + HEX_CNS_DIL + HEX_CNS_PER + HEX_CNS_PRU
HEX_CNS_ORG =~ HEX_CNS_ORG_01 + HEX_CNS_ORG_02 + HEX_CNS_ORG_03 + HEX_CNS_ORG_04
HEX_CNS_DIL =~ HEX_CNS_DIL_01 + HEX_CNS_DIL_02 + HEX_CNS_DIL_03 + HEX_CNS_DIL_04
HEX_CNS_PER =~ HEX_CNS_PER_01 + HEX_CNS_PER_02 + HEX_CNS_PER_03 + HEX_CNS_PER_04
HEX_CNS_PRU =~ HEX_CNS_PRU_01 + HEX_CNS_PRU_02 + HEX_CNS_PRU_03 + HEX_CNS_PRU_04

HEX_CNS_ORG_01 ~~ HEX_CNS_ORG_04
HEX_CNS_ORG_02 ~~ HEX_CNS_ORG_03
HEX_CNS_DIL_01 ~~ HEX_CNS_DIL_02
HEX_CNS_DIL_03 ~~ HEX_CNS_DIL_04
HEX_CNS_PER_01 ~~ HEX_CNS_PER_04
HEX_CNS_PER_02 ~~ HEX_CNS_PER_03
HEX_CNS_PRU_01 ~~ HEX_CNS_PRU_04
HEX_CNS_PRU_02 ~~ HEX_CNS_PRU_03
"
fit_hex_cns <- sem(model_hex_cns, d, estimator = "MLM", fixed.x = TRUE)
summary(fit_hex_cns, standardized = TRUE, fit = TRUE)
## lavaan 0.6.17 ended normally after 61 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        44
## 
##                                                   Used       Total
##   Number of observations                          1549        1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               910.580     678.847
##   Degrees of freedom                                92          92
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.341
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              8230.373    6446.105
##   Degrees of freedom                               120         120
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.277
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.899       0.907
##   Tucker-Lewis Index (TLI)                       0.868       0.879
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.903
##   Robust Tucker-Lewis Index (TLI)                            0.873
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -40752.524  -40752.524
##   Loglikelihood unrestricted model (H1)     -40297.234  -40297.234
##                                                                   
##   Akaike (AIC)                               81593.049   81593.049
##   Bayesian (BIC)                             81828.245   81828.245
##   Sample-size adjusted Bayesian (SABIC)      81688.467   81688.467
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.076       0.064
##   90 Percent confidence interval - lower         0.071       0.060
##   90 Percent confidence interval - upper         0.080       0.068
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    0.063       0.000
##                                                                   
##   Robust RMSEA                                               0.074
##   90 Percent confidence interval - lower                     0.069
##   90 Percent confidence interval - upper                     0.080
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         0.039
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.059       0.059
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_CNS =~                                                            
##     HEX_CNS_ORG       1.000                               0.808    0.808
##     HEX_CNS_DIL       0.730    0.052   13.978    0.000    0.842    0.842
##     HEX_CNS_PER       0.428    0.048    8.842    0.000    0.663    0.663
##     HEX_CNS_PRU       1.019    0.073   14.003    0.000    0.903    0.903
##   HEX_CNS_ORG =~                                                        
##     HEX_CNS_ORG_01    1.000                               0.991    0.596
##     HEX_CNS_ORG_02    0.885    0.052   17.154    0.000    0.877    0.653
##     HEX_CNS_ORG_03    1.273    0.071   18.014    0.000    1.262    0.729
##     HEX_CNS_ORG_04    1.403    0.065   21.578    0.000    1.390    0.819
##   HEX_CNS_DIL =~                                                        
##     HEX_CNS_DIL_01    1.000                               0.695    0.496
##     HEX_CNS_DIL_02    1.119    0.059   19.101    0.000    0.777    0.585
##     HEX_CNS_DIL_03    1.786    0.123   14.518    0.000    1.241    0.792
##     HEX_CNS_DIL_04    1.696    0.114   14.834    0.000    1.178    0.745
##   HEX_CNS_PER =~                                                        
##     HEX_CNS_PER_01    1.000                               0.517    0.392
##     HEX_CNS_PER_02    1.994    0.222    8.985    0.000    1.031    0.846
##     HEX_CNS_PER_03    1.606    0.167    9.592    0.000    0.831    0.749
##     HEX_CNS_PER_04    0.957    0.107    8.910    0.000    0.495    0.279
##   HEX_CNS_PRU =~                                                        
##     HEX_CNS_PRU_01    1.000                               0.904    0.629
##     HEX_CNS_PRU_02    1.126    0.060   18.735    0.000    1.018    0.737
##     HEX_CNS_PRU_03    0.821    0.057   14.537    0.000    0.742    0.523
##     HEX_CNS_PRU_04    0.864    0.045   19.303    0.000    0.781    0.539
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_CNS_ORG_01 ~~                                                      
##    .HEX_CNS_ORG_04    -0.210    0.057   -3.689    0.000   -0.210   -0.162
##  .HEX_CNS_ORG_02 ~~                                                      
##    .HEX_CNS_ORG_03    -0.122    0.050   -2.428    0.015   -0.122   -0.101
##  .HEX_CNS_DIL_01 ~~                                                      
##    .HEX_CNS_DIL_02     0.557    0.049   11.287    0.000    0.557    0.426
##  .HEX_CNS_DIL_03 ~~                                                      
##    .HEX_CNS_DIL_04    -0.324    0.075   -4.317    0.000   -0.324   -0.321
##  .HEX_CNS_PER_01 ~~                                                      
##    .HEX_CNS_PER_04     0.416    0.061    6.839    0.000    0.416    0.201
##  .HEX_CNS_PER_02 ~~                                                      
##    .HEX_CNS_PER_03    -0.241    0.069   -3.525    0.000   -0.241   -0.506
##  .HEX_CNS_PRU_01 ~~                                                      
##    .HEX_CNS_PRU_04     0.356    0.057    6.208    0.000    0.356    0.262
##  .HEX_CNS_PRU_02 ~~                                                      
##    .HEX_CNS_PRU_03     0.051    0.048    1.048    0.295    0.051    0.045
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_CNS_ORG_01    1.782    0.087   20.544    0.000    1.782    0.645
##    .HEX_CNS_ORG_02    1.035    0.056   18.369    0.000    1.035    0.573
##    .HEX_CNS_ORG_03    1.402    0.095   14.835    0.000    1.402    0.468
##    .HEX_CNS_ORG_04    0.949    0.082   11.532    0.000    0.949    0.329
##    .HEX_CNS_DIL_01    1.477    0.065   22.673    0.000    1.477    0.754
##    .HEX_CNS_DIL_02    1.159    0.063   18.326    0.000    1.159    0.657
##    .HEX_CNS_DIL_03    0.914    0.097    9.390    0.000    0.914    0.373
##    .HEX_CNS_DIL_04    1.115    0.101   10.994    0.000    1.115    0.445
##    .HEX_CNS_PER_01    1.476    0.076   19.463    0.000    1.476    0.847
##    .HEX_CNS_PER_02    0.423    0.102    4.153    0.000    0.423    0.284
##    .HEX_CNS_PER_03    0.540    0.072    7.464    0.000    0.540    0.439
##    .HEX_CNS_PER_04    2.907    0.077   37.548    0.000    2.907    0.922
##    .HEX_CNS_PRU_01    1.245    0.069   18.071    0.000    1.245    0.604
##    .HEX_CNS_PRU_02    0.873    0.067   13.028    0.000    0.873    0.457
##    .HEX_CNS_PRU_03    1.465    0.080   18.305    0.000    1.465    0.727
##    .HEX_CNS_PRU_04    1.490    0.072   20.629    0.000    1.490    0.709
##     HEX_CNS           0.641    0.064   10.020    0.000    1.000    1.000
##    .HEX_CNS_ORG       0.342    0.046    7.446    0.000    0.348    0.348
##    .HEX_CNS_DIL       0.140    0.023    6.235    0.000    0.291    0.291
##    .HEX_CNS_PER       0.150    0.024    6.178    0.000    0.561    0.561
##    .HEX_CNS_PRU       0.151    0.034    4.485    0.000    0.185    0.185

Fit is slightly below thresholds, let’s inspect.

modindices(fit_hex_cns, minimum.value = 50)

No real candidate emerges. Will keep that way.

Openness

Aesthetic Appreciation

  1. I would be quite bored by a visit to an art gallery.
  2. I wouldn’t spend my time reading a book of poetry.
  3. If I had the opportunity, I would like to attend a classical music concert.
  4. Sometimes I like to just watch the wind as it blows through the trees.
name <- "HEX_OPN_AES"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  2.65   skew =  685  with probability  <=  4.1e-132
##  small sample skew =  686  with probability <=  1.7e-132
## b2p =  27.3   kurtosis =  9.46  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  HEX_OPN_AES =~ HEX_OPN_AES_01 + HEX_OPN_AES_02 + HEX_OPN_AES_03 + HEX_OPN_AES_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 29 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 7.978       6.180
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.019       0.045
##   Scaling correction factor                                  1.291
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1024.453     820.881
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.248
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.994       0.995
##   Tucker-Lewis Index (TLI)                       0.982       0.985
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.995
##   Robust Tucker-Lewis Index (TLI)                            0.984
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11838.169  -11838.169
##   Loglikelihood unrestricted model (H1)     -11834.180  -11834.180
##                                                                   
##   Akaike (AIC)                               23692.338   23692.338
##   Bayesian (BIC)                             23735.106   23735.106
##   Sample-size adjusted Bayesian (SABIC)      23709.692   23709.692
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.044       0.037
##   90 Percent confidence interval - lower         0.015       0.009
##   90 Percent confidence interval - upper         0.078       0.067
##   P-value H_0: RMSEA <= 0.050                    0.556       0.728
##   P-value H_0: RMSEA >= 0.080                    0.038       0.007
##                                                                   
##   Robust RMSEA                                               0.042
##   90 Percent confidence interval - lower                     0.005
##   90 Percent confidence interval - upper                     0.081
##   P-value H_0: Robust RMSEA <= 0.050                         0.569
##   P-value H_0: Robust RMSEA >= 0.080                         0.055
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.016       0.016
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_OPN_AES =~                                                        
##     HEX_OPN_AES_01    1.000                               1.284    0.734
##     HEX_OPN_AES_02    0.978    0.060   16.164    0.000    1.255    0.618
##     HEX_OPN_AES_03    0.940    0.056   16.664    0.000    1.207    0.640
##     HEX_OPN_AES_04    0.460    0.042   10.987    0.000    0.590    0.401
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_OPN_AES_01    1.413    0.119   11.825    0.000    1.413    0.462
##    .HEX_OPN_AES_02    2.554    0.133   19.188    0.000    2.554    0.618
##    .HEX_OPN_AES_03    2.103    0.120   17.464    0.000    2.103    0.591
##    .HEX_OPN_AES_04    1.818    0.086   21.140    0.000    1.818    0.839
##     HEX_OPN_AES       1.648    0.135   12.233    0.000    1.000    1.000

Fit is good.

Inquisitiveness

  1. I’m interested in learning about the history and politics of other countries.
  2. I enjoy looking at maps of different places.
  3. I would be very bored by a book about the history of science and technology.
  4. I’ve never really enjoyed looking through an encyclopedia.
name <- "HEX_OPN_INQ"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  2.27   skew =  585  with probability  <=  3.8e-111
##  small sample skew =  587  with probability <=  1.8e-111
## b2p =  27.6   kurtosis =  10.2  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  HEX_OPN_INQ =~ HEX_OPN_INQ_01 + HEX_OPN_INQ_02 + HEX_OPN_INQ_03 + HEX_OPN_INQ_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 27 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                34.283      24.410
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.404
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1352.339    1026.119
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.318
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.976       0.978
##   Tucker-Lewis Index (TLI)                       0.928       0.934
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.977
##   Robust Tucker-Lewis Index (TLI)                            0.930
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11555.320  -11555.320
##   Loglikelihood unrestricted model (H1)     -11538.178  -11538.178
##                                                                   
##   Akaike (AIC)                               23126.640   23126.640
##   Bayesian (BIC)                             23169.408   23169.408
##   Sample-size adjusted Bayesian (SABIC)      23143.994   23143.994
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.102       0.085
##   90 Percent confidence interval - lower         0.074       0.061
##   90 Percent confidence interval - upper         0.133       0.112
##   P-value H_0: RMSEA <= 0.050                    0.002       0.009
##   P-value H_0: RMSEA >= 0.080                    0.904       0.660
##                                                                   
##   Robust RMSEA                                               0.101
##   90 Percent confidence interval - lower                     0.067
##   90 Percent confidence interval - upper                     0.138
##   P-value H_0: Robust RMSEA <= 0.050                         0.007
##   P-value H_0: Robust RMSEA >= 0.080                         0.857
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.027       0.027
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_OPN_INQ =~                                                        
##     HEX_OPN_INQ_01    1.000                               1.190    0.704
##     HEX_OPN_INQ_02    0.944    0.050   18.768    0.000    1.123    0.686
##     HEX_OPN_INQ_03    0.954    0.053   18.012    0.000    1.136    0.637
##     HEX_OPN_INQ_04    0.897    0.056   16.102    0.000    1.067    0.581
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_OPN_INQ_01    1.440    0.097   14.850    0.000    1.440    0.504
##    .HEX_OPN_INQ_02    1.417    0.081   17.586    0.000    1.417    0.529
##    .HEX_OPN_INQ_03    1.893    0.102   18.501    0.000    1.893    0.595
##    .HEX_OPN_INQ_04    2.236    0.114   19.556    0.000    2.236    0.663
##     HEX_OPN_INQ       1.416    0.112   12.593    0.000    1.000    1.000

Fit is just within thresholds.

Creativeness

  1. I would like a job that requires following a routine rather than being creative.
  2. I would enjoy creating a work of art, such as a novel, a song, or a painting.
  3. People have often told me that I have a good imagination.
  4. I don’t think of myself as the artistic or creative type.
name <- "HEX_OPN_CRE"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  2.19   skew =  566  with probability  <=  4e-107
##  small sample skew =  568  with probability <=  1.9e-107
## b2p =  27.5   kurtosis =  9.88  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  HEX_OPN_CRE =~ HEX_OPN_CRE_01 + HEX_OPN_CRE_02 + HEX_OPN_CRE_03 + HEX_OPN_CRE_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 27 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 8.173       6.024
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.017       0.049
##   Scaling correction factor                                  1.357
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1713.133    1395.014
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.228
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.996       0.997
##   Tucker-Lewis Index (TLI)                       0.989       0.991
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.997
##   Robust Tucker-Lewis Index (TLI)                            0.990
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11239.461  -11239.461
##   Loglikelihood unrestricted model (H1)     -11235.374  -11235.374
##                                                                   
##   Akaike (AIC)                               22494.921   22494.921
##   Bayesian (BIC)                             22537.689   22537.689
##   Sample-size adjusted Bayesian (SABIC)      22512.275   22512.275
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.045       0.036
##   90 Percent confidence interval - lower         0.016       0.009
##   90 Percent confidence interval - upper         0.078       0.066
##   P-value H_0: RMSEA <= 0.050                    0.542       0.749
##   P-value H_0: RMSEA >= 0.080                    0.041       0.005
##                                                                   
##   Robust RMSEA                                               0.042
##   90 Percent confidence interval - lower                     0.002
##   90 Percent confidence interval - upper                     0.082
##   P-value H_0: Robust RMSEA <= 0.050                         0.559
##   P-value H_0: Robust RMSEA >= 0.080                         0.062
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.013       0.013
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_OPN_CRE =~                                                        
##     HEX_OPN_CRE_01    1.000                               0.872    0.523
##     HEX_OPN_CRE_02    1.409    0.079   17.862    0.000    1.228    0.709
##     HEX_OPN_CRE_03    1.131    0.067   16.889    0.000    0.986    0.645
##     HEX_OPN_CRE_04    1.857    0.100   18.652    0.000    1.618    0.851
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_OPN_CRE_01    2.013    0.078   25.743    0.000    2.013    0.726
##    .HEX_OPN_CRE_02    1.492    0.086   17.339    0.000    1.492    0.497
##    .HEX_OPN_CRE_03    1.361    0.069   19.839    0.000    1.361    0.584
##    .HEX_OPN_CRE_04    0.998    0.117    8.562    0.000    0.998    0.276
##     HEX_OPN_CRE       0.760    0.075   10.102    0.000    1.000    1.000

Fit is great.

Unconventionality

  1. I think that paying attention to radical ideas is a waste of time.
  2. I like people who have unconventional views.
  3. I think of myself as a somewhat eccentric person.
  4. I find it boring to discuss philosophy.
name <- "HEX_OPN_UNC"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1549   num.vars =  4 
## b1p =  1.17   skew =  301  with probability  <=  4.4e-52
##  small sample skew =  302  with probability <=  3e-52
## b2p =  26   kurtosis =  5.67  with probability <=  1.4e-08

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  HEX_OPN_UNC =~ HEX_OPN_UNC_01 + HEX_OPN_UNC_02 + HEX_OPN_UNC_03 + HEX_OPN_UNC_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLR", missing = "FIML"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 37 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        12
## 
##   Number of observations                          1550
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                24.678      24.082
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.025
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Model Test Baseline Model:
## 
##   Test statistic                               615.392     460.121
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.337
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.963       0.951
##   Tucker-Lewis Index (TLI)                       0.888       0.854
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.963
##   Robust Tucker-Lewis Index (TLI)                            0.889
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11312.313  -11312.313
##   Scaling correction factor                                  1.081
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)     -11299.974  -11299.974
##   Scaling correction factor                                  1.073
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                               22648.626   22648.626
##   Bayesian (BIC)                             22712.778   22712.778
##   Sample-size adjusted Bayesian (SABIC)      22674.657   22674.657
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.086       0.084
##   90 Percent confidence interval - lower         0.057       0.057
##   90 Percent confidence interval - upper         0.117       0.116
##   P-value H_0: RMSEA <= 0.050                    0.020       0.022
##   P-value H_0: RMSEA >= 0.080                    0.658       0.636
##                                                                   
##   Robust RMSEA                                               0.085
##   90 Percent confidence interval - lower                     0.055
##   90 Percent confidence interval - upper                     0.119
##   P-value H_0: Robust RMSEA <= 0.050                         0.027
##   P-value H_0: Robust RMSEA >= 0.080                         0.645
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.025       0.025
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_OPN_UNC =~                                                        
##     HEX_OPN_UNC_01    1.000                               0.865    0.549
##     HEX_OPN_UNC_02    0.971    0.101    9.573    0.000    0.841    0.642
##     HEX_OPN_UNC_03    0.730    0.096    7.625    0.000    0.631    0.374
##     HEX_OPN_UNC_04    1.075    0.090   11.948    0.000    0.930    0.529
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_OPN_UNC_01    4.915    0.040  122.792    0.000    4.915    3.119
##    .HEX_OPN_UNC_02    4.774    0.033  143.420    0.000    4.774    3.643
##    .HEX_OPN_UNC_03    3.783    0.043   88.156    0.000    3.783    2.240
##    .HEX_OPN_UNC_04    4.855    0.045  108.655    0.000    4.855    2.760
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_OPN_UNC_01    1.735    0.108   15.994    0.000    1.735    0.698
##    .HEX_OPN_UNC_02    1.010    0.088   11.427    0.000    1.010    0.588
##    .HEX_OPN_UNC_03    2.454    0.090   27.224    0.000    2.454    0.860
##    .HEX_OPN_UNC_04    2.230    0.134   16.606    0.000    2.230    0.721
##     HEX_OPN_UNC       0.749    0.101    7.432    0.000    1.000    1.000

Fit is subpar. Let’s inspect.

modindices(fit_HEX_OPN_UNC)

Items 1 & 4 and items 2 & 3 want to covary.

model <- "
  HEX_OPN_UNC =~ HEX_OPN_UNC_01 + HEX_OPN_UNC_02 + HEX_OPN_UNC_03 + HEX_OPN_UNC_04
  HEX_OPN_UNC_01 ~~ a*HEX_OPN_UNC_04
  HEX_OPN_UNC_02 ~~ a*HEX_OPN_UNC_03
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLR", missing = "FIML"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 41 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        14
##   Number of equality constraints                     1
## 
##   Number of observations                          1550
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 2.823       2.617
##   Degrees of freedom                                 1           1
##   P-value (Chi-square)                           0.093       0.106
##   Scaling correction factor                                  1.079
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Model Test Baseline Model:
## 
##   Test statistic                               615.392     460.121
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.337
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.997       0.996
##   Tucker-Lewis Index (TLI)                       0.982       0.979
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.997
##   Robust Tucker-Lewis Index (TLI)                            0.983
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11301.385  -11301.385
##   Scaling correction factor                                  0.996
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)     -11299.974  -11299.974
##   Scaling correction factor                                  1.073
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                               22628.770   22628.770
##   Bayesian (BIC)                             22698.269   22698.269
##   Sample-size adjusted Bayesian (SABIC)      22656.971   22656.971
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.034       0.032
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.084       0.081
##   P-value H_0: RMSEA <= 0.050                    0.614       0.651
##   P-value H_0: RMSEA >= 0.080                    0.071       0.054
##                                                                   
##   Robust RMSEA                                               0.033
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.086
##   P-value H_0: Robust RMSEA <= 0.050                         0.609
##   P-value H_0: Robust RMSEA >= 0.080                         0.079
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.008       0.008
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_OPN_UNC =~                                                        
##     HEX_OPN_UNC_01    1.000                               0.836    0.530
##     HEX_OPN_UNC_02    1.010    0.095   10.666    0.000    0.844    0.644
##     HEX_OPN_UNC_03    0.643    0.088    7.326    0.000    0.538    0.318
##     HEX_OPN_UNC_04    1.047    0.105    9.935    0.000    0.875    0.497
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_OPN_UNC_01 ~~                                                      
##    .HEX_OPN_UN (a)     0.192    0.047    4.089    0.000    0.192    0.094
##  .HEX_OPN_UNC_02 ~~                                                      
##    .HEX_OPN_UN (a)     0.192    0.047    4.089    0.000    0.192    0.120
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_OPN_UNC_01    4.915    0.040  122.792    0.000    4.915    3.119
##    .HEX_OPN_UNC_02    4.774    0.033  143.420    0.000    4.774    3.643
##    .HEX_OPN_UNC_03    3.783    0.043   88.157    0.000    3.783    2.240
##    .HEX_OPN_UNC_04    4.855    0.045  108.655    0.000    4.855    2.760
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_OPN_UNC_01    1.786    0.102   17.424    0.000    1.786    0.719
##    .HEX_OPN_UNC_02    1.005    0.084   11.906    0.000    1.005    0.585
##    .HEX_OPN_UNC_03    2.564    0.088   29.120    0.000    2.564    0.899
##    .HEX_OPN_UNC_04    2.330    0.127   18.316    0.000    2.330    0.753
##     HEX_OPN_UNC       0.698    0.094    7.449    0.000    1.000    1.000

Fit is now great.

Openness

Let’s analyze main model as well.

model_hex_opn <- "
HEX_OPN =~ HEX_OPN_AES + HEX_OPN_INQ + HEX_OPN_CRE + HEX_OPN_UNC
HEX_OPN_AES =~ HEX_OPN_AES_01 + HEX_OPN_AES_02 + HEX_OPN_AES_03 + HEX_OPN_AES_04
HEX_OPN_INQ =~ HEX_OPN_INQ_01 + HEX_OPN_INQ_02 + HEX_OPN_INQ_03 + HEX_OPN_INQ_04
HEX_OPN_CRE =~ HEX_OPN_CRE_01 + HEX_OPN_CRE_02 + HEX_OPN_CRE_03 + HEX_OPN_CRE_04
HEX_OPN_UNC =~ HEX_OPN_UNC_01 + HEX_OPN_UNC_02 + HEX_OPN_UNC_03 + HEX_OPN_UNC_04

HEX_OPN_INQ_01 ~~ HEX_OPN_INQ_04
HEX_OPN_INQ_02 ~~ HEX_OPN_INQ_03
HEX_OPN_UNC_01 ~~ HEX_OPN_UNC_04
HEX_OPN_UNC_02 ~~ HEX_OPN_UNC_03
"
fit_hex_opn <- sem(model_hex_opn, d, estimator = "MLM", fixed.x = TRUE)
summary(fit_hex_opn, standardized = TRUE, fit = TRUE)
## lavaan 0.6.17 ended normally after 57 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        40
## 
##                                                   Used       Total
##   Number of observations                          1549        1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               643.402     524.105
##   Degrees of freedom                                96          96
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.228
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              7041.266    5800.421
##   Degrees of freedom                               120         120
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.214
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.921       0.925
##   Tucker-Lewis Index (TLI)                       0.901       0.906
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.924
##   Robust Tucker-Lewis Index (TLI)                            0.905
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -45035.587  -45035.587
##   Loglikelihood unrestricted model (H1)     -44713.886  -44713.886
##                                                                   
##   Akaike (AIC)                               90151.175   90151.175
##   Bayesian (BIC)                             90364.989   90364.989
##   Sample-size adjusted Bayesian (SABIC)      90237.919   90237.919
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.061       0.054
##   90 Percent confidence interval - lower         0.056       0.050
##   90 Percent confidence interval - upper         0.065       0.058
##   P-value H_0: RMSEA <= 0.050                    0.000       0.067
##   P-value H_0: RMSEA >= 0.080                    0.000       0.000
##                                                                   
##   Robust RMSEA                                               0.059
##   90 Percent confidence interval - lower                     0.055
##   90 Percent confidence interval - upper                     0.064
##   P-value H_0: Robust RMSEA <= 0.050                         0.001
##   P-value H_0: Robust RMSEA >= 0.080                         0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.043       0.043
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_OPN =~                                                            
##     HEX_OPN_AES       1.000                               0.960    0.960
##     HEX_OPN_INQ       0.705    0.043   16.326    0.000    0.682    0.682
##     HEX_OPN_CRE       0.558    0.038   14.864    0.000    0.779    0.779
##     HEX_OPN_UNC       0.503    0.041   12.354    0.000    0.822    0.822
##   HEX_OPN_AES =~                                                        
##     HEX_OPN_AES_01    1.000                               1.287    0.736
##     HEX_OPN_AES_02    0.993    0.046   21.452    0.000    1.279    0.629
##     HEX_OPN_AES_03    0.908    0.040   22.572    0.000    1.169    0.619
##     HEX_OPN_AES_04    0.470    0.038   12.463    0.000    0.605    0.411
##   HEX_OPN_INQ =~                                                        
##     HEX_OPN_INQ_01    1.000                               1.277    0.756
##     HEX_OPN_INQ_02    0.823    0.047   17.678    0.000    1.051    0.642
##     HEX_OPN_INQ_03    0.862    0.049   17.497    0.000    1.101    0.617
##     HEX_OPN_INQ_04    0.969    0.050   19.267    0.000    1.237    0.673
##   HEX_OPN_CRE =~                                                        
##     HEX_OPN_CRE_01    1.000                               0.886    0.532
##     HEX_OPN_CRE_02    1.493    0.080   18.584    0.000    1.323    0.764
##     HEX_OPN_CRE_03    1.114    0.064   17.280    0.000    0.987    0.646
##     HEX_OPN_CRE_04    1.696    0.084   20.300    0.000    1.502    0.790
##   HEX_OPN_UNC =~                                                        
##     HEX_OPN_UNC_01    1.000                               0.757    0.480
##     HEX_OPN_UNC_02    0.816    0.070   11.739    0.000    0.618    0.471
##     HEX_OPN_UNC_03    0.687    0.082    8.382    0.000    0.520    0.308
##     HEX_OPN_UNC_04    1.700    0.128   13.310    0.000    1.287    0.731
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_OPN_INQ_01 ~~                                                      
##    .HEX_OPN_INQ_04    -0.461    0.075   -6.121    0.000   -0.461   -0.307
##  .HEX_OPN_INQ_02 ~~                                                      
##    .HEX_OPN_INQ_03    -0.007    0.070   -0.093    0.926   -0.007   -0.004
##  .HEX_OPN_UNC_01 ~~                                                      
##    .HEX_OPN_UNC_04    -0.051    0.079   -0.640    0.522   -0.051   -0.031
##  .HEX_OPN_UNC_02 ~~                                                      
##    .HEX_OPN_UNC_03     0.325    0.057    5.690    0.000    0.325    0.175
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_OPN_AES_01    1.405    0.095   14.837    0.000    1.405    0.459
##    .HEX_OPN_AES_02    2.492    0.115   21.758    0.000    2.492    0.604
##    .HEX_OPN_AES_03    2.196    0.099   22.153    0.000    2.196    0.616
##    .HEX_OPN_AES_04    1.801    0.084   21.554    0.000    1.801    0.831
##    .HEX_OPN_INQ_01    1.225    0.099   12.329    0.000    1.225    0.429
##    .HEX_OPN_INQ_02    1.575    0.084   18.792    0.000    1.575    0.588
##    .HEX_OPN_INQ_03    1.972    0.098   20.118    0.000    1.972    0.619
##    .HEX_OPN_INQ_04    1.845    0.120   15.327    0.000    1.845    0.546
##    .HEX_OPN_CRE_01    1.986    0.077   25.651    0.000    1.986    0.717
##    .HEX_OPN_CRE_02    1.250    0.079   15.781    0.000    1.250    0.417
##    .HEX_OPN_CRE_03    1.359    0.066   20.508    0.000    1.359    0.582
##    .HEX_OPN_CRE_04    1.361    0.097   14.064    0.000    1.361    0.376
##    .HEX_OPN_UNC_01    1.912    0.096   19.987    0.000    1.912    0.769
##    .HEX_OPN_UNC_02    1.335    0.064   20.941    0.000    1.335    0.778
##    .HEX_OPN_UNC_03    2.582    0.077   33.362    0.000    2.582    0.905
##    .HEX_OPN_UNC_04    1.440    0.135   10.637    0.000    1.440    0.465
##     HEX_OPN           1.528    0.116   13.149    0.000    1.000    1.000
##    .HEX_OPN_AES       0.129    0.066    1.962    0.050    0.078    0.078
##    .HEX_OPN_INQ       0.872    0.087   10.063    0.000    0.534    0.534
##    .HEX_OPN_CRE       0.309    0.037    8.277    0.000    0.393    0.393
##    .HEX_OPN_UNC       0.186    0.041    4.497    0.000    0.325    0.325

Altruism

  1. I have sympathy for people who are less fortunate than I am.
  2. I try to give generously to those in need.
  3. It wouldn’t bother me to harm someone I didn’t like.
  4. People see me as a hard-hearted person.
name <- "HEX_ALT"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  5.82   skew =  1503  with probability  <=  1.1e-306
##  small sample skew =  1507  with probability <=  1.5e-307
## b2p =  34   kurtosis =  28.3  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  HEX_ALT =~ HEX_ALT_01 + HEX_ALT_02 + HEX_ALT_03 + HEX_ALT_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 26 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                64.744      47.137
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.374
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                               932.616     630.727
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.479
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.932       0.928
##   Tucker-Lewis Index (TLI)                       0.797       0.783
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.933
##   Robust Tucker-Lewis Index (TLI)                            0.799
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10496.041  -10496.041
##   Loglikelihood unrestricted model (H1)     -10463.669  -10463.669
##                                                                   
##   Akaike (AIC)                               21008.082   21008.082
##   Bayesian (BIC)                             21050.850   21050.850
##   Sample-size adjusted Bayesian (SABIC)      21025.436   21025.436
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.142       0.121
##   90 Percent confidence interval - lower         0.114       0.096
##   90 Percent confidence interval - upper         0.173       0.147
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    1.000       0.996
##                                                                   
##   Robust RMSEA                                               0.141
##   90 Percent confidence interval - lower                     0.108
##   90 Percent confidence interval - upper                     0.178
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         0.999
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.051       0.051
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_ALT =~                                                            
##     HEX_ALT_01        1.000                               0.984    0.839
##     HEX_ALT_02        0.824    0.067   12.227    0.000    0.811    0.570
##     HEX_ALT_03        0.609    0.058   10.422    0.000    0.600    0.387
##     HEX_ALT_04        0.732    0.062   11.867    0.000    0.721    0.471
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_ALT_01        0.409    0.068    5.978    0.000    0.409    0.297
##    .HEX_ALT_02        1.368    0.082   16.784    0.000    1.368    0.675
##    .HEX_ALT_03        2.040    0.111   18.358    0.000    2.040    0.850
##    .HEX_ALT_04        1.819    0.097   18.729    0.000    1.819    0.778
##     HEX_ALT           0.969    0.096   10.134    0.000    1.000    1.000

Fit is subpar. Let’s inspect.

modindices(fit_HEX_ALT)

Items 1 & 2 and items 3 & 4 want to covary.

model <- "
  HEX_ALT =~ HEX_ALT_01 + HEX_ALT_02 + HEX_ALT_03 + HEX_ALT_04
  HEX_ALT_01 ~~ a*HEX_ALT_02
  HEX_ALT_03 ~~ a*HEX_ALT_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 34 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
##   Number of equality constraints                     1
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 0.085       0.066
##   Degrees of freedom                                 1           1
##   P-value (Chi-square)                           0.771       0.797
##   Scaling correction factor                                  1.281
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                               932.616     630.727
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.479
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       1.006       1.009
##                                                                   
##   Robust Comparative Fit Index (CFI)                         1.000
##   Robust Tucker-Lewis Index (TLI)                            1.008
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10463.711  -10463.711
##   Loglikelihood unrestricted model (H1)     -10463.669  -10463.669
##                                                                   
##   Akaike (AIC)                               20945.423   20945.423
##   Bayesian (BIC)                             20993.537   20993.537
##   Sample-size adjusted Bayesian (SABIC)      20964.946   20964.946
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000       0.000
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.045       0.033
##   P-value H_0: RMSEA <= 0.050                    0.965       0.987
##   P-value H_0: RMSEA >= 0.080                    0.002       0.000
##                                                                   
##   Robust RMSEA                                               0.000
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.049
##   P-value H_0: Robust RMSEA <= 0.050                         0.954
##   P-value H_0: Robust RMSEA >= 0.080                         0.005
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.002       0.002
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_ALT =~                                                            
##     HEX_ALT_01        1.000                               0.882    0.752
##     HEX_ALT_02        0.700    0.072    9.777    0.000    0.617    0.434
##     HEX_ALT_03        0.715    0.075    9.482    0.000    0.631    0.407
##     HEX_ALT_04        0.890    0.085   10.486    0.000    0.785    0.514
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_ALT_01 ~~                                                         
##    .HEX_ALT_02 (a)    0.282    0.045    6.320    0.000    0.282    0.284
##  .HEX_ALT_03 ~~                                                         
##    .HEX_ALT_04 (a)    0.282    0.045    6.320    0.000    0.282    0.152
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_ALT_01        0.599    0.067    8.889    0.000    0.599    0.435
##    .HEX_ALT_02        1.646    0.082   20.007    0.000    1.646    0.812
##    .HEX_ALT_03        2.002    0.113   17.651    0.000    2.002    0.834
##    .HEX_ALT_04        1.722    0.101   17.039    0.000    1.722    0.736
##     HEX_ALT           0.778    0.093    8.410    0.000    1.000    1.000

Fit is now good.

Hexaco Model

model_hex <- "
HEX_HOH =~ HEX_HOH_SIN + HEX_HOH_FAI + HEX_HOH_GRE + HEX_HOH_MOD
HEX_EMO =~ HEX_EMO_FEA + HEX_EMO_ANX + HEX_EMO_DEP + HEX_EMO_SEN
HEX_EXT =~ HEX_EXT_SSE + HEX_EXT_BOL + HEX_EXT_SOC + HEX_EXT_LIV
HEX_AGR =~ HEX_AGR_FOR + HEX_AGR_GEN + HEX_AGR_FLX + HEX_AGR_PAT
HEX_CNS =~ HEX_CNS_ORG + HEX_CNS_DIL + HEX_CNS_PER + HEX_CNS_PRU
HEX_OPN =~ HEX_OPN_AES + HEX_OPN_INQ + HEX_OPN_CRE + HEX_OPN_UNC

HEX_HOH_SIN =~ HEX_HOH_SIN_01 + HEX_HOH_SIN_02 + HEX_HOH_SIN_03 + HEX_HOH_SIN_04
HEX_HOH_FAI =~ HEX_HOH_FAI_01 + HEX_HOH_FAI_02 + HEX_HOH_FAI_03 + HEX_HOH_FAI_04
HEX_HOH_GRE =~ HEX_HOH_GRE_01 + HEX_HOH_GRE_02 + HEX_HOH_GRE_03 + HEX_HOH_GRE_04
HEX_HOH_MOD =~ HEX_HOH_MOD_01 + HEX_HOH_MOD_02 + HEX_HOH_MOD_03 + HEX_HOH_MOD_04

HEX_EMO_FEA =~ HEX_EMO_FEA_01 + HEX_EMO_FEA_02 + HEX_EMO_FEA_03 + HEX_EMO_FEA_04
HEX_EMO_ANX =~ HEX_EMO_ANX_01 + HEX_EMO_ANX_02 + HEX_EMO_ANX_03 + HEX_EMO_ANX_04 + HEX_EMO_FEA_04
HEX_EMO_DEP =~ HEX_EMO_DEP_01 + HEX_EMO_DEP_02 + HEX_EMO_DEP_03 + HEX_EMO_DEP_04
HEX_EMO_SEN =~ HEX_EMO_SEN_01 + HEX_EMO_SEN_02 + HEX_EMO_SEN_03 + HEX_EMO_SEN_04

HEX_EXT_SSE =~ HEX_EXT_SSE_01 + HEX_EXT_SSE_02 + HEX_EXT_SSE_03 + HEX_EXT_SSE_04
HEX_EXT_BOL =~ HEX_EXT_BOL_01 + HEX_EXT_BOL_02 + HEX_EXT_BOL_03 + HEX_EXT_BOL_04
HEX_EXT_SOC =~ HEX_EXT_SOC_01 + HEX_EXT_SOC_02 + HEX_EXT_SOC_03 + HEX_EXT_SOC_04 + HEX_EXT_BOL_02
HEX_EXT_LIV =~ HEX_EXT_LIV_01 + HEX_EXT_LIV_02 + HEX_EXT_LIV_03 + HEX_EXT_LIV_04

HEX_AGR_FOR =~ HEX_AGR_FOR_01 + HEX_AGR_FOR_02 + HEX_AGR_FOR_03 + HEX_AGR_FOR_04 + HEX_AGR_PAT_02
HEX_AGR_GEN =~ HEX_AGR_GEN_01 + HEX_AGR_GEN_02 + HEX_AGR_GEN_03 + HEX_AGR_GEN_04
HEX_AGR_FLX =~ HEX_AGR_FLX_01 + HEX_AGR_FLX_02 + HEX_AGR_FLX_03 + HEX_AGR_FLX_04
HEX_AGR_PAT =~ HEX_AGR_PAT_01 + HEX_AGR_PAT_02 + HEX_AGR_PAT_03 + HEX_AGR_PAT_04

HEX_CNS_ORG =~ HEX_CNS_ORG_01 + HEX_CNS_ORG_02 + HEX_CNS_ORG_03 + HEX_CNS_ORG_04
HEX_CNS_DIL =~ HEX_CNS_DIL_01 + HEX_CNS_DIL_02 + HEX_CNS_DIL_03 + HEX_CNS_DIL_04
HEX_CNS_PER =~ HEX_CNS_PER_01 + HEX_CNS_PER_02 + HEX_CNS_PER_03 + HEX_CNS_PER_04
HEX_CNS_PRU =~ HEX_CNS_PRU_01 + HEX_CNS_PRU_02 + HEX_CNS_PRU_03 + HEX_CNS_PRU_04

HEX_OPN_AES =~ HEX_OPN_AES_01 + HEX_OPN_AES_02 + HEX_OPN_AES_03 + HEX_OPN_AES_04
HEX_OPN_INQ =~ HEX_OPN_INQ_01 + HEX_OPN_INQ_02 + HEX_OPN_INQ_03 + HEX_OPN_INQ_04
HEX_OPN_CRE =~ HEX_OPN_CRE_01 + HEX_OPN_CRE_02 + HEX_OPN_CRE_03 + HEX_OPN_CRE_04
HEX_OPN_UNC =~ HEX_OPN_UNC_01 + HEX_OPN_UNC_02 + HEX_OPN_UNC_03 + HEX_OPN_UNC_04

# Covariances
HEX_HOH_SIN_01 ~~ HEX_HOH_SIN_03
HEX_HOH_SIN_02 ~~ HEX_HOH_SIN_04
HEX_HOH_GRE_01 ~~ HEX_HOH_GRE_02
HEX_HOH_GRE_03 ~~ HEX_HOH_GRE_04
HEX_EMO_DEP_01 ~~ HEX_EMO_DEP_04
HEX_EMO_DEP_02 ~~ HEX_EMO_DEP_03
HEX_EMO_SEN_01 ~~ HEX_EMO_SEN_03
HEX_EMO_SEN_02 ~~ HEX_EMO_SEN_04
HEX_EXT_SSE_01 ~~ HEX_EXT_SSE_04
HEX_EXT_SSE_02 ~~ HEX_EXT_SSE_03
HEX_EXT_BOL_01 ~~ HEX_EXT_BOL_04
HEX_EXT_BOL_02 ~~ HEX_EXT_BOL_03
HEX_EXT_LIV_01 ~~ HEX_EXT_LIV_03
HEX_EXT_LIV_02 ~~ HEX_EXT_LIV_04
HEX_AGR_PAT_01 ~~ HEX_AGR_PAT_02
HEX_AGR_PAT_03 ~~ HEX_AGR_PAT_04
HEX_CNS_PER_01 ~~ HEX_CNS_PER_04
HEX_CNS_PER_02 ~~ HEX_CNS_PER_03
HEX_CNS_DIL_01 ~~ HEX_CNS_DIL_02
HEX_CNS_DIL_03 ~~ HEX_CNS_DIL_04
HEX_OPN_UNC_01 ~~ HEX_OPN_UNC_04
HEX_OPN_UNC_02 ~~ HEX_OPN_UNC_03
HEX_AGR_GEN_01\t~~\tHEX_AGR_FLX_01
"
fit_hex <- sem(model_hex, d, estimator = "MLM", fixed.x = TRUE)
summary(fit_hex, standardized = TRUE, fit = TRUE)
## lavaan 0.6.17 ended normally after 140 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       257
## 
##                                                   Used       Total
##   Number of observations                          1547        1550
## 
## Model Test User Model:
##                                                Standard      Scaled
##   Test Statistic                              20167.970   16676.918
##   Degrees of freedom                               4399        4399
##   P-value (Chi-square)                            0.000       0.000
##   Scaling correction factor                                   1.209
##     Satorra-Bentler correction                                     
## 
## Model Test Baseline Model:
## 
##   Test statistic                             69151.175   59759.548
##   Degrees of freedom                              4560        4560
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.157
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.756       0.778
##   Tucker-Lewis Index (TLI)                       0.747       0.769
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.768
##   Robust Tucker-Lewis Index (TLI)                            0.759
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)            -257486.880 -257486.880
##   Loglikelihood unrestricted model (H1)    -247402.895 -247402.895
##                                                                   
##   Akaike (AIC)                              515487.760  515487.760
##   Bayesian (BIC)                            516861.187  516861.187
##   Sample-size adjusted Bayesian (SABIC)     516044.759  516044.759
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.048       0.042
##   90 Percent confidence interval - lower         0.047       0.042
##   90 Percent confidence interval - upper         0.049       0.043
##   P-value H_0: RMSEA <= 0.050                    1.000       1.000
##   P-value H_0: RMSEA >= 0.080                    0.000       0.000
##                                                                   
##   Robust RMSEA                                               0.047
##   90 Percent confidence interval - lower                     0.046
##   90 Percent confidence interval - upper                     0.047
##   P-value H_0: Robust RMSEA <= 0.050                         1.000
##   P-value H_0: Robust RMSEA >= 0.080                         0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.086       0.086
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_HOH =~                                                            
##     HEX_HOH_SIN       1.000                               0.751    0.751
##     HEX_HOH_FAI       1.138    0.079   14.485    0.000    0.595    0.595
##     HEX_HOH_GRE       0.479    0.049    9.741    0.000    0.572    0.572
##     HEX_HOH_MOD       0.570    0.049   11.555    0.000    0.578    0.578
##   HEX_EMO =~                                                            
##     HEX_EMO_FEA       1.000                               0.421    0.421
##     HEX_EMO_ANX       3.399    0.362    9.384    0.000    1.229    1.229
##     HEX_EMO_DEP       0.604    0.077    7.794    0.000    0.292    0.292
##     HEX_EMO_SEN       0.789    0.082    9.593    0.000    0.290    0.290
##   HEX_EXT =~                                                            
##     HEX_EXT_SSE       1.000                               0.957    0.957
##     HEX_EXT_BOL       0.714    0.041   17.573    0.000    0.678    0.678
##     HEX_EXT_SOC       0.618    0.038   16.355    0.000    0.630    0.630
##     HEX_EXT_LIV       0.988    0.040   24.977    0.000    0.925    0.925
##   HEX_AGR =~                                                            
##     HEX_AGR_FOR       1.000                               0.716    0.716
##     HEX_AGR_GEN       0.748    0.042   17.929    0.000    0.838    0.838
##     HEX_AGR_FLX       0.596    0.048   12.543    0.000    0.837    0.837
##     HEX_AGR_PAT       0.659    0.043   15.398    0.000    0.688    0.688
##   HEX_CNS =~                                                            
##     HEX_CNS_ORG       1.000                               0.799    0.799
##     HEX_CNS_DIL       0.850    0.057   14.881    0.000    0.906    0.906
##     HEX_CNS_PER       0.418    0.051    8.262    0.000    0.618    0.618
##     HEX_CNS_PRU       1.086    0.074   14.728    0.000    0.826    0.826
##   HEX_OPN =~                                                            
##     HEX_OPN_AES       1.000                               0.960    0.960
##     HEX_OPN_INQ       0.681    0.042   16.299    0.000    0.711    0.711
##     HEX_OPN_CRE       0.559    0.037   15.122    0.000    0.777    0.777
##     HEX_OPN_UNC       0.504    0.040   12.512    0.000    0.805    0.805
##   HEX_HOH_SIN =~                                                        
##     HEX_HOH_SIN_01    1.000                               1.248    0.737
##     HEX_HOH_SIN_02    0.941    0.056   16.842    0.000    1.174    0.652
##     HEX_HOH_SIN_03    0.987    0.034   28.627    0.000    1.231    0.766
##     HEX_HOH_SIN_04    0.847    0.055   15.366    0.000    1.057    0.591
##   HEX_HOH_FAI =~                                                        
##     HEX_HOH_FAI_01    1.000                               1.793    0.856
##     HEX_HOH_FAI_02    0.693    0.025   28.276    0.000    1.243    0.737
##     HEX_HOH_FAI_03    0.686    0.023   29.328    0.000    1.231    0.707
##     HEX_HOH_FAI_04    0.901    0.024   37.709    0.000    1.615    0.850
##   HEX_HOH_GRE =~                                                        
##     HEX_HOH_GRE_01    1.000                               0.784    0.443
##     HEX_HOH_GRE_02    1.750    0.114   15.344    0.000    1.372    0.740
##     HEX_HOH_GRE_03    1.724    0.153   11.279    0.000    1.352    0.755
##     HEX_HOH_GRE_04    1.814    0.159   11.425    0.000    1.422    0.781
##   HEX_HOH_MOD =~                                                        
##     HEX_HOH_MOD_01    1.000                               0.925    0.658
##     HEX_HOH_MOD_02    0.874    0.057   15.401    0.000    0.808    0.526
##     HEX_HOH_MOD_03    1.166    0.061   18.981    0.000    1.078    0.730
##     HEX_HOH_MOD_04    1.235    0.069   17.980    0.000    1.142    0.719
##   HEX_EMO_FEA =~                                                        
##     HEX_EMO_FEA_01    1.000                               1.162    0.683
##     HEX_EMO_FEA_02    0.787    0.048   16.509    0.000    0.914    0.544
##     HEX_EMO_FEA_03    1.012    0.055   18.482    0.000    1.176    0.679
##     HEX_EMO_FEA_04    0.330    0.050    6.567    0.000    0.384    0.224
##   HEX_EMO_ANX =~                                                        
##     HEX_EMO_ANX_01    1.000                               1.354    0.788
##     HEX_EMO_ANX_02    1.013    0.031   32.580    0.000    1.372    0.770
##     HEX_EMO_ANX_03    0.843    0.034   24.587    0.000    1.142    0.603
##     HEX_EMO_ANX_04    0.731    0.030   24.223    0.000    0.989    0.651
##     HEX_EMO_FEA_04    0.578    0.038   15.038    0.000    0.783    0.457
##   HEX_EMO_DEP =~                                                        
##     HEX_EMO_DEP_01    1.000                               1.012    0.627
##     HEX_EMO_DEP_02    1.107    0.098   11.254    0.000    1.120    0.729
##     HEX_EMO_DEP_03    1.314    0.118   11.165    0.000    1.329    0.849
##     HEX_EMO_DEP_04    0.826    0.043   19.164    0.000    0.835    0.496
##   HEX_EMO_SEN =~                                                        
##     HEX_EMO_SEN_01    1.000                               1.332    0.780
##     HEX_EMO_SEN_02    0.714    0.063   11.388    0.000    0.951    0.682
##     HEX_EMO_SEN_03    0.679    0.036   19.122    0.000    0.905    0.646
##     HEX_EMO_SEN_04    0.680    0.062   10.919    0.000    0.906    0.548
##   HEX_EXT_SSE =~                                                        
##     HEX_EXT_SSE_01    1.000                               1.217    0.759
##     HEX_EXT_SSE_02    0.504    0.029   17.253    0.000    0.613    0.536
##     HEX_EXT_SSE_03    0.958    0.037   25.636    0.000    1.165    0.675
##     HEX_EXT_SSE_04    1.162    0.032   36.841    0.000    1.414    0.730
##   HEX_EXT_BOL =~                                                        
##     HEX_EXT_BOL_01    1.000                               1.227    0.704
##     HEX_EXT_BOL_02    0.475    0.043   10.964    0.000    0.583    0.358
##     HEX_EXT_BOL_03    0.988    0.052   19.131    0.000    1.212    0.706
##     HEX_EXT_BOL_04    0.886    0.048   18.496    0.000    1.087    0.598
##   HEX_EXT_SOC =~                                                        
##     HEX_EXT_SOC_01    1.000                               1.142    0.632
##     HEX_EXT_SOC_02    1.094    0.047   23.417    0.000    1.249    0.754
##     HEX_EXT_SOC_03    1.157    0.049   23.733    0.000    1.321    0.752
##     HEX_EXT_SOC_04    1.105    0.047   23.444    0.000    1.261    0.761
##     HEX_EXT_BOL_02    0.670    0.041   16.469    0.000    0.765    0.470
##   HEX_EXT_LIV =~                                                        
##     HEX_EXT_LIV_01    1.000                               1.245    0.716
##     HEX_EXT_LIV_02    1.077    0.034   31.684    0.000    1.341    0.838
##     HEX_EXT_LIV_03    0.771    0.037   20.891    0.000    0.960    0.593
##     HEX_EXT_LIV_04    0.975    0.035   27.622    0.000    1.213    0.720
##   HEX_AGR_FOR =~                                                        
##     HEX_AGR_FOR_01    1.000                               1.500    0.870
##     HEX_AGR_FOR_02    0.926    0.022   41.828    0.000    1.389    0.834
##     HEX_AGR_FOR_03    0.304    0.022   14.074    0.000    0.456    0.391
##     HEX_AGR_FOR_04    0.850    0.025   34.322    0.000    1.275    0.755
##     HEX_AGR_PAT_02    0.412    0.034   12.020    0.000    0.618    0.379
##   HEX_AGR_GEN =~                                                        
##     HEX_AGR_GEN_01    1.000                               0.958    0.570
##     HEX_AGR_GEN_02    1.035    0.049   20.917    0.000    0.991    0.724
##     HEX_AGR_GEN_03    1.099    0.056   19.769    0.000    1.052    0.710
##     HEX_AGR_GEN_04    0.955    0.051   18.840    0.000    0.914    0.631
##   HEX_AGR_FLX =~                                                        
##     HEX_AGR_FLX_01    1.000                               0.764    0.433
##     HEX_AGR_FLX_02    0.992    0.084   11.833    0.000    0.758    0.549
##     HEX_AGR_FLX_03    1.299    0.097   13.415    0.000    0.992    0.643
##     HEX_AGR_FLX_04    1.243    0.094   13.263    0.000    0.950    0.627
##   HEX_AGR_PAT =~                                                        
##     HEX_AGR_PAT_01    1.000                               1.028    0.680
##     HEX_AGR_PAT_02    0.621    0.053   11.781    0.000    0.639    0.392
##     HEX_AGR_PAT_03    1.171    0.056   20.750    0.000    1.204    0.805
##     HEX_AGR_PAT_04    1.204    0.065   18.575    0.000    1.238    0.732
##   HEX_CNS_ORG =~                                                        
##     HEX_CNS_ORG_01    1.000                               0.934    0.562
##     HEX_CNS_ORG_02    0.920    0.051   17.960    0.000    0.859    0.640
##     HEX_CNS_ORG_03    1.320    0.069   19.248    0.000    1.234    0.714
##     HEX_CNS_ORG_04    1.473    0.072   20.581    0.000    1.376    0.812
##   HEX_CNS_DIL =~                                                        
##     HEX_CNS_DIL_01    1.000                               0.700    0.500
##     HEX_CNS_DIL_02    1.110    0.057   19.527    0.000    0.777    0.585
##     HEX_CNS_DIL_03    1.757    0.112   15.644    0.000    1.230    0.786
##     HEX_CNS_DIL_04    1.691    0.106   16.005    0.000    1.184    0.748
##   HEX_CNS_PER =~                                                        
##     HEX_CNS_PER_01    1.000                               0.505    0.382
##     HEX_CNS_PER_02    2.102    0.250    8.395    0.000    1.062    0.871
##     HEX_CNS_PER_03    1.762    0.196    9.011    0.000    0.890    0.803
##     HEX_CNS_PER_04    0.924    0.104    8.854    0.000    0.467    0.263
##   HEX_CNS_PRU =~                                                        
##     HEX_CNS_PRU_01    1.000                               0.982    0.684
##     HEX_CNS_PRU_02    1.017    0.049   20.923    0.000    0.999    0.724
##     HEX_CNS_PRU_03    0.780    0.048   16.365    0.000    0.766    0.539
##     HEX_CNS_PRU_04    0.852    0.043   19.879    0.000    0.837    0.578
##   HEX_OPN_AES =~                                                        
##     HEX_OPN_AES_01    1.000                               1.289    0.737
##     HEX_OPN_AES_02    0.991    0.046   21.521    0.000    1.278    0.629
##     HEX_OPN_AES_03    0.905    0.040   22.465    0.000    1.167    0.618
##     HEX_OPN_AES_04    0.470    0.038   12.512    0.000    0.606    0.412
##   HEX_OPN_INQ =~                                                        
##     HEX_OPN_INQ_01    1.000                               1.185    0.701
##     HEX_OPN_INQ_02    0.910    0.044   20.609    0.000    1.079    0.659
##     HEX_OPN_INQ_03    0.967    0.049   19.859    0.000    1.146    0.642
##     HEX_OPN_INQ_04    0.945    0.052   18.122    0.000    1.120    0.609
##   HEX_OPN_CRE =~                                                        
##     HEX_OPN_CRE_01    1.000                               0.890    0.534
##     HEX_OPN_CRE_02    1.482    0.079   18.660    0.000    1.319    0.761
##     HEX_OPN_CRE_03    1.111    0.064   17.350    0.000    0.989    0.647
##     HEX_OPN_CRE_04    1.696    0.083   20.425    0.000    1.510    0.794
##   HEX_OPN_UNC =~                                                        
##     HEX_OPN_UNC_01    1.000                               0.775    0.491
##     HEX_OPN_UNC_02    0.796    0.068   11.653    0.000    0.617    0.470
##     HEX_OPN_UNC_03    0.634    0.079    8.003    0.000    0.491    0.291
##     HEX_OPN_UNC_04    1.689    0.125   13.457    0.000    1.309    0.743
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_HOH_SIN_01 ~~                                                      
##    .HEX_HOH_SIN_03     0.256    0.077    3.350    0.001    0.256    0.216
##  .HEX_HOH_SIN_02 ~~                                                      
##    .HEX_HOH_SIN_04     0.281    0.096    2.939    0.003    0.281    0.143
##  .HEX_HOH_GRE_01 ~~                                                      
##    .HEX_HOH_GRE_02     0.365    0.088    4.127    0.000    0.365    0.184
##  .HEX_HOH_GRE_03 ~~                                                      
##    .HEX_HOH_GRE_04     0.254    0.121    2.091    0.037    0.254    0.190
##  .HEX_EMO_DEP_01 ~~                                                      
##    .HEX_EMO_DEP_04     0.052    0.089    0.584    0.559    0.052    0.028
##  .HEX_EMO_DEP_02 ~~                                                      
##    .HEX_EMO_DEP_03    -0.743    0.126   -5.882    0.000   -0.743   -0.854
##  .HEX_EMO_SEN_01 ~~                                                      
##    .HEX_EMO_SEN_03    -0.295    0.102   -2.880    0.004   -0.295   -0.258
##  .HEX_EMO_SEN_02 ~~                                                      
##    .HEX_EMO_SEN_04    -0.136    0.078   -1.745    0.081   -0.136   -0.097
##  .HEX_EXT_SSE_01 ~~                                                      
##    .HEX_EXT_SSE_04     0.368    0.064    5.746    0.000    0.368    0.266
##  .HEX_EXT_SSE_02 ~~                                                      
##    .HEX_EXT_SSE_03     0.211    0.045    4.726    0.000    0.211    0.171
##  .HEX_EXT_BOL_01 ~~                                                      
##    .HEX_EXT_BOL_04    -0.062    0.082   -0.765    0.445   -0.062   -0.035
##  .HEX_EXT_BOL_02 ~~                                                      
##    .HEX_EXT_BOL_03     0.523    0.062    8.466    0.000    0.523    0.371
##  .HEX_EXT_LIV_01 ~~                                                      
##    .HEX_EXT_LIV_03    -0.427    0.053   -8.114    0.000   -0.427   -0.270
##  .HEX_EXT_LIV_02 ~~                                                      
##    .HEX_EXT_LIV_04    -0.222    0.042   -5.219    0.000   -0.222   -0.217
##  .HEX_AGR_PAT_02 ~~                                                      
##    .HEX_AGR_PAT_01    -0.200    0.046   -4.379    0.000   -0.200   -0.149
##  .HEX_AGR_PAT_03 ~~                                                      
##    .HEX_AGR_PAT_04    -0.388    0.064   -6.113    0.000   -0.388   -0.380
##  .HEX_CNS_PER_01 ~~                                                      
##    .HEX_CNS_PER_04     0.436    0.061    7.156    0.000    0.436    0.209
##  .HEX_CNS_PER_02 ~~                                                      
##    .HEX_CNS_PER_03    -0.326    0.081   -4.010    0.000   -0.326   -0.825
##  .HEX_CNS_DIL_01 ~~                                                      
##    .HEX_CNS_DIL_02     0.554    0.048   11.636    0.000    0.554    0.424
##  .HEX_CNS_DIL_03 ~~                                                      
##    .HEX_CNS_DIL_04    -0.321    0.068   -4.733    0.000   -0.321   -0.315
##  .HEX_OPN_UNC_01 ~~                                                      
##    .HEX_OPN_UNC_04    -0.090    0.083   -1.092    0.275   -0.090   -0.056
##  .HEX_OPN_UNC_02 ~~                                                      
##    .HEX_OPN_UNC_03     0.343    0.057    6.004    0.000    0.343    0.184
##  .HEX_AGR_GEN_01 ~~                                                      
##    .HEX_AGR_FLX_01     0.716    0.068   10.547    0.000    0.716    0.326
##   HEX_HOH ~~                                                             
##     HEX_EMO           -0.047    0.014   -3.298    0.001   -0.103   -0.103
##     HEX_EXT            0.094    0.039    2.379    0.017    0.086    0.086
##     HEX_AGR            0.447    0.046    9.625    0.000    0.444    0.444
##     HEX_CNS            0.312    0.032    9.869    0.000    0.446    0.446
##     HEX_OPN            0.162    0.045    3.649    0.000    0.140    0.140
##   HEX_EMO ~~                                                             
##     HEX_EXT           -0.303    0.038   -8.062    0.000   -0.532   -0.532
##     HEX_AGR           -0.213    0.029   -7.392    0.000   -0.406   -0.406
##     HEX_CNS           -0.080    0.014   -5.847    0.000   -0.218   -0.218
##     HEX_OPN           -0.058    0.018   -3.281    0.001   -0.095   -0.095
##   HEX_EXT ~~                                                             
##     HEX_AGR            0.611    0.050   12.315    0.000    0.489    0.489
##     HEX_CNS            0.505    0.042   11.926    0.000    0.580    0.580
##     HEX_OPN            0.288    0.049    5.939    0.000    0.200    0.200
##   HEX_AGR ~~                                                             
##     HEX_CNS            0.249    0.031    8.077    0.000    0.311    0.311
##     HEX_OPN            0.378    0.049    7.731    0.000    0.285    0.285
##   HEX_CNS ~~                                                             
##     HEX_OPN            0.219    0.033    6.594    0.000    0.237    0.237
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_HOH_SIN_01    1.311    0.100   13.146    0.000    1.311    0.457
##    .HEX_HOH_SIN_02    1.860    0.120   15.486    0.000    1.860    0.574
##    .HEX_HOH_SIN_03    1.070    0.085   12.601    0.000    1.070    0.414
##    .HEX_HOH_SIN_04    2.083    0.141   14.754    0.000    2.083    0.651
##    .HEX_HOH_FAI_01    1.177    0.099   11.943    0.000    1.177    0.268
##    .HEX_HOH_FAI_02    1.301    0.075   17.450    0.000    1.301    0.457
##    .HEX_HOH_FAI_03    1.517    0.094   16.210    0.000    1.517    0.500
##    .HEX_HOH_FAI_04    0.998    0.077   12.919    0.000    0.998    0.277
##    .HEX_HOH_GRE_01    2.520    0.095   26.500    0.000    2.520    0.804
##    .HEX_HOH_GRE_02    1.555    0.135   11.553    0.000    1.555    0.452
##    .HEX_HOH_GRE_03    1.375    0.129   10.658    0.000    1.375    0.429
##    .HEX_HOH_GRE_04    1.293    0.144    8.991    0.000    1.293    0.390
##    .HEX_HOH_MOD_01    1.123    0.071   15.842    0.000    1.123    0.568
##    .HEX_HOH_MOD_02    1.709    0.113   15.087    0.000    1.709    0.723
##    .HEX_HOH_MOD_03    1.019    0.074   13.697    0.000    1.019    0.467
##    .HEX_HOH_MOD_04    1.218    0.084   14.510    0.000    1.218    0.483
##    .HEX_EMO_FEA_01    1.546    0.093   16.629    0.000    1.546    0.534
##    .HEX_EMO_FEA_02    1.991    0.092   21.715    0.000    1.991    0.705
##    .HEX_EMO_FEA_03    1.612    0.104   15.502    0.000    1.612    0.538
##    .HEX_EMO_FEA_04    1.870    0.074   25.135    0.000    1.870    0.636
##    .HEX_EMO_ANX_01    1.116    0.068   16.424    0.000    1.116    0.379
##    .HEX_EMO_ANX_02    1.291    0.080   16.083    0.000    1.291    0.407
##    .HEX_EMO_ANX_03    2.286    0.092   24.956    0.000    2.286    0.637
##    .HEX_EMO_ANX_04    1.330    0.072   18.477    0.000    1.330    0.576
##    .HEX_EMO_DEP_01    1.577    0.103   15.363    0.000    1.577    0.607
##    .HEX_EMO_DEP_02    1.107    0.125    8.869    0.000    1.107    0.469
##    .HEX_EMO_DEP_03    0.685    0.164    4.178    0.000    0.685    0.279
##    .HEX_EMO_DEP_04    2.137    0.095   22.507    0.000    2.137    0.754
##    .HEX_EMO_SEN_01    1.139    0.156    7.285    0.000    1.139    0.391
##    .HEX_EMO_SEN_02    1.040    0.095   10.912    0.000    1.040    0.535
##    .HEX_EMO_SEN_03    1.145    0.095   12.064    0.000    1.145    0.583
##    .HEX_EMO_SEN_04    1.910    0.104   18.442    0.000    1.910    0.699
##    .HEX_EXT_SSE_01    1.092    0.065   16.699    0.000    1.092    0.424
##    .HEX_EXT_SSE_02    0.934    0.057   16.495    0.000    0.934    0.713
##    .HEX_EXT_SSE_03    1.624    0.081   20.015    0.000    1.624    0.545
##    .HEX_EXT_SSE_04    1.757    0.095   18.514    0.000    1.757    0.468
##    .HEX_EXT_BOL_01    1.533    0.103   14.825    0.000    1.533    0.504
##    .HEX_EXT_BOL_02    1.340    0.069   19.436    0.000    1.340    0.506
##    .HEX_EXT_BOL_03    1.478    0.090   16.421    0.000    1.478    0.501
##    .HEX_EXT_BOL_04    2.121    0.114   18.575    0.000    2.121    0.642
##    .HEX_EXT_SOC_01    1.964    0.087   22.541    0.000    1.964    0.601
##    .HEX_EXT_SOC_02    1.182    0.067   17.688    0.000    1.182    0.431
##    .HEX_EXT_SOC_03    1.343    0.072   18.775    0.000    1.343    0.435
##    .HEX_EXT_SOC_04    1.154    0.062   18.593    0.000    1.154    0.420
##    .HEX_EXT_LIV_01    1.473    0.064   22.909    0.000    1.473    0.487
##    .HEX_EXT_LIV_02    0.764    0.060   12.636    0.000    0.764    0.298
##    .HEX_EXT_LIV_03    1.697    0.082   20.623    0.000    1.697    0.648
##    .HEX_EXT_LIV_04    1.364    0.071   19.204    0.000    1.364    0.481
##    .HEX_AGR_FOR_01    0.720    0.058   12.496    0.000    0.720    0.242
##    .HEX_AGR_FOR_02    0.843    0.061   13.852    0.000    0.843    0.304
##    .HEX_AGR_FOR_03    1.156    0.058   19.773    0.000    1.156    0.847
##    .HEX_AGR_FOR_04    1.226    0.072   16.970    0.000    1.226    0.430
##    .HEX_AGR_PAT_02    1.473    0.063   23.389    0.000    1.473    0.555
##    .HEX_AGR_GEN_01    1.901    0.082   23.186    0.000    1.901    0.675
##    .HEX_AGR_GEN_02    0.889    0.053   16.751    0.000    0.889    0.475
##    .HEX_AGR_GEN_03    1.090    0.072   15.188    0.000    1.090    0.496
##    .HEX_AGR_GEN_04    1.260    0.061   20.640    0.000    1.260    0.601
##    .HEX_AGR_FLX_01    2.538    0.088   28.829    0.000    2.538    0.813
##    .HEX_AGR_FLX_02    1.334    0.065   20.660    0.000    1.334    0.699
##    .HEX_AGR_FLX_03    1.398    0.068   20.444    0.000    1.398    0.587
##    .HEX_AGR_FLX_04    1.396    0.068   20.431    0.000    1.396    0.607
##    .HEX_AGR_PAT_01    1.229    0.073   16.777    0.000    1.229    0.538
##    .HEX_AGR_PAT_03    0.787    0.081    9.769    0.000    0.787    0.352
##    .HEX_AGR_PAT_04    1.329    0.099   13.381    0.000    1.329    0.464
##    .HEX_CNS_ORG_01    1.887    0.082   22.941    0.000    1.887    0.684
##    .HEX_CNS_ORG_02    1.066    0.055   19.230    0.000    1.066    0.591
##    .HEX_CNS_ORG_03    1.467    0.090   16.338    0.000    1.467    0.491
##    .HEX_CNS_ORG_04    0.980    0.079   12.357    0.000    0.980    0.341
##    .HEX_CNS_DIL_01    1.471    0.064   23.063    0.000    1.471    0.750
##    .HEX_CNS_DIL_02    1.162    0.062   18.624    0.000    1.162    0.658
##    .HEX_CNS_DIL_03    0.937    0.086   10.854    0.000    0.937    0.382
##    .HEX_CNS_DIL_04    1.102    0.094   11.734    0.000    1.102    0.440
##    .HEX_CNS_PER_01    1.488    0.076   19.704    0.000    1.488    0.854
##    .HEX_CNS_PER_02    0.360    0.116    3.101    0.002    0.360    0.242
##    .HEX_CNS_PER_03    0.435    0.082    5.339    0.000    0.435    0.355
##    .HEX_CNS_PER_04    2.933    0.077   38.336    0.000    2.933    0.931
##    .HEX_CNS_PRU_01    1.099    0.064   17.194    0.000    1.099    0.533
##    .HEX_CNS_PRU_02    0.905    0.059   15.381    0.000    0.905    0.476
##    .HEX_CNS_PRU_03    1.430    0.078   18.374    0.000    1.430    0.709
##    .HEX_CNS_PRU_04    1.397    0.069   20.316    0.000    1.397    0.666
##    .HEX_OPN_AES_01    1.401    0.095   14.809    0.000    1.401    0.458
##    .HEX_OPN_AES_02    2.498    0.114   21.858    0.000    2.498    0.605
##    .HEX_OPN_AES_03    2.203    0.100   22.091    0.000    2.203    0.618
##    .HEX_OPN_AES_04    1.794    0.084   21.474    0.000    1.794    0.830
##    .HEX_OPN_INQ_01    1.452    0.087   16.604    0.000    1.452    0.508
##    .HEX_OPN_INQ_02    1.517    0.076   19.867    0.000    1.517    0.566
##    .HEX_OPN_INQ_03    1.874    0.097   19.326    0.000    1.874    0.588
##    .HEX_OPN_INQ_04    2.126    0.109   19.578    0.000    2.126    0.629
##    .HEX_OPN_CRE_01    1.983    0.077   25.623    0.000    1.983    0.715
##    .HEX_OPN_CRE_02    1.263    0.079   15.934    0.000    1.263    0.421
##    .HEX_OPN_CRE_03    1.356    0.066   20.481    0.000    1.356    0.581
##    .HEX_OPN_CRE_04    1.335    0.095   13.989    0.000    1.335    0.369
##    .HEX_OPN_UNC_01    1.887    0.098   19.254    0.000    1.887    0.759
##    .HEX_OPN_UNC_02    1.339    0.064   20.944    0.000    1.339    0.779
##    .HEX_OPN_UNC_03    2.607    0.077   33.896    0.000    2.607    0.915
##    .HEX_OPN_UNC_04    1.387    0.141    9.849    0.000    1.387    0.447
##     HEX_HOH           0.879    0.088    9.992    0.000    1.000    1.000
##     HEX_EMO           0.240    0.040    5.920    0.000    1.000    1.000
##     HEX_EXT           1.356    0.088   15.466    0.000    1.000    1.000
##     HEX_AGR           1.153    0.083   13.899    0.000    1.000    1.000
##     HEX_CNS           0.558    0.057    9.809    0.000    1.000    1.000
##     HEX_OPN           1.530    0.115   13.314    0.000    1.000    1.000
##    .HEX_HOH_SIN       0.678    0.092    7.394    0.000    0.435    0.435
##    .HEX_HOH_FAI       2.076    0.134   15.523    0.000    0.646    0.646
##    .HEX_HOH_GRE       0.413    0.060    6.874    0.000    0.672    0.672
##    .HEX_HOH_MOD       0.570    0.062    9.161    0.000    0.666    0.666
##    .HEX_EMO_FEA       1.110    0.092   12.092    0.000    0.822    0.822
##    .HEX_EMO_ANX      -0.936    0.206   -4.540    0.000   -0.511   -0.511
##    .HEX_EMO_DEP       0.936    0.094    9.966    0.000    0.915    0.915
##    .HEX_EMO_SEN       1.626    0.161   10.071    0.000    0.916    0.916
##    .HEX_EXT_SSE       0.125    0.046    2.716    0.007    0.084    0.084
##    .HEX_EXT_BOL       0.815    0.083    9.790    0.000    0.541    0.541
##    .HEX_EXT_SOC       0.786    0.062   12.659    0.000    0.603    0.603
##    .HEX_EXT_LIV       0.225    0.037    6.033    0.000    0.145    0.145
##    .HEX_AGR_FOR       1.097    0.070   15.636    0.000    0.488    0.488
##    .HEX_AGR_GEN       0.273    0.036    7.506    0.000    0.297    0.297
##    .HEX_AGR_FLX       0.174    0.031    5.718    0.000    0.299    0.299
##    .HEX_AGR_PAT       0.556    0.048   11.557    0.000    0.526    0.526
##    .HEX_CNS_ORG       0.315    0.039    8.004    0.000    0.361    0.361
##    .HEX_CNS_DIL       0.088    0.019    4.608    0.000    0.179    0.179
##    .HEX_CNS_PER       0.158    0.025    6.278    0.000    0.618    0.618
##    .HEX_CNS_PRU       0.306    0.035    8.659    0.000    0.318    0.318
##    .HEX_OPN_AES       0.131    0.064    2.039    0.041    0.079    0.079
##    .HEX_OPN_INQ       0.695    0.069   10.149    0.000    0.495    0.495
##    .HEX_OPN_CRE       0.314    0.038    8.340    0.000    0.396    0.396
##    .HEX_OPN_UNC       0.212    0.045    4.722    0.000    0.353    0.353

Model throws a warning: Negative variance. Also several Heywood cases included. Shows that latent is not working.

Hence, let’s not extract the factor scores for the personality dimensions, but rather calculate mean scores.

Need for privacy

Psychological

  1. I don’t like to talk about personal issues with others unless they do it first.
  2. There are a lot of things about me that I don’t like to talk about with others.
  3. I prefer not to share my feelings and inner thoughts with others.
  4. I don’t like it when others talk to me about their private issues.
name <- "NFP_PSY"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  1.26   skew =  326  with probability  <=  4.1e-57
##  small sample skew =  327  with probability <=  2.7e-57
## b2p =  27   kurtosis =  8.56  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  NFP_PSY =~ NFP_PSY_01 + NFP_PSY_02 + NFP_PSY_03 + NFP_PSY_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 29 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 7.891       6.891
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.019       0.032
##   Scaling correction factor                                  1.145
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1242.360    1016.265
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.222
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.995       0.995
##   Tucker-Lewis Index (TLI)                       0.986       0.985
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.995
##   Robust Tucker-Lewis Index (TLI)                            0.986
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10908.497  -10908.497
##   Loglikelihood unrestricted model (H1)     -10904.552  -10904.552
##                                                                   
##   Akaike (AIC)                               21832.994   21832.994
##   Bayesian (BIC)                             21875.762   21875.762
##   Sample-size adjusted Bayesian (SABIC)      21850.348   21850.348
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.044       0.040
##   90 Percent confidence interval - lower         0.015       0.012
##   90 Percent confidence interval - upper         0.077       0.072
##   P-value H_0: RMSEA <= 0.050                    0.563       0.655
##   P-value H_0: RMSEA >= 0.080                    0.037       0.016
##                                                                   
##   Robust RMSEA                                               0.043
##   90 Percent confidence interval - lower                     0.011
##   90 Percent confidence interval - upper                     0.079
##   P-value H_0: Robust RMSEA <= 0.050                         0.569
##   P-value H_0: Robust RMSEA >= 0.080                         0.046
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.015       0.015
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   NFP_PSY =~                                                            
##     NFP_PSY_01        1.000                               0.923    0.633
##     NFP_PSY_02        1.039    0.064   16.221    0.000    0.959    0.620
##     NFP_PSY_03        1.432    0.089   16.044    0.000    1.321    0.795
##     NFP_PSY_04        0.805    0.055   14.517    0.000    0.742    0.478
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NFP_PSY_01        1.275    0.079   16.062    0.000    1.275    0.600
##    .NFP_PSY_02        1.473    0.079   18.646    0.000    1.473    0.616
##    .NFP_PSY_03        1.014    0.108    9.378    0.000    1.014    0.367
##    .NFP_PSY_04        1.857    0.071   26.145    0.000    1.857    0.771
##     NFP_PSY           0.851    0.081   10.452    0.000    1.000    1.000

Fit is great.

Physical

  1. I don’t like it when strangers come too close to me.
  2. I don’t like to stand in a dense crowd of people.
  3. I don’t like to sit next to a stranger on a train, bus, or plane.
  4. I hate it when people enter my personal space uninvited.
name <- "NFP_PHY"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  2.77   skew =  716  with probability  <=  9.9e-139
##  small sample skew =  718  with probability <=  3.8e-139
## b2p =  29.8   kurtosis =  16.6  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  NFP_PHY =~ NFP_PHY_01 + NFP_PHY_02 + NFP_PHY_03 + NFP_PHY_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 24 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 7.410       5.408
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.025       0.067
##   Scaling correction factor                                  1.370
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1621.125    1254.313
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.292
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.997       0.997
##   Tucker-Lewis Index (TLI)                       0.990       0.992
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.997
##   Robust Tucker-Lewis Index (TLI)                            0.991
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10663.175  -10663.175
##   Loglikelihood unrestricted model (H1)     -10659.470  -10659.470
##                                                                   
##   Akaike (AIC)                               21342.350   21342.350
##   Bayesian (BIC)                             21385.118   21385.118
##   Sample-size adjusted Bayesian (SABIC)      21359.704   21359.704
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.042       0.033
##   90 Percent confidence interval - lower         0.013       0.002
##   90 Percent confidence interval - upper         0.076       0.063
##   P-value H_0: RMSEA <= 0.050                    0.598       0.798
##   P-value H_0: RMSEA >= 0.080                    0.030       0.003
##                                                                   
##   Robust RMSEA                                               0.039
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.080
##   P-value H_0: Robust RMSEA <= 0.050                         0.607
##   P-value H_0: Robust RMSEA >= 0.080                         0.050
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.013       0.013
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   NFP_PHY =~                                                            
##     NFP_PHY_01        1.000                               1.262    0.862
##     NFP_PHY_02        0.749    0.038   19.942    0.000    0.945    0.603
##     NFP_PHY_03        0.895    0.043   20.767    0.000    1.129    0.629
##     NFP_PHY_04        0.662    0.034   19.315    0.000    0.835    0.612
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NFP_PHY_01        0.551    0.069    8.019    0.000    0.551    0.257
##    .NFP_PHY_02        1.558    0.082   18.936    0.000    1.558    0.636
##    .NFP_PHY_03        1.944    0.090   21.504    0.000    1.944    0.604
##    .NFP_PHY_04        1.163    0.063   18.438    0.000    1.163    0.625
##     NFP_PHY           1.591    0.096   16.534    0.000    1.000    1.000

Fit is great.

Social

  1. I don’t feel comfortable interacting with other people.
  2. I often want to be alone.
  3. I’m a fairly anti-social person.
  4. I prefer to work independently in most situations.
name <- "NFP_SOC"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  1.66   skew =  428  with probability  <=  3e-78
##  small sample skew =  429  with probability <=  1.7e-78
## b2p =  27.8   kurtosis =  10.9  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  NFP_SOC =~ NFP_SOC_01 + NFP_SOC_02 + NFP_SOC_03 + NFP_SOC_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 25 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               134.720     104.087
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.294
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1880.575    1693.113
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.111
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.929       0.939
##   Tucker-Lewis Index (TLI)                       0.788       0.818
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.929
##   Robust Tucker-Lewis Index (TLI)                            0.788
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10926.981  -10926.981
##   Loglikelihood unrestricted model (H1)     -10859.621  -10859.621
##                                                                   
##   Akaike (AIC)                               21869.963   21869.963
##   Bayesian (BIC)                             21912.731   21912.731
##   Sample-size adjusted Bayesian (SABIC)      21887.316   21887.316
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.207       0.181
##   90 Percent confidence interval - lower         0.178       0.156
##   90 Percent confidence interval - upper         0.237       0.208
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    1.000       1.000
##                                                                   
##   Robust RMSEA                                               0.206
##   90 Percent confidence interval - lower                     0.174
##   90 Percent confidence interval - upper                     0.241
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.055       0.055
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   NFP_SOC =~                                                            
##     NFP_SOC_01        1.000                               1.256    0.718
##     NFP_SOC_02        0.866    0.040   21.480    0.000    1.088    0.662
##     NFP_SOC_03        1.230    0.053   23.111    0.000    1.545    0.837
##     NFP_SOC_04        0.558    0.032   17.324    0.000    0.701    0.536
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NFP_SOC_01        1.480    0.095   15.502    0.000    1.480    0.484
##    .NFP_SOC_02        1.514    0.077   19.774    0.000    1.514    0.561
##    .NFP_SOC_03        1.021    0.105    9.735    0.000    1.021    0.299
##    .NFP_SOC_04        1.220    0.053   22.883    0.000    1.220    0.713
##     NFP_SOC           1.578    0.108   14.569    0.000    1.000    1.000

Fit isn’t that good. Let’s inspect.

modindices(fit_NFP_SOC)

Items 1 & 3 and items 2 & 4 want to covary.

model <- "
  NFP_SOC =~ NFP_SOC_01 + NFP_SOC_02 + NFP_SOC_03 + NFP_SOC_04
  NFP_SOC_01 ~~ p1*NFP_SOC_03
  NFP_SOC_02 ~~ p1*NFP_SOC_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 28 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
##   Number of equality constraints                     1
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 1.452       1.036
##   Degrees of freedom                                 1           1
##   P-value (Chi-square)                           0.228       0.309
##   Scaling correction factor                                  1.401
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1880.575    1693.113
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.111
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000       1.000
##   Tucker-Lewis Index (TLI)                       0.999       1.000
##                                                                   
##   Robust Comparative Fit Index (CFI)                         1.000
##   Robust Tucker-Lewis Index (TLI)                            1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10860.347  -10860.347
##   Loglikelihood unrestricted model (H1)     -10859.621  -10859.621
##                                                                   
##   Akaike (AIC)                               21738.695   21738.695
##   Bayesian (BIC)                             21786.809   21786.809
##   Sample-size adjusted Bayesian (SABIC)      21758.218   21758.218
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.017       0.005
##   90 Percent confidence interval - lower         0.000       0.000
##   90 Percent confidence interval - upper         0.072       0.059
##   P-value H_0: RMSEA <= 0.050                    0.778       0.895
##   P-value H_0: RMSEA >= 0.080                    0.026       0.004
##                                                                   
##   Robust RMSEA                                               0.006
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.080
##   P-value H_0: Robust RMSEA <= 0.050                         0.744
##   P-value H_0: Robust RMSEA >= 0.080                         0.050
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.005       0.005
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   NFP_SOC =~                                                            
##     NFP_SOC_01        1.000                               1.131    0.646
##     NFP_SOC_02        0.968    0.049   19.648    0.000    1.095    0.666
##     NFP_SOC_03        1.318    0.063   20.919    0.000    1.490    0.807
##     NFP_SOC_04        0.589    0.038   15.634    0.000    0.666    0.509
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .NFP_SOC_01 ~~                                                         
##    .NFP_SOC_0 (p1)    0.362    0.039    9.399    0.000    0.362    0.249
##  .NFP_SOC_02 ~~                                                         
##    .NFP_SOC_0 (p1)    0.362    0.039    9.399    0.000    0.362    0.263
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NFP_SOC_01        1.780    0.094   18.948    0.000    1.780    0.582
##    .NFP_SOC_02        1.499    0.080   18.811    0.000    1.499    0.556
##    .NFP_SOC_03        1.188    0.109   10.859    0.000    1.188    0.348
##    .NFP_SOC_04        1.268    0.055   23.054    0.000    1.268    0.741
##     NFP_SOC           1.278    0.104   12.293    0.000    1.000    1.000

Fit is great.

Privacy from Government

  1. I need government agencies to respect my privacy, even if that makes catching criminals harder.
  2. I don’t want the government to gather data about me, even if that makes it harder to spend tax income effectively.
  3. I don’t want government agencies to monitor my communication, even if that stops terrorist attacks.
  4. I feel I need to protect my privacy from government agencies.
name <- "NFP_GOV"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1549   num.vars =  4 
## b1p =  1.35   skew =  348  with probability  <=  1.1e-61
##  small sample skew =  349  with probability <=  7.1e-62
## b2p =  31.1   kurtosis =  20.3  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  NFP_GOV =~ NFP_GOV_01 + NFP_GOV_02 + NFP_GOV_03 + NFP_GOV_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLR", missing = "FIML"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 29 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        12
## 
##   Number of observations                          1550
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                54.233      34.243
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.584
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2693.481    1483.344
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.816
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.981       0.978
##   Tucker-Lewis Index (TLI)                       0.942       0.935
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.981
##   Robust Tucker-Lewis Index (TLI)                            0.943
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10375.667  -10375.667
##   Scaling correction factor                                  1.202
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)     -10348.551  -10348.551
##   Scaling correction factor                                  1.256
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                               20775.335   20775.335
##   Bayesian (BIC)                             20839.487   20839.487
##   Sample-size adjusted Bayesian (SABIC)      20801.366   20801.366
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.130       0.102
##   90 Percent confidence interval - lower         0.101       0.079
##   90 Percent confidence interval - upper         0.161       0.127
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    0.998       0.944
##                                                                   
##   Robust RMSEA                                               0.128
##   90 Percent confidence interval - lower                     0.093
##   90 Percent confidence interval - upper                     0.168
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         0.986
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.021       0.021
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   NFP_GOV =~                                                            
##     NFP_GOV_01        1.000                               1.265    0.814
##     NFP_GOV_02        0.952    0.035   27.107    0.000    1.204    0.775
##     NFP_GOV_03        1.063    0.030   35.912    0.000    1.345    0.788
##     NFP_GOV_04        0.878    0.035   25.179    0.000    1.111    0.705
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NFP_GOV_01        4.709    0.040  119.196    0.000    4.709    3.028
##    .NFP_GOV_02        4.580    0.039  116.057    0.000    4.580    2.948
##    .NFP_GOV_03        4.457    0.043  102.851    0.000    4.457    2.613
##    .NFP_GOV_04        4.588    0.040  114.670    0.000    4.588    2.913
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NFP_GOV_01        0.818    0.068   12.040    0.000    0.818    0.338
##    .NFP_GOV_02        0.964    0.067   14.451    0.000    0.964    0.399
##    .NFP_GOV_03        1.101    0.075   14.691    0.000    1.101    0.378
##    .NFP_GOV_04        1.247    0.069   18.173    0.000    1.247    0.503
##     NFP_GOV           1.601    0.089   17.937    0.000    1.000    1.000

Fit is not optimal, but within thresholds.

Privacy from Companies

  1. I’m willing to pay more for products or services so that companies don’t have to sell my data.
  2. I’m happy to give up a little bit of privacy so that I can use certain apps or services for free.
  3. I don’t want companies to collect data about me, even if that makes their services worse.
  4. I feel I need to protect my privacy from companies.
name <- "NFP_COM"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  1.66   skew =  428  with probability  <=  3.1e-78
##  small sample skew =  429  with probability <=  1.8e-78
## b2p =  28.6   kurtosis =  13  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  NFP_COM =~ NFP_COM_01 + NFP_COM_02 + NFP_COM_03 + NFP_COM_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 32 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                23.256      16.592
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.402
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1293.102     949.211
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.362
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.983       0.985
##   Tucker-Lewis Index (TLI)                       0.950       0.954
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.984
##   Robust Tucker-Lewis Index (TLI)                            0.952
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -10607.116  -10607.116
##   Loglikelihood unrestricted model (H1)     -10595.488  -10595.488
##                                                                   
##   Akaike (AIC)                               21230.232   21230.232
##   Bayesian (BIC)                             21273.000   21273.000
##   Sample-size adjusted Bayesian (SABIC)      21247.586   21247.586
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.083       0.069
##   90 Percent confidence interval - lower         0.055       0.045
##   90 Percent confidence interval - upper         0.115       0.096
##   P-value H_0: RMSEA <= 0.050                    0.029       0.097
##   P-value H_0: RMSEA >= 0.080                    0.602       0.264
##                                                                   
##   Robust RMSEA                                               0.081
##   90 Percent confidence interval - lower                     0.048
##   90 Percent confidence interval - upper                     0.119
##   P-value H_0: Robust RMSEA <= 0.050                         0.059
##   P-value H_0: Robust RMSEA >= 0.080                         0.572
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.023       0.023
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   NFP_COM =~                                                            
##     NFP_COM_01        1.000                               0.716    0.465
##     NFP_COM_02        1.092    0.089   12.271    0.000    0.782    0.519
##     NFP_COM_03        1.618    0.108   14.919    0.000    1.158    0.781
##     NFP_COM_04        1.470    0.097   15.213    0.000    1.053    0.748
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NFP_COM_01        1.858    0.077   24.004    0.000    1.858    0.784
##    .NFP_COM_02        1.658    0.075   22.172    0.000    1.658    0.731
##    .NFP_COM_03        0.859    0.071   12.162    0.000    0.859    0.390
##    .NFP_COM_04        0.872    0.069   12.689    0.000    0.872    0.440
##     NFP_COM           0.513    0.065    7.847    0.000    1.000    1.000

Fit is not great but sufficiently okay.

Informational

  1. I would prefer that little is known about me.
  2. I don’t want my personal data to be publicly accessible.
  3. It is important to me that records pertaining to me remain confidential.
  4. I prefer that others cannot easily find information about me on the Internet.
name <- "NFP_INF"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  6.14   skew =  1587  with probability  <=  0
##  small sample skew =  1591  with probability <=  0
## b2p =  40.2   kurtosis =  46  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  NFP_INF =~ NFP_INF_01 + NFP_INF_02 + NFP_INF_03 + NFP_INF_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 23 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                49.462      36.492
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.355
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1561.217     979.355
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.594
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.969       0.965
##   Tucker-Lewis Index (TLI)                       0.908       0.894
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.970
##   Robust Tucker-Lewis Index (TLI)                            0.910
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -9663.457   -9663.457
##   Loglikelihood unrestricted model (H1)      -9638.726   -9638.726
##                                                                   
##   Akaike (AIC)                               19342.914   19342.914
##   Bayesian (BIC)                             19385.682   19385.682
##   Sample-size adjusted Bayesian (SABIC)      19360.268   19360.268
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.124       0.105
##   90 Percent confidence interval - lower         0.095       0.081
##   90 Percent confidence interval - upper         0.155       0.132
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    0.994       0.956
##                                                                   
##   Robust RMSEA                                               0.123
##   90 Percent confidence interval - lower                     0.090
##   90 Percent confidence interval - upper                     0.159
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         0.983
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.032       0.032
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   NFP_INF =~                                                            
##     NFP_INF_01        1.000                               0.760    0.542
##     NFP_INF_02        1.156    0.079   14.690    0.000    0.878    0.719
##     NFP_INF_03        1.144    0.070   16.353    0.000    0.869    0.708
##     NFP_INF_04        1.275    0.076   16.883    0.000    0.969    0.715
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NFP_INF_01        1.387    0.061   22.749    0.000    1.387    0.706
##    .NFP_INF_02        0.720    0.074    9.786    0.000    0.720    0.483
##    .NFP_INF_03        0.751    0.055   13.674    0.000    0.751    0.499
##    .NFP_INF_04        0.898    0.078   11.445    0.000    0.898    0.489
##     NFP_INF           0.577    0.060    9.616    0.000    1.000    1.000

Fit is suboptimal. Let’s inspect.

modindices(fit_NFP_INF)

Items 1 & 4 and items 2 & 3 want to covary.

model <- "
  NFP_INF =~ NFP_INF_01 + NFP_INF_02 + NFP_INF_03 + NFP_INF_04
  NFP_INF_01 ~~ a*NFP_INF_04
  NFP_INF_02 ~~ a*NFP_INF_03
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 25 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
##   Number of equality constraints                     1
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 8.982       6.935
##   Degrees of freedom                                 1           1
##   P-value (Chi-square)                           0.003       0.008
##   Scaling correction factor                                  1.295
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1561.217     979.355
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.594
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.995       0.994
##   Tucker-Lewis Index (TLI)                       0.969       0.963
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.995
##   Robust Tucker-Lewis Index (TLI)                            0.970
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -9643.217   -9643.217
##   Loglikelihood unrestricted model (H1)      -9638.726   -9638.726
##                                                                   
##   Akaike (AIC)                               19304.433   19304.433
##   Bayesian (BIC)                             19352.548   19352.548
##   Sample-size adjusted Bayesian (SABIC)      19323.957   19323.957
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.072       0.062
##   90 Percent confidence interval - lower         0.034       0.028
##   90 Percent confidence interval - upper         0.118       0.103
##   P-value H_0: RMSEA <= 0.050                    0.152       0.242
##   P-value H_0: RMSEA >= 0.080                    0.439       0.263
##                                                                   
##   Robust RMSEA                                               0.070
##   90 Percent confidence interval - lower                     0.029
##   90 Percent confidence interval - upper                     0.124
##   P-value H_0: Robust RMSEA <= 0.050                         0.183
##   P-value H_0: Robust RMSEA >= 0.080                         0.447
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.013       0.013
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   NFP_INF =~                                                            
##     NFP_INF_01        1.000                               0.733    0.523
##     NFP_INF_02        1.139    0.082   13.825    0.000    0.835    0.684
##     NFP_INF_03        1.111    0.072   15.465    0.000    0.815    0.664
##     NFP_INF_04        1.352    0.087   15.511    0.000    0.991    0.731
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .NFP_INF_01 ~~                                                         
##    .NFP_INF_04 (a)    0.136    0.027    5.114    0.000    0.136    0.123
##  .NFP_INF_02 ~~                                                         
##    .NFP_INF_03 (a)    0.136    0.027    5.114    0.000    0.136    0.166
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NFP_INF_01        1.426    0.062   22.831    0.000    1.426    0.726
##    .NFP_INF_02        0.795    0.074   10.801    0.000    0.795    0.533
##    .NFP_INF_03        0.843    0.057   14.872    0.000    0.843    0.559
##    .NFP_INF_04        0.854    0.081   10.537    0.000    0.854    0.465
##     NFP_INF           0.538    0.061    8.842    0.000    1.000    1.000

Fit is good.

Privacy need anonymity

  1. I would prefer to use a fake account on social network sites to preserve my privacy.
  2. I feel I need to avoid places with video surveillance.
  3. I prefer not to carry my driver’s license or ID with me all the time to preserve my privacy.
  4. I need to be able to surf the Internet anonymously.
name <- "NFP_ANO"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1550   num.vars =  4 
## b1p =  4.35   skew =  1124  with probability  <=  1.5e-225
##  small sample skew =  1127  with probability <=  3.3e-226
## b2p =  27.4   kurtosis =  9.65  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  NFP_ANO =~ NFP_ANO_01 + NFP_ANO_02 + NFP_ANO_03 + NFP_ANO_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                         8
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               131.555     125.006
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.052
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                               760.784     615.997
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.235
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.828       0.798
##   Tucker-Lewis Index (TLI)                       0.485       0.395
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.828
##   Robust Tucker-Lewis Index (TLI)                            0.485
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11246.609  -11246.609
##   Loglikelihood unrestricted model (H1)     -11180.831  -11180.831
##                                                                   
##   Akaike (AIC)                               22509.218   22509.218
##   Bayesian (BIC)                             22551.986   22551.986
##   Sample-size adjusted Bayesian (SABIC)      22526.572   22526.572
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.204       0.199
##   90 Percent confidence interval - lower         0.176       0.171
##   90 Percent confidence interval - upper         0.235       0.229
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    1.000       1.000
##                                                                   
##   Robust RMSEA                                               0.204
##   90 Percent confidence interval - lower                     0.175
##   90 Percent confidence interval - upper                     0.236
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.073       0.073
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   NFP_ANO =~                                                            
##     NFP_ANO_01        1.000                               0.825    0.437
##     NFP_ANO_02        1.318    0.120   10.958    0.000    1.088    0.742
##     NFP_ANO_03        0.827    0.086    9.673    0.000    0.683    0.513
##     NFP_ANO_04        0.836    0.074   11.358    0.000    0.690    0.427
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NFP_ANO_01        2.878    0.109   26.457    0.000    2.878    0.809
##    .NFP_ANO_02        0.968    0.098    9.837    0.000    0.968    0.450
##    .NFP_ANO_03        1.306    0.085   15.316    0.000    1.306    0.737
##    .NFP_ANO_04        2.132    0.077   27.707    0.000    2.132    0.818
##     NFP_ANO           0.681    0.096    7.108    0.000    1.000    1.000

Fit is really bad. Let’s inspect.

modindices(fit_NFP_ANO)

Items 1 & 4 and items 2 & 3 want to covary.

model <- "
  NFP_ANO =~ NFP_ANO_01 + NFP_ANO_02 + NFP_ANO_03 + NFP_ANO_04
  NFP_ANO_01 ~~ a*NFP_ANO_04
  NFP_ANO_02 ~~ a*NFP_ANO_03
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLM"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
##   Number of equality constraints                     1
## 
##   Number of observations                          1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 7.117       7.985
##   Degrees of freedom                                 1           1
##   P-value (Chi-square)                           0.008       0.005
##   Scaling correction factor                                  0.891
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                               760.784     615.997
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.235
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.992       0.989
##   Tucker-Lewis Index (TLI)                       0.951       0.931
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.992
##   Robust Tucker-Lewis Index (TLI)                            0.950
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11184.390  -11184.390
##   Loglikelihood unrestricted model (H1)     -11180.831  -11180.831
##                                                                   
##   Akaike (AIC)                               22386.779   22386.779
##   Bayesian (BIC)                             22434.894   22434.894
##   Sample-size adjusted Bayesian (SABIC)      22406.303   22406.303
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.063       0.067
##   90 Percent confidence interval - lower         0.026       0.000
##   90 Percent confidence interval - upper         0.110       0.000
##   P-value H_0: RMSEA <= 0.050                    0.242       0.202
##   P-value H_0: RMSEA >= 0.080                    0.315       0.387
##                                                                   
##   Robust RMSEA                                               0.063
##   90 Percent confidence interval - lower                     0.028
##   90 Percent confidence interval - upper                     0.107
##   P-value H_0: Robust RMSEA <= 0.050                         0.229
##   P-value H_0: Robust RMSEA >= 0.080                         0.305
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.015       0.015
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   NFP_ANO =~                                                            
##     NFP_ANO_01        1.000                               0.884    0.469
##     NFP_ANO_02        1.015    0.109    9.269    0.000    0.897    0.612
##     NFP_ANO_03        0.469    0.072    6.504    0.000    0.414    0.311
##     NFP_ANO_04        0.877    0.089    9.898    0.000    0.775    0.480
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .NFP_ANO_01 ~~                                                         
##    .NFP_ANO_04 (a)    0.462    0.050    9.218    0.000    0.462    0.196
##  .NFP_ANO_02 ~~                                                         
##    .NFP_ANO_03 (a)    0.462    0.050    9.218    0.000    0.462    0.315
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NFP_ANO_01        2.778    0.125   22.143    0.000    2.778    0.780
##    .NFP_ANO_02        1.346    0.091   14.833    0.000    1.346    0.626
##    .NFP_ANO_03        1.600    0.088   18.155    0.000    1.600    0.903
##    .NFP_ANO_04        2.006    0.090   22.385    0.000    2.006    0.769
##     NFP_ANO           0.782    0.120    6.524    0.000    1.000    1.000

Fit is now good.

General Need for privacy

  1. I need a lot of privacy.
  2. Privacy is very important to me.
  3. I think a lot about how I can protect my privacy.
  4. I value privacy a lot.
name <- "NFP_GEN"

plot_hist(name)

mardia(select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))

## Call: mardia(x = select(d, paste0(rep(paste0(name, "_0"), 4), 1:4)))
## 
## Mardia tests of multivariate skew and kurtosis
## Use describe(x) the to get univariate tests
## n.obs = 1549   num.vars =  4 
## b1p =  3.43   skew =  886  with probability  <=  8.4e-175
##  small sample skew =  888  with probability <=  2.6e-175
## b2p =  35.5   kurtosis =  32.6  with probability <=  0

Assumption of multivariate normality violated. Hence we’ll use the robust estimator.

model <- "
  NFP_GEN =~ NFP_GEN_01 + NFP_GEN_02 + NFP_GEN_03 + NFP_GEN_04
"

assign(paste("fit", name, sep = "_"), cfa(model, d, estimator = "MLR", missing = "FIML"))

summary(get(paste0("fit_", name)), fit = TRUE, standardized = TRUE)
## lavaan 0.6.17 ended normally after 31 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        12
## 
##   Number of observations                          1550
##   Number of missing patterns                         2
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                                 6.345       4.493
##   Degrees of freedom                                 2           2
##   P-value (Chi-square)                           0.042       0.106
##   Scaling correction factor                                  1.412
##     Yuan-Bentler correction (Mplus variant)                       
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2663.092    1511.543
##   Degrees of freedom                                 6           6
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.762
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.998       0.998
##   Tucker-Lewis Index (TLI)                       0.995       0.995
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.999
##   Robust Tucker-Lewis Index (TLI)                            0.996
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -9127.028   -9127.028
##   Scaling correction factor                                  1.411
##       for the MLR correction                                      
##   Loglikelihood unrestricted model (H1)      -9123.856   -9123.856
##   Scaling correction factor                                  1.411
##       for the MLR correction                                      
##                                                                   
##   Akaike (AIC)                               18278.056   18278.056
##   Bayesian (BIC)                             18342.208   18342.208
##   Sample-size adjusted Bayesian (SABIC)      18304.087   18304.087
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.037       0.028
##   90 Percent confidence interval - lower         0.006       0.000
##   90 Percent confidence interval - upper         0.072       0.058
##   P-value H_0: RMSEA <= 0.050                    0.677       0.867
##   P-value H_0: RMSEA >= 0.080                    0.019       0.001
##                                                                   
##   Robust RMSEA                                               0.033
##   90 Percent confidence interval - lower                     0.000
##   90 Percent confidence interval - upper                     0.077
##   P-value H_0: Robust RMSEA <= 0.050                         0.676
##   P-value H_0: Robust RMSEA >= 0.080                         0.037
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.007       0.007
## 
## Parameter Estimates:
## 
##   Standard errors                             Sandwich
##   Information bread                           Observed
##   Observed information based on                Hessian
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   NFP_GEN =~                                                            
##     NFP_GEN_01        1.000                               1.016    0.731
##     NFP_GEN_02        0.964    0.036   27.073    0.000    0.979    0.846
##     NFP_GEN_03        0.932    0.041   22.463    0.000    0.947    0.593
##     NFP_GEN_04        0.961    0.035   27.293    0.000    0.976    0.860
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NFP_GEN_01        5.006    0.035  141.779    0.000    5.006    3.601
##    .NFP_GEN_02        5.703    0.029  193.947    0.000    5.703    4.926
##    .NFP_GEN_03        4.371    0.041  107.721    0.000    4.371    2.737
##    .NFP_GEN_04        5.730    0.029  198.698    0.000    5.730    5.047
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NFP_GEN_01        0.900    0.051   17.644    0.000    0.900    0.466
##    .NFP_GEN_02        0.381    0.035   10.793    0.000    0.381    0.284
##    .NFP_GEN_03        1.654    0.070   23.665    0.000    1.654    0.649
##    .NFP_GEN_04        0.336    0.031   10.882    0.000    0.336    0.261
##     NFP_GEN           1.033    0.068   15.252    0.000    1.000    1.000

Fit is good.

Need for Privacy model

model_pri <- "
NFP_PHY =~ NFP_PHY_01 + NFP_PHY_02 + NFP_PHY_03 + NFP_PHY_04
NFP_PSY =~ NFP_PSY_01 + NFP_PSY_02 + NFP_PSY_03 + NFP_PSY_04
NFP_SOC =~ NFP_SOC_01 + NFP_SOC_02 + NFP_SOC_03 + NFP_SOC_04
NFP_COM =~ NFP_COM_01 + NFP_COM_02 + NFP_COM_03 + NFP_COM_04
NFP_GOV =~ NFP_GOV_01 + NFP_GOV_02 + NFP_GOV_03 + NFP_GOV_04
NFP_ANO =~ NFP_ANO_01 + NFP_ANO_02 + NFP_ANO_03 + NFP_ANO_04
NFP_INF =~ NFP_INF_01 + NFP_INF_02 + NFP_INF_03 + NFP_INF_04
NFP_GEN =~ NFP_GEN_01 + NFP_GEN_02 + NFP_GEN_03 + NFP_GEN_04

# Covariances
NFP_SOC_01 ~~ NFP_SOC_03
NFP_SOC_02 ~~ NFP_SOC_04
NFP_GOV_01 ~~ NFP_GOV_03
NFP_GOV_02 ~~ NFP_GOV_04
NFP_INF_01 ~~ NFP_INF_04
NFP_INF_02 ~~ NFP_INF_03
NFP_ANO_01 ~~ NFP_ANO_04
NFP_ANO_02 ~~ NFP_ANO_03
"
fit_pri <- sem(model_pri, d, estimator = "MLM", fixed.x = TRUE)
summary(fit_pri, standardized = TRUE, fit = TRUE)
## lavaan 0.6.17 ended normally after 70 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       100
## 
##                                                   Used       Total
##   Number of observations                          1548        1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              2380.891    1987.537
##   Degrees of freedom                               428         428
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.198
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                             21597.885   17396.132
##   Degrees of freedom                               496         496
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.242
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.907       0.908
##   Tucker-Lewis Index (TLI)                       0.893       0.893
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.911
##   Robust Tucker-Lewis Index (TLI)                            0.897
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -80448.798  -80448.798
##   Loglikelihood unrestricted model (H1)     -79258.352  -79258.352
##                                                                   
##   Akaike (AIC)                              161097.595  161097.595
##   Bayesian (BIC)                            161632.067  161632.067
##   Sample-size adjusted Bayesian (SABIC)     161314.391  161314.391
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.054       0.049
##   90 Percent confidence interval - lower         0.052       0.047
##   90 Percent confidence interval - upper         0.056       0.050
##   P-value H_0: RMSEA <= 0.050                    0.000       0.891
##   P-value H_0: RMSEA >= 0.080                    0.000       0.000
##                                                                   
##   Robust RMSEA                                               0.053
##   90 Percent confidence interval - lower                     0.051
##   90 Percent confidence interval - upper                     0.055
##   P-value H_0: Robust RMSEA <= 0.050                         0.015
##   P-value H_0: Robust RMSEA >= 0.080                         0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.059       0.059
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   NFP_PHY =~                                                            
##     NFP_PHY_01        1.000                               1.182    0.807
##     NFP_PHY_02        0.822    0.035   23.428    0.000    0.972    0.620
##     NFP_PHY_03        0.968    0.040   24.365    0.000    1.144    0.638
##     NFP_PHY_04        0.757    0.032   23.804    0.000    0.895    0.656
##   NFP_PSY =~                                                            
##     NFP_PSY_01        1.000                               0.917    0.629
##     NFP_PSY_02        1.116    0.061   18.357    0.000    1.024    0.662
##     NFP_PSY_03        1.385    0.070   19.778    0.000    1.270    0.764
##     NFP_PSY_04        0.803    0.053   15.163    0.000    0.737    0.474
##   NFP_SOC =~                                                            
##     NFP_SOC_01        1.000                               1.147    0.656
##     NFP_SOC_02        0.978    0.047   20.750    0.000    1.122    0.683
##     NFP_SOC_03        1.200    0.043   27.925    0.000    1.376    0.746
##     NFP_SOC_04        0.645    0.038   17.131    0.000    0.740    0.565
##   NFP_COM =~                                                            
##     NFP_COM_01        1.000                               0.715    0.464
##     NFP_COM_02        1.052    0.078   13.545    0.000    0.752    0.499
##     NFP_COM_03        1.518    0.090   16.860    0.000    1.085    0.731
##     NFP_COM_04        1.578    0.089   17.757    0.000    1.128    0.803
##   NFP_GOV =~                                                            
##     NFP_GOV_01        1.000                               1.144    0.736
##     NFP_GOV_02        1.105    0.039   28.471    0.000    1.264    0.814
##     NFP_GOV_03        1.024    0.031   33.436    0.000    1.171    0.686
##     NFP_GOV_04        1.090    0.038   28.581    0.000    1.247    0.792
##   NFP_ANO =~                                                            
##     NFP_ANO_01        1.000                               1.008    0.534
##     NFP_ANO_02        0.690    0.050   13.864    0.000    0.696    0.474
##     NFP_ANO_03        0.291    0.042    6.902    0.000    0.293    0.220
##     NFP_ANO_04        1.066    0.062   17.233    0.000    1.074    0.665
##   NFP_INF =~                                                            
##     NFP_INF_01        1.000                               0.887    0.633
##     NFP_INF_02        0.869    0.051   17.099    0.000    0.771    0.631
##     NFP_INF_03        0.956    0.050   19.125    0.000    0.848    0.691
##     NFP_INF_04        0.986    0.046   21.329    0.000    0.875    0.645
##   NFP_GEN =~                                                            
##     NFP_GEN_01        1.000                               1.035    0.744
##     NFP_GEN_02        0.951    0.032   29.270    0.000    0.984    0.849
##     NFP_GEN_03        0.950    0.040   23.659    0.000    0.984    0.616
##     NFP_GEN_04        0.916    0.033   27.771    0.000    0.948    0.835
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .NFP_SOC_01 ~~                                                         
##    .NFP_SOC_03        0.467    0.069    6.788    0.000    0.467    0.288
##  .NFP_SOC_02 ~~                                                         
##    .NFP_SOC_04        0.262    0.047    5.519    0.000    0.262    0.202
##  .NFP_GOV_01 ~~                                                         
##    .NFP_GOV_03        0.443    0.056    7.933    0.000    0.443    0.339
##  .NFP_GOV_02 ~~                                                         
##    .NFP_GOV_04       -0.103    0.052   -1.992    0.046   -0.103   -0.118
##  .NFP_INF_01 ~~                                                         
##    .NFP_INF_04        0.087    0.043    2.031    0.042    0.087    0.077
##  .NFP_INF_02 ~~                                                         
##    .NFP_INF_03        0.161    0.030    5.288    0.000    0.161    0.192
##  .NFP_ANO_01 ~~                                                         
##    .NFP_ANO_04        0.066    0.081    0.809    0.419    0.066    0.034
##  .NFP_ANO_02 ~~                                                         
##    .NFP_ANO_03        0.631    0.058   10.959    0.000    0.631    0.376
##   NFP_PHY ~~                                                            
##     NFP_PSY           0.592    0.049   11.984    0.000    0.546    0.546
##     NFP_SOC           1.035    0.058   17.817    0.000    0.764    0.764
##     NFP_COM           0.188    0.031    6.000    0.000    0.222    0.222
##     NFP_GOV           0.393    0.050    7.930    0.000    0.290    0.290
##     NFP_ANO           0.440    0.053    8.286    0.000    0.370    0.370
##     NFP_INF           0.561    0.049   11.436    0.000    0.535    0.535
##     NFP_GEN           0.438    0.047    9.361    0.000    0.358    0.358
##   NFP_PSY ~~                                                            
##     NFP_SOC           0.768    0.054   14.325    0.000    0.731    0.731
##     NFP_COM           0.164    0.026    6.229    0.000    0.250    0.250
##     NFP_GOV           0.315    0.042    7.504    0.000    0.300    0.300
##     NFP_ANO           0.434    0.047    9.179    0.000    0.470    0.470
##     NFP_INF           0.423    0.042   10.124    0.000    0.520    0.520
##     NFP_GEN           0.382    0.041    9.365    0.000    0.402    0.402
##   NFP_SOC ~~                                                            
##     NFP_COM           0.097    0.031    3.107    0.002    0.118    0.118
##     NFP_GOV           0.217    0.048    4.530    0.000    0.165    0.165
##     NFP_ANO           0.444    0.053    8.321    0.000    0.384    0.384
##     NFP_INF           0.396    0.045    8.745    0.000    0.389    0.389
##     NFP_GEN           0.354    0.045    7.800    0.000    0.298    0.298
##   NFP_COM ~~                                                            
##     NFP_GOV           0.701    0.054   13.080    0.000    0.857    0.857
##     NFP_ANO           0.589    0.050   11.891    0.000    0.819    0.819
##     NFP_INF           0.546    0.042   12.976    0.000    0.861    0.861
##     NFP_GEN           0.585    0.045   13.020    0.000    0.791    0.791
##   NFP_GOV ~~                                                            
##     NFP_ANO           0.878    0.062   14.228    0.000    0.762    0.762
##     NFP_INF           0.724    0.050   14.557    0.000    0.713    0.713
##     NFP_GEN           0.794    0.051   15.455    0.000    0.671    0.671
##   NFP_ANO ~~                                                            
##     NFP_INF           0.655    0.053   12.423    0.000    0.732    0.732
##     NFP_GEN           0.685    0.053   12.888    0.000    0.656    0.656
##   NFP_INF ~~                                                            
##     NFP_GEN           0.804    0.050   15.966    0.000    0.876    0.876
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NFP_PHY_01        0.746    0.053   14.040    0.000    0.746    0.348
##    .NFP_PHY_02        1.508    0.078   19.234    0.000    1.508    0.615
##    .NFP_PHY_03        1.904    0.085   22.303    0.000    1.904    0.592
##    .NFP_PHY_04        1.060    0.058   18.252    0.000    1.060    0.570
##    .NFP_PSY_01        1.287    0.075   17.167    0.000    1.287    0.605
##    .NFP_PSY_02        1.345    0.069   19.494    0.000    1.345    0.562
##    .NFP_PSY_03        1.150    0.078   14.671    0.000    1.150    0.416
##    .NFP_PSY_04        1.867    0.068   27.578    0.000    1.867    0.775
##    .NFP_SOC_01        1.741    0.086   20.258    0.000    1.741    0.570
##    .NFP_SOC_02        1.439    0.080   17.977    0.000    1.439    0.533
##    .NFP_SOC_03        1.512    0.090   16.824    0.000    1.512    0.444
##    .NFP_SOC_04        1.166    0.057   20.466    0.000    1.166    0.681
##    .NFP_COM_01        1.860    0.073   25.548    0.000    1.860    0.785
##    .NFP_COM_02        1.701    0.067   25.483    0.000    1.701    0.751
##    .NFP_COM_03        1.024    0.057   17.973    0.000    1.024    0.465
##    .NFP_COM_04        0.703    0.052   13.423    0.000    0.703    0.356
##    .NFP_GOV_01        1.110    0.061   18.197    0.000    1.110    0.459
##    .NFP_GOV_02        0.814    0.063   12.838    0.000    0.814    0.337
##    .NFP_GOV_03        1.539    0.079   19.430    0.000    1.539    0.529
##    .NFP_GOV_04        0.924    0.064   14.337    0.000    0.924    0.373
##    .NFP_ANO_01        2.546    0.112   22.705    0.000    2.546    0.715
##    .NFP_ANO_02        1.668    0.065   25.700    0.000    1.668    0.775
##    .NFP_ANO_03        1.688    0.091   18.551    0.000    1.688    0.952
##    .NFP_ANO_04        1.456    0.092   15.900    0.000    1.456    0.558
##    .NFP_INF_01        1.178    0.062   19.082    0.000    1.178    0.600
##    .NFP_INF_02        0.896    0.067   13.346    0.000    0.896    0.601
##    .NFP_INF_03        0.787    0.044   17.750    0.000    0.787    0.523
##    .NFP_INF_04        1.072    0.071   15.135    0.000    1.072    0.584
##    .NFP_GEN_01        0.863    0.049   17.671    0.000    0.863    0.446
##    .NFP_GEN_02        0.374    0.028   13.271    0.000    0.374    0.279
##    .NFP_GEN_03        1.581    0.066   24.027    0.000    1.581    0.620
##    .NFP_GEN_04        0.390    0.029   13.293    0.000    0.390    0.302
##     NFP_PHY           1.397    0.080   17.478    0.000    1.000    1.000
##     NFP_PSY           0.841    0.075   11.217    0.000    1.000    1.000
##     NFP_SOC           1.315    0.097   13.565    0.000    1.000    1.000
##     NFP_COM           0.511    0.060    8.522    0.000    1.000    1.000
##     NFP_GOV           1.309    0.082   15.992    0.000    1.000    1.000
##     NFP_ANO           1.015    0.110    9.230    0.000    1.000    1.000
##     NFP_INF           0.787    0.066   11.873    0.000    1.000    1.000
##     NFP_GEN           1.071    0.068   15.758    0.000    1.000    1.000

Fit is actually quite good and only marginally below thresholds. Will inspect.

modindices(fit_pri, minimum.value = 50)

Suggests several cross-loadings. Will integrate.

  • NFP_PHY =~ NFP_GEN_01
  • NFP_PSY =~ NFP_INF_01
  • NFP_PSY =~ NFP_GEN_01
  • NFP_SOC =~ NFP_INF_01
  • NFP_SOC =~ NFP_GEN_01
model_pri <- "
NFP_PHY =~ NFP_PHY_01 + NFP_PHY_02 + NFP_PHY_03 + NFP_PHY_04 + NFP_GEN_01
NFP_PSY =~ NFP_PSY_01 + NFP_PSY_02 + NFP_PSY_03 + NFP_PSY_04 + NFP_GEN_01 + NFP_INF_01
NFP_SOC =~ NFP_SOC_01 + NFP_SOC_02 + NFP_SOC_03 + NFP_SOC_04 + NFP_GEN_01 + NFP_INF_01
NFP_COM =~ NFP_COM_01 + NFP_COM_02 + NFP_COM_03 + NFP_COM_04
NFP_GOV =~ NFP_GOV_01 + NFP_GOV_02 + NFP_GOV_03 + NFP_GOV_04
NFP_ANO =~ NFP_ANO_01 + NFP_ANO_02 + NFP_ANO_03 + NFP_ANO_04
NFP_INF =~ NFP_INF_01 + NFP_INF_02 + NFP_INF_03 + NFP_INF_04
NFP_GEN =~ NFP_GEN_01 + NFP_GEN_02 + NFP_GEN_03 + NFP_GEN_04

# Covariances
NFP_SOC_01 ~~ NFP_SOC_03
NFP_SOC_02 ~~ NFP_SOC_04
NFP_GOV_01 ~~ NFP_GOV_03
NFP_GOV_02 ~~ NFP_GOV_04
NFP_INF_01 ~~ NFP_INF_04
NFP_INF_02 ~~ NFP_INF_03
NFP_ANO_01 ~~ NFP_ANO_04
NFP_ANO_02 ~~ NFP_ANO_03
"
fit_pri <- sem(model_pri, d, estimator = "MLM", fixed.x = TRUE)
summary(fit_pri, standardized = TRUE, fit = TRUE)
## lavaan 0.6.17 ended normally after 81 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       105
## 
##                                                   Used       Total
##   Number of observations                          1548        1550
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1831.208    1529.098
##   Degrees of freedom                               423         423
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.198
##     Satorra-Bentler correction                                    
## 
## Model Test Baseline Model:
## 
##   Test statistic                             21597.885   17396.132
##   Degrees of freedom                               496         496
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  1.242
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.933       0.935
##   Tucker-Lewis Index (TLI)                       0.922       0.923
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.937
##   Robust Tucker-Lewis Index (TLI)                            0.926
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -80173.956  -80173.956
##   Loglikelihood unrestricted model (H1)     -79258.352  -79258.352
##                                                                   
##   Akaike (AIC)                              160557.912  160557.912
##   Bayesian (BIC)                            161119.108  161119.108
##   Sample-size adjusted Bayesian (SABIC)     160785.548  160785.548
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.046       0.041
##   90 Percent confidence interval - lower         0.044       0.039
##   90 Percent confidence interval - upper         0.049       0.043
##   P-value H_0: RMSEA <= 0.050                    0.997       1.000
##   P-value H_0: RMSEA >= 0.080                    0.000       0.000
##                                                                   
##   Robust RMSEA                                               0.045
##   90 Percent confidence interval - lower                     0.043
##   90 Percent confidence interval - upper                     0.047
##   P-value H_0: Robust RMSEA <= 0.050                         1.000
##   P-value H_0: Robust RMSEA >= 0.080                         0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.048       0.048
## 
## Parameter Estimates:
## 
##   Standard errors                           Robust.sem
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   NFP_PHY =~                                                            
##     NFP_PHY_01        1.000                               1.182    0.807
##     NFP_PHY_02        0.822    0.035   23.397    0.000    0.972    0.620
##     NFP_PHY_03        0.969    0.040   24.412    0.000    1.145    0.639
##     NFP_PHY_04        0.756    0.032   23.839    0.000    0.894    0.655
##     NFP_GEN_01       -0.091    0.066   -1.382    0.167   -0.108   -0.078
##   NFP_PSY =~                                                            
##     NFP_PSY_01        1.000                               0.901    0.617
##     NFP_PSY_02        1.142    0.062   18.388    0.000    1.029    0.665
##     NFP_PSY_03        1.405    0.070   19.939    0.000    1.266    0.762
##     NFP_PSY_04        0.831    0.055   15.218    0.000    0.749    0.482
##     NFP_GEN_01       -0.106    0.076   -1.395    0.163   -0.096   -0.069
##     NFP_INF_01        0.563    0.078    7.201    0.000    0.507    0.363
##   NFP_SOC =~                                                            
##     NFP_SOC_01        1.000                               1.150    0.658
##     NFP_SOC_02        0.971    0.045   21.656    0.000    1.116    0.680
##     NFP_SOC_03        1.202    0.042   28.786    0.000    1.382    0.749
##     NFP_SOC_04        0.639    0.037   17.419    0.000    0.735    0.562
##     NFP_GEN_01        0.514    0.093    5.549    0.000    0.591    0.425
##     NFP_INF_01        0.163    0.055    2.970    0.003    0.187    0.134
##   NFP_COM =~                                                            
##     NFP_COM_01        1.000                               0.716    0.465
##     NFP_COM_02        1.045    0.077   13.560    0.000    0.748    0.497
##     NFP_COM_03        1.516    0.090   16.942    0.000    1.086    0.732
##     NFP_COM_04        1.573    0.088   17.850    0.000    1.127    0.802
##   NFP_GOV =~                                                            
##     NFP_GOV_01        1.000                               1.145    0.736
##     NFP_GOV_02        1.104    0.039   28.473    0.000    1.264    0.814
##     NFP_GOV_03        1.024    0.031   33.381    0.000    1.172    0.687
##     NFP_GOV_04        1.088    0.038   28.582    0.000    1.246    0.791
##   NFP_ANO =~                                                            
##     NFP_ANO_01        1.000                               1.000    0.530
##     NFP_ANO_02        0.701    0.050   13.980    0.000    0.701    0.478
##     NFP_ANO_03        0.298    0.043    7.016    0.000    0.299    0.224
##     NFP_ANO_04        1.065    0.062   17.177    0.000    1.065    0.659
##   NFP_INF =~                                                            
##     NFP_INF_01        1.000                               0.546    0.391
##     NFP_INF_02        1.528    0.121   12.652    0.000    0.835    0.684
##     NFP_INF_03        1.682    0.132   12.762    0.000    0.919    0.749
##     NFP_INF_04        1.639    0.120   13.639    0.000    0.895    0.660
##   NFP_GEN =~                                                            
##     NFP_GEN_01        1.000                               0.951    0.684
##     NFP_GEN_02        1.044    0.049   21.317    0.000    0.993    0.857
##     NFP_GEN_03        1.045    0.054   19.258    0.000    0.994    0.622
##     NFP_GEN_04        0.997    0.049   20.516    0.000    0.948    0.835
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .NFP_SOC_01 ~~                                                         
##    .NFP_SOC_03        0.456    0.066    6.905    0.000    0.456    0.283
##  .NFP_SOC_02 ~~                                                         
##    .NFP_SOC_04        0.271    0.046    5.882    0.000    0.271    0.208
##  .NFP_GOV_01 ~~                                                         
##    .NFP_GOV_03        0.442    0.056    7.911    0.000    0.442    0.338
##  .NFP_GOV_02 ~~                                                         
##    .NFP_GOV_04       -0.101    0.051   -1.955    0.051   -0.101   -0.116
##  .NFP_INF_01 ~~                                                         
##    .NFP_INF_04        0.109    0.038    2.910    0.004    0.109    0.109
##  .NFP_INF_02 ~~                                                         
##    .NFP_INF_03        0.048    0.031    1.577    0.115    0.048    0.066
##  .NFP_ANO_01 ~~                                                         
##    .NFP_ANO_04        0.083    0.080    1.028    0.304    0.083    0.043
##  .NFP_ANO_02 ~~                                                         
##    .NFP_ANO_03        0.626    0.057   10.900    0.000    0.626    0.374
##   NFP_PHY ~~                                                            
##     NFP_PSY           0.578    0.049   11.859    0.000    0.543    0.543
##     NFP_SOC           1.035    0.058   17.888    0.000    0.762    0.762
##     NFP_COM           0.188    0.031    6.008    0.000    0.222    0.222
##     NFP_GOV           0.391    0.050    7.899    0.000    0.289    0.289
##     NFP_ANO           0.436    0.053    8.230    0.000    0.369    0.369
##     NFP_INF           0.281    0.032    8.709    0.000    0.436    0.436
##     NFP_GEN           0.348    0.045    7.801    0.000    0.310    0.310
##   NFP_PSY ~~                                                            
##     NFP_SOC           0.759    0.053   14.331    0.000    0.733    0.733
##     NFP_COM           0.166    0.026    6.389    0.000    0.257    0.257
##     NFP_GOV           0.320    0.041    7.737    0.000    0.311    0.311
##     NFP_ANO           0.432    0.046    9.295    0.000    0.479    0.479
##     NFP_INF           0.174    0.023    7.470    0.000    0.354    0.354
##     NFP_GEN           0.312    0.038    8.314    0.000    0.364    0.364
##   NFP_SOC ~~                                                            
##     NFP_COM           0.097    0.031    3.110    0.002    0.118    0.118
##     NFP_GOV           0.239    0.048    4.977    0.000    0.181    0.181
##     NFP_ANO           0.460    0.053    8.677    0.000    0.400    0.400
##     NFP_INF           0.143    0.026    5.574    0.000    0.228    0.228
##     NFP_GEN           0.244    0.039    6.309    0.000    0.223    0.223
##   NFP_COM ~~                                                            
##     NFP_GOV           0.703    0.054   13.136    0.000    0.858    0.858
##     NFP_ANO           0.589    0.049   11.907    0.000    0.822    0.822
##     NFP_INF           0.335    0.034   10.006    0.000    0.857    0.857
##     NFP_GEN           0.542    0.045   11.939    0.000    0.796    0.796
##   NFP_GOV ~~                                                            
##     NFP_ANO           0.878    0.062   14.215    0.000    0.767    0.767
##     NFP_INF           0.429    0.041   10.492    0.000    0.686    0.686
##     NFP_GEN           0.730    0.054   13.509    0.000    0.671    0.671
##   NFP_ANO ~~                                                            
##     NFP_INF           0.364    0.038    9.654    0.000    0.667    0.667
##     NFP_GEN           0.608    0.052   11.729    0.000    0.639    0.639
##   NFP_INF ~~                                                            
##     NFP_GEN           0.435    0.041   10.704    0.000    0.837    0.837
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NFP_PHY_01        0.747    0.053   14.136    0.000    0.747    0.348
##    .NFP_PHY_02        1.508    0.078   19.223    0.000    1.508    0.615
##    .NFP_PHY_03        1.902    0.085   22.272    0.000    1.902    0.592
##    .NFP_PHY_04        1.062    0.058   18.251    0.000    1.062    0.571
##    .NFP_GEN_01        0.708    0.048   14.827    0.000    0.708    0.366
##    .NFP_PSY_01        1.317    0.075   17.626    0.000    1.317    0.619
##    .NFP_PSY_02        1.335    0.067   19.841    0.000    1.335    0.558
##    .NFP_PSY_03        1.160    0.076   15.300    0.000    1.160    0.420
##    .NFP_PSY_04        1.849    0.067   27.516    0.000    1.849    0.767
##    .NFP_INF_01        0.979    0.050   19.531    0.000    0.979    0.502
##    .NFP_SOC_01        1.735    0.083   20.885    0.000    1.735    0.568
##    .NFP_SOC_02        1.452    0.079   18.305    0.000    1.452    0.538
##    .NFP_SOC_03        1.496    0.085   17.606    0.000    1.496    0.439
##    .NFP_SOC_04        1.173    0.056   20.994    0.000    1.173    0.685
##    .NFP_COM_01        1.857    0.073   25.541    0.000    1.857    0.784
##    .NFP_COM_02        1.707    0.067   25.562    0.000    1.707    0.753
##    .NFP_COM_03        1.020    0.057   17.973    0.000    1.020    0.464
##    .NFP_COM_04        0.703    0.052   13.425    0.000    0.703    0.356
##    .NFP_GOV_01        1.108    0.061   18.174    0.000    1.108    0.458
##    .NFP_GOV_02        0.815    0.063   12.840    0.000    0.815    0.338
##    .NFP_GOV_03        1.538    0.079   19.367    0.000    1.538    0.528
##    .NFP_GOV_04        0.927    0.064   14.378    0.000    0.927    0.374
##    .NFP_ANO_01        2.561    0.111   23.049    0.000    2.561    0.719
##    .NFP_ANO_02        1.660    0.065   25.630    0.000    1.660    0.771
##    .NFP_ANO_03        1.685    0.091   18.549    0.000    1.685    0.950
##    .NFP_ANO_04        1.476    0.090   16.322    0.000    1.476    0.565
##    .NFP_INF_02        0.794    0.070   11.398    0.000    0.794    0.533
##    .NFP_INF_03        0.662    0.046   14.333    0.000    0.662    0.440
##    .NFP_INF_04        1.036    0.074   14.092    0.000    1.036    0.564
##    .NFP_GEN_02        0.357    0.028   12.518    0.000    0.357    0.266
##    .NFP_GEN_03        1.562    0.066   23.737    0.000    1.562    0.613
##    .NFP_GEN_04        0.390    0.030   13.177    0.000    0.390    0.303
##     NFP_PHY           1.397    0.080   17.497    0.000    1.000    1.000
##     NFP_PSY           0.811    0.073   11.048    0.000    1.000    1.000
##     NFP_SOC           1.322    0.095   13.936    0.000    1.000    1.000
##     NFP_COM           0.513    0.060    8.560    0.000    1.000    1.000
##     NFP_GOV           1.311    0.082   16.012    0.000    1.000    1.000
##     NFP_ANO           1.001    0.109    9.211    0.000    1.000    1.000
##     NFP_INF           0.298    0.043    6.985    0.000    1.000    1.000
##     NFP_GEN           0.904    0.082   10.973    0.000    1.000    1.000

Fit is now great.

Convergent validity

To assess convergent validity, let’s correlate measures with privacy concerns and privacy behavior.

tab_conval <- d %>%
    select(all_of(paste0(vars_pri, "_M")), PRI_CON, PRI_BEH) %>%
    cor(use = "pairwise") %>%
    round(2) %>%
    as.data.frame %>%
    select(PRI_CON, PRI_BEH)
tab_conval

Almost all variables showed high convergent validity.

Export factor scores

To increase precision, we export the latents variables’s factor scores as preregistered.

d <- d %>%
    mutate(HEX_ALT_FS = lavPredict(fit_HEX_ALT), HEX_AGR_FLX_FS = lavPredict(fit_HEX_AGR_FLX), HEX_AGR_FOR_FS = lavPredict(fit_HEX_AGR_FOR), HEX_AGR_GEN_FS = lavPredict(fit_HEX_AGR_GEN),
        HEX_AGR_PAT_FS = lavPredict(fit_HEX_AGR_PAT), HEX_CNS_DIL_FS = lavPredict(fit_HEX_CNS_DIL), HEX_CNS_ORG_FS = lavPredict(fit_HEX_CNS_ORG), HEX_CNS_PER_FS = lavPredict(fit_HEX_CNS_PER),
        HEX_CNS_PRU_FS = lavPredict(fit_HEX_CNS_PRU), HEX_EMO_ANX_FS = lavPredict(fit_HEX_EMO_ANX), HEX_EMO_DEP_FS = lavPredict(fit_HEX_EMO_DEP), HEX_EMO_FEA_FS = lavPredict(fit_HEX_EMO_FEA),
        HEX_EMO_SEN_FS = lavPredict(fit_HEX_EMO_SEN), HEX_EXT_BOL_FS = lavPredict(fit_HEX_EXT_BOL), HEX_EXT_LIV_FS = lavPredict(fit_HEX_EXT_LIV), HEX_EXT_SOC_FS = lavPredict(fit_HEX_EXT_SOC),
        HEX_EXT_SSE_FS = lavPredict(fit_HEX_EXT_SSE), HEX_HOH_FAI_FS = lavPredict(fit_HEX_HOH_FAI), HEX_HOH_GRE_FS = lavPredict(fit_HEX_HOH_GRE), HEX_HOH_MOD_FS = lavPredict(fit_HEX_HOH_MOD),
        HEX_HOH_SIN_FS = lavPredict(fit_HEX_HOH_SIN), HEX_OPN_AES_FS = lavPredict(fit_HEX_OPN_AES), HEX_OPN_CRE_FS = lavPredict(fit_HEX_OPN_CRE), HEX_OPN_INQ_FS = lavPredict(fit_HEX_OPN_INQ),
        HEX_OPN_UNC_FS = lavPredict(fit_HEX_OPN_UNC), NFP_ANO_FS = lavPredict(fit_NFP_ANO), NFP_COM_FS = lavPredict(fit_NFP_COM), NFP_GEN_FS = lavPredict(fit_NFP_GEN),
        NFP_GOV_FS = lavPredict(fit_NFP_GOV), NFP_INF_FS = lavPredict(fit_NFP_INF), NFP_PHY_FS = lavPredict(fit_NFP_PHY), NFP_PSY_FS = lavPredict(fit_NFP_PSY),
        NFP_SOC_FS = lavPredict(fit_NFP_SOC))

Item errors

As preregistered, we also test analyses using observed mean measures of scales while accounting for their error variance. Hence, we estimate error variance according to Kline.

# Extract variance
HEX_ALT_var <- var(d$HEX_ALT_M, na.rm = T)
HEX_AGR_FLX_var <- var(d$HEX_AGR_FLX_M, na.rm = T)
HEX_AGR_FOR_var <- var(d$HEX_AGR_FOR_M, na.rm = T)
HEX_AGR_GEN_var <- var(d$HEX_AGR_GEN_M, na.rm = T)
HEX_AGR_PAT_var <- var(d$HEX_AGR_PAT_M, na.rm = T)
HEX_CNS_DIL_var <- var(d$HEX_CNS_DIL_M, na.rm = T)
HEX_CNS_ORG_var <- var(d$HEX_CNS_ORG_M, na.rm = T)
HEX_CNS_PER_var <- var(d$HEX_CNS_PER_M, na.rm = T)
HEX_CNS_PRU_var <- var(d$HEX_CNS_PRU_M, na.rm = T)
HEX_EMO_ANX_var <- var(d$HEX_EMO_ANX_M, na.rm = T)
HEX_EMO_DEP_var <- var(d$HEX_EMO_DEP_M, na.rm = T)
HEX_EMO_FEA_var <- var(d$HEX_EMO_FEA_M, na.rm = T)
HEX_EMO_SEN_var <- var(d$HEX_EMO_SEN_M, na.rm = T)
HEX_EXT_BOL_var <- var(d$HEX_EXT_BOL_M, na.rm = T)
HEX_EXT_LIV_var <- var(d$HEX_EXT_LIV_M, na.rm = T)
HEX_EXT_SOC_var <- var(d$HEX_EXT_SOC_M, na.rm = T)
HEX_EXT_SSE_var <- var(d$HEX_EXT_SSE_M, na.rm = T)
HEX_HOH_FAI_var <- var(d$HEX_HOH_FAI_M, na.rm = T)
HEX_HOH_GRE_var <- var(d$HEX_HOH_GRE_M, na.rm = T)
HEX_HOH_MOD_var <- var(d$HEX_HOH_MOD_M, na.rm = T)
HEX_HOH_SIN_var <- var(d$HEX_HOH_SIN_M, na.rm = T)
HEX_OPN_AES_var <- var(d$HEX_OPN_AES_M, na.rm = T)
HEX_OPN_CRE_var <- var(d$HEX_OPN_CRE_M, na.rm = T)
HEX_OPN_INQ_var <- var(d$HEX_OPN_INQ_M, na.rm = T)
HEX_OPN_UNC_var <- var(d$HEX_OPN_UNC_M, na.rm = T)

NFP_ANO_var <- var(d$NFP_ANO_M, na.rm = T)
NFP_COM_var <- var(d$NFP_COM_M, na.rm = T)
NFP_GEN_var <- var(d$NFP_GEN_M, na.rm = T)
NFP_GOV_var <- var(d$NFP_GOV_M, na.rm = T)
NFP_INF_var <- var(d$NFP_INF_M, na.rm = T)
NFP_PHY_var <- var(d$NFP_PHY_M, na.rm = T)
NFP_PSY_var <- var(d$NFP_PSY_M, na.rm = T)
NFP_SOC_var <- var(d$NFP_SOC_M, na.rm = T)

HEX_AGR_var <- var(d$HEX_AGR_M, na.rm = T)
HEX_CNS_var <- var(d$HEX_CNS_M, na.rm = T)
HEX_EMO_var <- var(d$HEX_EMO_M, na.rm = T)
HEX_EXT_var <- var(d$HEX_EXT_M, na.rm = T)
HEX_HOH_var <- var(d$HEX_HOH_M, na.rm = T)
HEX_OPN_var <- var(d$HEX_OPN_M, na.rm = T)

# Get reliability
c_rel <- 
  c(
    HEX_ALT_rel     = reliability(fit_HEX_ALT)["omega", "HEX_ALT"],
    HEX_AGR_FLX_rel = reliability(fit_HEX_AGR_FLX)["omega", "HEX_AGR_FLX"],
    HEX_AGR_FOR_rel = reliability(fit_HEX_AGR_FOR)["omega", "HEX_AGR_FOR"],
    HEX_AGR_GEN_rel = reliability(fit_HEX_AGR_GEN)["omega", "HEX_AGR_GEN"],
    HEX_AGR_PAT_rel = reliability(fit_HEX_AGR_PAT)["omega", "HEX_AGR_PAT"],
    HEX_CNS_DIL_rel = reliability(fit_HEX_CNS_DIL)["omega", "HEX_CNS_DIL"],
    HEX_CNS_ORG_rel = reliability(fit_HEX_CNS_ORG)["omega", "HEX_CNS_ORG"],
    HEX_CNS_PER_rel = reliability(fit_HEX_CNS_PER)["omega", "HEX_CNS_PER"],
    HEX_CNS_PRU_rel = reliability(fit_HEX_CNS_PRU)["omega", "HEX_CNS_PRU"],
    HEX_EMO_ANX_rel = reliability(fit_HEX_EMO_ANX)["omega", "HEX_EMO_ANX"],
    HEX_EMO_DEP_rel = reliability(fit_HEX_EMO_DEP)["omega", "HEX_EMO_DEP"],
    HEX_EMO_FEA_rel = reliability(fit_HEX_EMO_FEA)["omega", "HEX_EMO_FEA"],
    HEX_EMO_SEN_rel = reliability(fit_HEX_EMO_SEN)["omega", "HEX_EMO_SEN"],
    HEX_EXT_BOL_rel = reliability(fit_HEX_EXT_BOL)["omega", "HEX_EXT_BOL"],
    HEX_EXT_LIV_rel = reliability(fit_HEX_EXT_LIV)["omega", "HEX_EXT_LIV"],
    HEX_EXT_SOC_rel = reliability(fit_HEX_EXT_SOC)["omega", "HEX_EXT_SOC"],
    HEX_EXT_SSE_rel = reliability(fit_HEX_EXT_SSE)["omega", "HEX_EXT_SSE"],
    HEX_HOH_FAI_rel = reliability(fit_HEX_HOH_FAI)["omega", "HEX_HOH_FAI"],
    HEX_HOH_GRE_rel = reliability(fit_HEX_HOH_GRE)["omega", "HEX_HOH_GRE"],
    HEX_HOH_MOD_rel = reliability(fit_HEX_HOH_MOD)["omega", "HEX_HOH_MOD"],
    HEX_HOH_SIN_rel = reliability(fit_HEX_HOH_SIN)["omega", "HEX_HOH_SIN"],
    HEX_OPN_AES_rel = reliability(fit_HEX_OPN_AES)["omega", "HEX_OPN_AES"],
    HEX_OPN_CRE_rel = reliability(fit_HEX_OPN_CRE)["omega", "HEX_OPN_CRE"],
    HEX_OPN_INQ_rel = reliability(fit_HEX_OPN_INQ)["omega", "HEX_OPN_INQ"],
    HEX_OPN_UNC_rel = reliability(fit_HEX_OPN_UNC)["omega", "HEX_OPN_UNC"],
    
    NFP_ANO_rel     = reliability(fit_NFP_ANO)["omega", "NFP_ANO"],
    NFP_COM_rel     = reliability(fit_NFP_COM)["omega", "NFP_COM"],
    NFP_GEN_rel     = reliability(fit_NFP_GEN)["omega", "NFP_GEN"],
    NFP_GOV_rel     = reliability(fit_NFP_GOV)["omega", "NFP_GOV"],
    NFP_INF_rel     = reliability(fit_NFP_INF)["omega", "NFP_INF"],
    NFP_PHY_rel     = reliability(fit_NFP_PHY)["omega", "NFP_PHY"],
    NFP_PSY_rel     = reliability(fit_NFP_PSY)["omega", "NFP_PSY"],
    NFP_SOC_rel     = reliability(fit_NFP_SOC)["omega", "NFP_SOC"],
    
    HEX_HOH_rel     = reliability(fit_hex_hoh, return.total = T)["omega", "total"],
    HEX_EMO_rel     = reliability(fit_hex_emo, return.total = T)["omega", "total"],
    HEX_EXT_rel     = reliability(fit_hex_ext, return.total = T)["omega", "total"],
    HEX_AGR_rel     = reliability(fit_hex_agr, return.total = T)["omega", "total"],
    HEX_CNS_rel     = reliability(fit_hex_cns, return.total = T)["omega", "total"],
    HEX_OPN_rel     = reliability(fit_hex_opn, return.total = T)["omega", "total"]
  )

# Define error
HEX_ALT_err     <- (1 - c_rel["HEX_ALT_rel"]) * HEX_ALT_var
HEX_AGR_FLX_err <- (1 - c_rel["HEX_AGR_FLX_rel"]) * HEX_AGR_FLX_var
HEX_AGR_FOR_err <- (1 - c_rel["HEX_AGR_FOR_rel"]) * HEX_AGR_FOR_var
HEX_AGR_GEN_err <- (1 - c_rel["HEX_AGR_GEN_rel"]) * HEX_AGR_GEN_var
HEX_AGR_PAT_err <- (1 - c_rel["HEX_AGR_PAT_rel"]) * HEX_AGR_PAT_var
HEX_CNS_DIL_err <- (1 - c_rel["HEX_CNS_DIL_rel"]) * HEX_CNS_DIL_var
HEX_CNS_ORG_err <- (1 - c_rel["HEX_CNS_ORG_rel"]) * HEX_CNS_ORG_var
HEX_CNS_PER_err <- (1 - c_rel["HEX_CNS_PER_rel"]) * HEX_CNS_PER_var
HEX_CNS_PRU_err <- (1 - c_rel["HEX_CNS_PRU_rel"]) * HEX_CNS_PRU_var
HEX_EMO_ANX_err <- (1 - c_rel["HEX_EMO_ANX_rel"]) * HEX_EMO_ANX_var
HEX_EMO_DEP_err <- (1 - c_rel["HEX_EMO_DEP_rel"]) * HEX_EMO_DEP_var
HEX_EMO_FEA_err <- (1 - c_rel["HEX_EMO_FEA_rel"]) * HEX_EMO_FEA_var
HEX_EMO_SEN_err <- (1 - c_rel["HEX_EMO_SEN_rel"]) * HEX_EMO_SEN_var
HEX_EXT_BOL_err <- (1 - c_rel["HEX_EXT_BOL_rel"]) * HEX_EXT_BOL_var
HEX_EXT_LIV_err <- (1 - c_rel["HEX_EXT_LIV_rel"]) * HEX_EXT_LIV_var
HEX_EXT_SOC_err <- (1 - c_rel["HEX_EXT_SOC_rel"]) * HEX_EXT_SOC_var
HEX_EXT_SSE_err <- (1 - c_rel["HEX_EXT_SSE_rel"]) * HEX_EXT_SSE_var
HEX_HOH_FAI_err <- (1 - c_rel["HEX_HOH_FAI_rel"]) * HEX_HOH_FAI_var
HEX_HOH_GRE_err <- (1 - c_rel["HEX_HOH_GRE_rel"]) * HEX_HOH_GRE_var
HEX_HOH_MOD_err <- (1 - c_rel["HEX_HOH_MOD_rel"]) * HEX_HOH_MOD_var
HEX_HOH_SIN_err <- (1 - c_rel["HEX_HOH_SIN_rel"]) * HEX_HOH_SIN_var
HEX_OPN_AES_err <- (1 - c_rel["HEX_OPN_AES_rel"]) * HEX_OPN_AES_var
HEX_OPN_CRE_err <- (1 - c_rel["HEX_OPN_CRE_rel"]) * HEX_OPN_CRE_var
HEX_OPN_INQ_err <- (1 - c_rel["HEX_OPN_INQ_rel"]) * HEX_OPN_INQ_var
HEX_OPN_UNC_err <- (1 - c_rel["HEX_OPN_UNC_rel"]) * HEX_OPN_UNC_var

NFP_ANO_err     <- (1 - c_rel["NFP_ANO_rel"]) * NFP_ANO_var
NFP_COM_err     <- (1 - c_rel["NFP_COM_rel"]) * NFP_COM_var
NFP_GEN_err     <- (1 - c_rel["NFP_GEN_rel"]) * NFP_GEN_var
NFP_GOV_err     <- (1 - c_rel["NFP_GOV_rel"]) * NFP_GOV_var
NFP_INF_err     <- (1 - c_rel["NFP_INF_rel"]) * NFP_INF_var
NFP_PHY_err     <- (1 - c_rel["NFP_PHY_rel"]) * NFP_PHY_var
NFP_PSY_err     <- (1 - c_rel["NFP_PSY_rel"]) * NFP_PSY_var
NFP_SOC_err     <- (1 - c_rel["NFP_SOC_rel"]) * NFP_SOC_var

HEX_AGR_err <- (1 - c_rel["HEX_AGR_rel"]) * HEX_AGR_var
HEX_CNS_err <- (1 - c_rel["HEX_CNS_rel"]) * HEX_CNS_var
HEX_EMO_err <- (1 - c_rel["HEX_EMO_rel"]) * HEX_EMO_var
HEX_EXT_err <- (1 - c_rel["HEX_EXT_rel"]) * HEX_EXT_var
HEX_HOH_err <- (1 - c_rel["HEX_HOH_rel"]) * HEX_HOH_var
HEX_OPN_err <- (1 - c_rel["HEX_OPN_rel"]) * HEX_OPN_var

HEX_err <- data.frame(
  err = 
    c(HEX_HOH_err, 
      HEX_EMO_err, 
      HEX_EXT_err, 
      HEX_AGR_err, 
      HEX_CNS_err,
      HEX_OPN_err
      )
  ) %>% 
  round(3)

NFP_err <- data.frame(
  err = 
    c(NFP_PSY_err, 
      NFP_SOC_err, 
      NFP_PHY_err, 
      NFP_GOV_err, 
      NFP_COM_err,
      NFP_INF_err,
      NFP_ANO_err,
      NFP_GEN_err
      )
  ) %>% 
  round(3)

HEX_NFP_err <- rbind(HEX_err, NFP_err)

Results

Dimensions

Let’s look at relations between need for privacy and personality dimensions.

We first do so in an SEM using latent factors.

model_dim <- "
# Personality Factors
HEX_HOH =~ HEX_HOH_SIN + HEX_HOH_FAI + HEX_HOH_GRE + HEX_HOH_MOD
HEX_HOH_SIN =~ HEX_HOH_SIN_01 + HEX_HOH_SIN_02 + HEX_HOH_SIN_03 + HEX_HOH_SIN_04
HEX_HOH_FAI =~ HEX_HOH_FAI_01 + HEX_HOH_FAI_02 + HEX_HOH_FAI_03 + HEX_HOH_FAI_04
HEX_HOH_GRE =~ HEX_HOH_GRE_01 + HEX_HOH_GRE_02 + HEX_HOH_GRE_03 + HEX_HOH_GRE_04
HEX_HOH_MOD =~ HEX_HOH_MOD_01 + HEX_HOH_MOD_02 + HEX_HOH_MOD_03 + HEX_HOH_MOD_04

HEX_EMO =~ HEX_EMO_FEA + HEX_EMO_ANX + HEX_EMO_DEP + HEX_EMO_SEN
HEX_EMO_FEA =~ HEX_EMO_FEA_01 + HEX_EMO_FEA_02 + HEX_EMO_FEA_03 + HEX_EMO_FEA_04
HEX_EMO_ANX =~ HEX_EMO_ANX_01 + HEX_EMO_ANX_02 + HEX_EMO_ANX_03 + HEX_EMO_ANX_04 + HEX_EMO_FEA_04
HEX_EMO_DEP =~ HEX_EMO_DEP_01 + HEX_EMO_DEP_02 + HEX_EMO_DEP_03 + HEX_EMO_DEP_04
HEX_EMO_SEN =~ HEX_EMO_SEN_01 + HEX_EMO_SEN_02 + HEX_EMO_SEN_03 + HEX_EMO_SEN_04

HEX_EXT =~ HEX_EXT_SSE + HEX_EXT_BOL + HEX_EXT_SOC + HEX_EXT_LIV
HEX_EXT_SSE =~ HEX_EXT_SSE_01 + HEX_EXT_SSE_02 + HEX_EXT_SSE_03 + HEX_EXT_SSE_04
HEX_EXT_BOL =~ HEX_EXT_BOL_01 + HEX_EXT_BOL_02 + HEX_EXT_BOL_03 + HEX_EXT_BOL_04
HEX_EXT_SOC =~ HEX_EXT_SOC_01 + HEX_EXT_SOC_02 + HEX_EXT_SOC_03 + HEX_EXT_SOC_04 + HEX_EXT_BOL_02
HEX_EXT_LIV =~ HEX_EXT_LIV_01 + HEX_EXT_LIV_02 + HEX_EXT_LIV_03 + HEX_EXT_LIV_04

HEX_AGR =~ HEX_AGR_FOR + HEX_AGR_GEN + HEX_AGR_FLX + HEX_AGR_PAT
HEX_AGR_FOR =~ HEX_AGR_FOR_01 + HEX_AGR_FOR_02 + HEX_AGR_FOR_03 + HEX_AGR_FOR_04 + HEX_AGR_PAT_02
HEX_AGR_GEN =~ HEX_AGR_GEN_01 + HEX_AGR_GEN_02 + HEX_AGR_GEN_03 + HEX_AGR_GEN_04
HEX_AGR_FLX =~ HEX_AGR_FLX_01 + HEX_AGR_FLX_02 + HEX_AGR_FLX_03 + HEX_AGR_FLX_04
HEX_AGR_PAT =~ HEX_AGR_PAT_01 + HEX_AGR_PAT_02 + HEX_AGR_PAT_03 + HEX_AGR_PAT_04

HEX_CNS =~ HEX_CNS_ORG + HEX_CNS_DIL + HEX_CNS_PER + HEX_CNS_PRU
HEX_CNS_ORG =~ HEX_CNS_ORG_01 + HEX_CNS_ORG_02 + HEX_CNS_ORG_03 + HEX_CNS_ORG_04
HEX_CNS_DIL =~ HEX_CNS_DIL_01 + HEX_CNS_DIL_02 + HEX_CNS_DIL_03 + HEX_CNS_DIL_04
HEX_CNS_PER =~ HEX_CNS_PER_01 + HEX_CNS_PER_02 + HEX_CNS_PER_03 + HEX_CNS_PER_04
HEX_CNS_PRU =~ HEX_CNS_PRU_01 + HEX_CNS_PRU_02 + HEX_CNS_PRU_03 + HEX_CNS_PRU_04

HEX_OPN =~ HEX_OPN_AES + HEX_OPN_INQ + HEX_OPN_CRE + HEX_OPN_UNC
HEX_OPN_AES =~ HEX_OPN_AES_01 + HEX_OPN_AES_02 + HEX_OPN_AES_03 + HEX_OPN_AES_04
HEX_OPN_INQ =~ HEX_OPN_INQ_01 + HEX_OPN_INQ_02 + HEX_OPN_INQ_03 + HEX_OPN_INQ_04
HEX_OPN_CRE =~ HEX_OPN_CRE_01 + HEX_OPN_CRE_02 + HEX_OPN_CRE_03 + HEX_OPN_CRE_04
HEX_OPN_UNC =~ HEX_OPN_UNC_01 + HEX_OPN_UNC_02 + HEX_OPN_UNC_03 + HEX_OPN_UNC_04

# Privacy
NFP_PHY =~ NFP_PHY_01 + NFP_PHY_02 + NFP_PHY_03 + NFP_PHY_04 + NFP_GEN_01
NFP_PSY =~ NFP_PSY_01 + NFP_PSY_02 + NFP_PSY_03 + NFP_PSY_04 + NFP_GEN_01 + NFP_INF_01
NFP_SOC =~ NFP_SOC_01 + NFP_SOC_02 + NFP_SOC_03 + NFP_SOC_04 + NFP_GEN_01 + NFP_INF_01
NFP_COM =~ NFP_COM_01 + NFP_COM_02 + NFP_COM_03 + NFP_COM_04
NFP_GOV =~ NFP_GOV_01 + NFP_GOV_02 + NFP_GOV_03 + NFP_GOV_04
NFP_ANO =~ NFP_ANO_01 + NFP_ANO_02 + NFP_ANO_03 + NFP_ANO_04
NFP_INF =~ NFP_INF_01 + NFP_INF_02 + NFP_INF_03 + NFP_INF_04
NFP_GEN =~ NFP_GEN_01 + NFP_GEN_02 + NFP_GEN_03 + NFP_GEN_04

# Covariances
HEX_HOH_SIN_01 ~~ HEX_HOH_SIN_03
HEX_HOH_SIN_02 ~~ HEX_HOH_SIN_04
HEX_HOH_GRE_01 ~~ HEX_HOH_GRE_02
HEX_HOH_GRE_03 ~~ HEX_HOH_GRE_04
HEX_EMO_DEP_01 ~~ HEX_EMO_DEP_04
HEX_EMO_DEP_02 ~~ HEX_EMO_DEP_03
HEX_EMO_SEN_01 ~~ HEX_EMO_SEN_03
HEX_EMO_SEN_02 ~~ HEX_EMO_SEN_04
HEX_EXT_SSE_01 ~~ HEX_EXT_SSE_04
HEX_EXT_SSE_02 ~~ HEX_EXT_SSE_03
HEX_EXT_BOL_01 ~~ HEX_EXT_BOL_04
HEX_EXT_BOL_02 ~~ HEX_EXT_BOL_03
HEX_EXT_LIV_01 ~~ HEX_EXT_LIV_03
HEX_EXT_LIV_02 ~~ HEX_EXT_LIV_04
HEX_AGR_PAT_01 ~~ HEX_AGR_PAT_02
HEX_AGR_PAT_03 ~~ HEX_AGR_PAT_04
HEX_CNS_ORG_01 ~~ HEX_CNS_ORG_04
HEX_CNS_ORG_02 ~~ HEX_CNS_ORG_03
HEX_CNS_DIL_01 ~~ HEX_CNS_DIL_02
HEX_CNS_DIL_03 ~~ HEX_CNS_DIL_04
HEX_CNS_PER_01 ~~ HEX_CNS_PER_04
HEX_CNS_PER_02 ~~ HEX_CNS_PER_03
HEX_CNS_PRU_01 ~~ HEX_CNS_PRU_04
HEX_CNS_PRU_02 ~~ HEX_CNS_PRU_03
HEX_OPN_INQ_01 ~~ HEX_OPN_INQ_04
HEX_OPN_INQ_02 ~~ HEX_OPN_INQ_03
HEX_OPN_UNC_01 ~~ HEX_OPN_UNC_04
HEX_OPN_UNC_02 ~~ HEX_OPN_UNC_03
HEX_ALT_01 ~~ HEX_ALT_02
HEX_ALT_03 ~~ HEX_ALT_04
HEX_AGR_GEN_01\t~~\tHEX_AGR_FLX_01

NFP_SOC_01 ~~ NFP_SOC_03
NFP_SOC_02 ~~ NFP_SOC_04
NFP_GOV_01 ~~ NFP_GOV_03
NFP_GOV_02 ~~ NFP_GOV_04
NFP_INF_01 ~~ NFP_INF_04
NFP_INF_02 ~~ NFP_INF_03
NFP_ANO_01 ~~ NFP_ANO_04
NFP_ANO_02 ~~ NFP_ANO_03
"
fit_dim <- sem(model_dim, d, estimator = "ML", fixed.x = TRUE)
## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.
## Warning in lav_object_post_check(object): lavaan WARNING: the covariance matrix of the residuals of the observed
##                 variables (theta) is not positive definite;
##                 use lavInspect(fit, "theta") to investigate.
summary(fit_dim, standardized = TRUE, fit = TRUE)
## lavaan 0.6.17 ended normally after 145 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       422
## 
##                                                   Used       Total
##   Number of observations                          1546        1550
## 
## Model Test User Model:
##                                                        
##   Test statistic                              32916.678
##   Degrees of freedom                               8356
##   P-value (Chi-square)                            0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                            104214.739
##   Degrees of freedom                              8646
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.743
##   Tucker-Lewis Index (TLI)                       0.734
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)            -346973.281
##   Loglikelihood unrestricted model (H1)    -330514.942
##                                                       
##   Akaike (AIC)                              694790.561
##   Bayesian (BIC)                            697045.487
##   Sample-size adjusted Bayesian (SABIC)     695704.894
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.044
##   90 Percent confidence interval - lower         0.043
##   90 Percent confidence interval - upper         0.044
##   P-value H_0: RMSEA <= 0.050                    1.000
##   P-value H_0: RMSEA >= 0.080                    0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.088
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_HOH =~                                                            
##     HEX_HOH_SIN       1.000                               0.715    0.715
##     HEX_HOH_FAI       1.116    0.080   13.884    0.000    0.564    0.564
##     HEX_HOH_GRE       0.506    0.049   10.283    0.000    0.596    0.596
##     HEX_HOH_MOD       0.643    0.049   13.249    0.000    0.637    0.637
##   HEX_HOH_SIN =~                                                        
##     HEX_HOH_SIN_01    1.000                               1.268    0.749
##     HEX_HOH_SIN_02    0.912    0.053   17.055    0.000    1.157    0.643
##     HEX_HOH_SIN_03    0.981    0.035   28.244    0.000    1.244    0.773
##     HEX_HOH_SIN_04    0.823    0.051   16.039    0.000    1.045    0.584
##   HEX_HOH_FAI =~                                                        
##     HEX_HOH_FAI_01    1.000                               1.792    0.855
##     HEX_HOH_FAI_02    0.694    0.022   32.103    0.000    1.244    0.737
##     HEX_HOH_FAI_03    0.685    0.023   30.221    0.000    1.227    0.705
##     HEX_HOH_FAI_04    0.902    0.024   38.365    0.000    1.617    0.852
##   HEX_HOH_GRE =~                                                        
##     HEX_HOH_GRE_01    1.000                               0.770    0.435
##     HEX_HOH_GRE_02    1.759    0.108   16.214    0.000    1.354    0.730
##     HEX_HOH_GRE_03    1.786    0.144   12.390    0.000    1.374    0.768
##     HEX_HOH_GRE_04    1.865    0.149   12.478    0.000    1.435    0.788
##   HEX_HOH_MOD =~                                                        
##     HEX_HOH_MOD_01    1.000                               0.914    0.650
##     HEX_HOH_MOD_02    0.889    0.052   16.945    0.000    0.813    0.530
##     HEX_HOH_MOD_03    1.173    0.055   21.199    0.000    1.073    0.726
##     HEX_HOH_MOD_04    1.264    0.060   21.219    0.000    1.156    0.728
##   HEX_EMO =~                                                            
##     HEX_EMO_FEA       1.000                               0.593    0.593
##     HEX_EMO_ANX       1.928    0.135   14.256    0.000    0.992    0.992
##     HEX_EMO_DEP       0.567    0.066    8.629    0.000    0.400    0.400
##     HEX_EMO_SEN       0.734    0.073   10.034    0.000    0.378    0.378
##   HEX_EMO_FEA =~                                                        
##     HEX_EMO_FEA_01    1.000                               1.163    0.684
##     HEX_EMO_FEA_02    0.774    0.048   15.971    0.000    0.901    0.536
##     HEX_EMO_FEA_03    1.012    0.056   18.141    0.000    1.178    0.680
##     HEX_EMO_FEA_04    0.365    0.054    6.743    0.000    0.425    0.247
##   HEX_EMO_ANX =~                                                        
##     HEX_EMO_ANX_01    1.000                               1.341    0.781
##     HEX_EMO_ANX_02    1.035    0.035   29.989    0.000    1.388    0.779
##     HEX_EMO_ANX_03    0.841    0.037   22.558    0.000    1.127    0.595
##     HEX_EMO_ANX_04    0.744    0.030   25.066    0.000    0.997    0.656
##     HEX_EMO_FEA_04    0.555    0.043   12.792    0.000    0.745    0.432
##   HEX_EMO_DEP =~                                                        
##     HEX_EMO_DEP_01    1.000                               0.978    0.606
##     HEX_EMO_DEP_02    1.224    0.101   12.107    0.000    1.197    0.779
##     HEX_EMO_DEP_03    1.372    0.110   12.455    0.000    1.342    0.857
##     HEX_EMO_DEP_04    0.822    0.045   18.147    0.000    0.804    0.478
##   HEX_EMO_SEN =~                                                        
##     HEX_EMO_SEN_01    1.000                               1.340    0.785
##     HEX_EMO_SEN_02    0.702    0.055   12.649    0.000    0.940    0.675
##     HEX_EMO_SEN_03    0.679    0.035   19.325    0.000    0.910    0.650
##     HEX_EMO_SEN_04    0.677    0.057   11.790    0.000    0.908    0.549
##   HEX_EXT =~                                                            
##     HEX_EXT_SSE       1.000                               0.872    0.872
##     HEX_EXT_BOL       0.994    0.053   18.830    0.000    0.763    0.763
##     HEX_EXT_SOC       0.984    0.052   18.993    0.000    0.793    0.793
##     HEX_EXT_LIV       1.082    0.053   20.378    0.000    0.829    0.829
##   HEX_EXT_SSE =~                                                        
##     HEX_EXT_SSE_01    1.000                               1.097    0.684
##     HEX_EXT_SSE_02    0.584    0.031   18.573    0.000    0.641    0.560
##     HEX_EXT_SSE_03    1.163    0.049   23.758    0.000    1.276    0.739
##     HEX_EXT_SSE_04    1.224    0.041   29.731    0.000    1.343    0.693
##   HEX_EXT_BOL =~                                                        
##     HEX_EXT_BOL_01    1.000                               1.246    0.715
##     HEX_EXT_BOL_02    0.418    0.045    9.251    0.000    0.521    0.314
##     HEX_EXT_BOL_03    0.954    0.046   20.530    0.000    1.189    0.693
##     HEX_EXT_BOL_04    0.889    0.046   19.276    0.000    1.107    0.609
##   HEX_EXT_SOC =~                                                        
##     HEX_EXT_SOC_01    1.000                               1.186    0.656
##     HEX_EXT_SOC_02    1.046    0.043   24.546    0.000    1.241    0.749
##     HEX_EXT_SOC_03    1.108    0.045   24.511    0.000    1.315    0.748
##     HEX_EXT_SOC_04    1.046    0.043   24.541    0.000    1.241    0.749
##     HEX_EXT_BOL_02    0.664    0.045   14.899    0.000    0.787    0.474
##   HEX_EXT_LIV =~                                                        
##     HEX_EXT_LIV_01    1.000                               1.248    0.718
##     HEX_EXT_LIV_02    1.037    0.038   27.538    0.000    1.294    0.808
##     HEX_EXT_LIV_03    0.782    0.040   19.578    0.000    0.976    0.603
##     HEX_EXT_LIV_04    1.007    0.039   25.549    0.000    1.257    0.747
##   HEX_AGR =~                                                            
##     HEX_AGR_FOR       1.000                               0.710    0.710
##     HEX_AGR_GEN       0.749    0.045   16.564    0.000    0.829    0.829
##     HEX_AGR_FLX       0.619    0.046   13.411    0.000    0.853    0.853
##     HEX_AGR_PAT       0.668    0.043   15.594    0.000    0.689    0.689
##   HEX_AGR_FOR =~                                                        
##     HEX_AGR_FOR_01    1.000                               1.498    0.869
##     HEX_AGR_FOR_02    0.926    0.024   37.925    0.000    1.387    0.833
##     HEX_AGR_FOR_03    0.304    0.020   15.129    0.000    0.456    0.391
##     HEX_AGR_FOR_04    0.853    0.025   33.573    0.000    1.277    0.757
##     HEX_AGR_PAT_02    0.411    0.031   13.468    0.000    0.616    0.378
##   HEX_AGR_GEN =~                                                        
##     HEX_AGR_GEN_01    1.000                               0.961    0.572
##     HEX_AGR_GEN_02    1.033    0.052   19.876    0.000    0.993    0.726
##     HEX_AGR_GEN_03    1.095    0.056   19.644    0.000    1.052    0.710
##     HEX_AGR_GEN_04    0.947    0.052   18.272    0.000    0.910    0.629
##   HEX_AGR_FLX =~                                                        
##     HEX_AGR_FLX_01    1.000                               0.771    0.437
##     HEX_AGR_FLX_02    0.971    0.074   13.099    0.000    0.749    0.542
##     HEX_AGR_FLX_03    1.291    0.092   14.089    0.000    0.996    0.645
##     HEX_AGR_FLX_04    1.234    0.088   13.956    0.000    0.952    0.628
##   HEX_AGR_PAT =~                                                        
##     HEX_AGR_PAT_01    1.000                               1.030    0.681
##     HEX_AGR_PAT_02    0.620    0.047   13.069    0.000    0.639    0.393
##     HEX_AGR_PAT_03    1.161    0.058   19.938    0.000    1.196    0.800
##     HEX_AGR_PAT_04    1.206    0.064   18.899    0.000    1.243    0.735
##   HEX_CNS =~                                                            
##     HEX_CNS_ORG       1.000                               0.778    0.778
##     HEX_CNS_DIL       0.820    0.058   14.183    0.000    0.906    0.906
##     HEX_CNS_PER       0.406    0.047    8.681    0.000    0.632    0.632
##     HEX_CNS_PRU       0.960    0.062   15.492    0.000    0.847    0.847
##   HEX_CNS_ORG =~                                                        
##     HEX_CNS_ORG_01    1.000                               1.016    0.612
##     HEX_CNS_ORG_02    0.843    0.046   18.210    0.000    0.857    0.638
##     HEX_CNS_ORG_03    1.228    0.062   19.663    0.000    1.248    0.722
##     HEX_CNS_ORG_04    1.380    0.065   21.391    0.000    1.402    0.827
##   HEX_CNS_DIL =~                                                        
##     HEX_CNS_DIL_01    1.000                               0.715    0.511
##     HEX_CNS_DIL_02    1.110    0.051   21.744    0.000    0.794    0.599
##     HEX_CNS_DIL_03    1.691    0.096   17.686    0.000    1.209    0.772
##     HEX_CNS_DIL_04    1.621    0.094   17.232    0.000    1.160    0.733
##   HEX_CNS_PER =~                                                        
##     HEX_CNS_PER_01    1.000                               0.509    0.385
##     HEX_CNS_PER_02    2.060    0.211    9.762    0.000    1.048    0.859
##     HEX_CNS_PER_03    1.747    0.182    9.621    0.000    0.889    0.803
##     HEX_CNS_PER_04    0.925    0.095    9.792    0.000    0.471    0.265
##   HEX_CNS_PRU =~                                                        
##     HEX_CNS_PRU_01    1.000                               0.897    0.624
##     HEX_CNS_PRU_02    1.165    0.058   20.177    0.000    1.045    0.757
##     HEX_CNS_PRU_03    0.875    0.055   15.993    0.000    0.784    0.552
##     HEX_CNS_PRU_04    0.809    0.043   18.923    0.000    0.725    0.501
##   HEX_OPN =~                                                            
##     HEX_OPN_AES       1.000                               0.954    0.954
##     HEX_OPN_INQ       0.719    0.039   18.220    0.000    0.692    0.692
##     HEX_OPN_CRE       0.569    0.035   16.091    0.000    0.784    0.784
##     HEX_OPN_UNC       0.509    0.037   13.863    0.000    0.812    0.812
##   HEX_OPN_AES =~                                                        
##     HEX_OPN_AES_01    1.000                               1.286    0.735
##     HEX_OPN_AES_02    0.992    0.046   21.801    0.000    1.276    0.628
##     HEX_OPN_AES_03    0.907    0.042   21.476    0.000    1.167    0.618
##     HEX_OPN_AES_04    0.476    0.032   14.683    0.000    0.612    0.416
##   HEX_OPN_INQ =~                                                        
##     HEX_OPN_INQ_01    1.000                               1.274    0.754
##     HEX_OPN_INQ_02    0.828    0.044   18.899    0.000    1.055    0.644
##     HEX_OPN_INQ_03    0.870    0.047   18.408    0.000    1.109    0.621
##     HEX_OPN_INQ_04    0.965    0.048   19.967    0.000    1.230    0.669
##   HEX_OPN_CRE =~                                                        
##     HEX_OPN_CRE_01    1.000                               0.890    0.534
##     HEX_OPN_CRE_02    1.483    0.076   19.405    0.000    1.320    0.762
##     HEX_OPN_CRE_03    1.115    0.062   17.886    0.000    0.992    0.649
##     HEX_OPN_CRE_04    1.693    0.086   19.704    0.000    1.506    0.792
##   HEX_OPN_UNC =~                                                        
##     HEX_OPN_UNC_01    1.000                               0.770    0.488
##     HEX_OPN_UNC_02    0.807    0.071   11.348    0.000    0.621    0.473
##     HEX_OPN_UNC_03    0.651    0.077    8.481    0.000    0.501    0.297
##     HEX_OPN_UNC_04    1.685    0.115   14.703    0.000    1.297    0.736
##   NFP_PHY =~                                                            
##     NFP_PHY_01        1.000                               1.175    0.802
##     NFP_PHY_02        0.821    0.035   23.243    0.000    0.964    0.616
##     NFP_PHY_03        0.996    0.040   24.752    0.000    1.170    0.653
##     NFP_PHY_04        0.756    0.031   24.679    0.000    0.889    0.651
##     NFP_GEN_01        0.036    0.040    0.882    0.378    0.042    0.030
##   NFP_PSY =~                                                            
##     NFP_PSY_01        1.000                               0.899    0.616
##     NFP_PSY_02        1.109    0.056   19.782    0.000    0.997    0.645
##     NFP_PSY_03        1.428    0.064   22.143    0.000    1.284    0.773
##     NFP_PSY_04        0.860    0.053   16.199    0.000    0.774    0.498
##     NFP_GEN_01        0.034    0.054    0.629    0.530    0.030    0.022
##     NFP_INF_01        0.598    0.062    9.630    0.000    0.538    0.385
##   NFP_SOC =~                                                            
##     NFP_SOC_01        1.000                               1.310    0.750
##     NFP_SOC_02        0.809    0.032   25.057    0.000    1.060    0.646
##     NFP_SOC_03        1.093    0.033   33.014    0.000    1.433    0.776
##     NFP_SOC_04        0.511    0.026   19.562    0.000    0.669    0.511
##     NFP_GEN_01        0.257    0.044    5.847    0.000    0.337    0.242
##     NFP_INF_01        0.112    0.036    3.133    0.002    0.147    0.105
##   NFP_COM =~                                                            
##     NFP_COM_01        1.000                               0.713    0.463
##     NFP_COM_02        1.070    0.074   14.497    0.000    0.763    0.507
##     NFP_COM_03        1.526    0.088   17.411    0.000    1.088    0.734
##     NFP_COM_04        1.575    0.088   17.978    0.000    1.123    0.800
##   NFP_GOV =~                                                            
##     NFP_GOV_01        1.000                               1.146    0.737
##     NFP_GOV_02        1.097    0.039   28.252    0.000    1.257    0.810
##     NFP_GOV_03        1.023    0.032   31.810    0.000    1.172    0.687
##     NFP_GOV_04        1.087    0.039   27.579    0.000    1.246    0.791
##   NFP_ANO =~                                                            
##     NFP_ANO_01        1.000                               0.969    0.513
##     NFP_ANO_02        0.758    0.051   14.830    0.000    0.735    0.502
##     NFP_ANO_03        0.406    0.041    9.839    0.000    0.393    0.295
##     NFP_ANO_04        1.017    0.057   17.712    0.000    0.985    0.609
##   NFP_INF =~                                                            
##     NFP_INF_01        1.000                               0.555    0.397
##     NFP_INF_02        1.514    0.099   15.243    0.000    0.840    0.688
##     NFP_INF_03        1.654    0.105   15.722    0.000    0.918    0.748
##     NFP_INF_04        1.608    0.101   15.884    0.000    0.892    0.658
##   NFP_GEN =~                                                            
##     NFP_GEN_01        1.000                               0.926    0.666
##     NFP_GEN_02        1.069    0.039   27.140    0.000    0.990    0.854
##     NFP_GEN_03        1.081    0.050   21.472    0.000    1.001    0.627
##     NFP_GEN_04        1.025    0.038   26.796    0.000    0.949    0.835
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_HOH_SIN_01 ~~                                                      
##    .HEX_HOH_SIN_03     0.215    0.077    2.794    0.005    0.215    0.188
##  .HEX_HOH_SIN_02 ~~                                                      
##    .HEX_HOH_SIN_04     0.312    0.075    4.162    0.000    0.312    0.156
##  .HEX_HOH_GRE_01 ~~                                                      
##    .HEX_HOH_GRE_02     0.396    0.079    5.036    0.000    0.396    0.196
##  .HEX_HOH_GRE_03 ~~                                                      
##    .HEX_HOH_GRE_04     0.201    0.106    1.899    0.058    0.201    0.157
##  .HEX_EMO_DEP_01 ~~                                                      
##    .HEX_EMO_DEP_04     0.112    0.073    1.535    0.125    0.112    0.059
##  .HEX_EMO_DEP_02 ~~                                                      
##    .HEX_EMO_DEP_03    -0.861    0.116   -7.435    0.000   -0.861   -1.108
##  .HEX_EMO_SEN_01 ~~                                                      
##    .HEX_EMO_SEN_03    -0.310    0.092   -3.370    0.001   -0.310   -0.275
##  .HEX_EMO_SEN_02 ~~                                                      
##    .HEX_EMO_SEN_04    -0.128    0.071   -1.816    0.069   -0.128   -0.090
##  .HEX_EXT_SSE_01 ~~                                                      
##    .HEX_EXT_SSE_04     0.615    0.060   10.322    0.000    0.615    0.376
##  .HEX_EXT_SSE_02 ~~                                                      
##    .HEX_EXT_SSE_03     0.107    0.037    2.908    0.004    0.107    0.097
##  .HEX_EXT_BOL_01 ~~                                                      
##    .HEX_EXT_BOL_04    -0.109    0.068   -1.601    0.109   -0.109   -0.062
##  .HEX_EXT_BOL_02 ~~                                                      
##    .HEX_EXT_BOL_03     0.567    0.052   10.981    0.000    0.567    0.392
##  .HEX_EXT_LIV_01 ~~                                                      
##    .HEX_EXT_LIV_03    -0.451    0.047   -9.530    0.000   -0.451   -0.289
##  .HEX_EXT_LIV_02 ~~                                                      
##    .HEX_EXT_LIV_04    -0.223    0.041   -5.462    0.000   -0.223   -0.211
##  .HEX_AGR_PAT_02 ~~                                                      
##    .HEX_AGR_PAT_01    -0.201    0.044   -4.532    0.000   -0.201   -0.150
##  .HEX_AGR_PAT_03 ~~                                                      
##    .HEX_AGR_PAT_04    -0.385    0.062   -6.189    0.000   -0.385   -0.374
##  .HEX_CNS_ORG_01 ~~                                                      
##    .HEX_CNS_ORG_04    -0.267    0.051   -5.203    0.000   -0.267   -0.213
##  .HEX_CNS_ORG_02 ~~                                                      
##    .HEX_CNS_ORG_03    -0.088    0.042   -2.113    0.035   -0.088   -0.071
##  .HEX_CNS_DIL_01 ~~                                                      
##    .HEX_CNS_DIL_02     0.533    0.040   13.486    0.000    0.533    0.417
##  .HEX_CNS_DIL_03 ~~                                                      
##    .HEX_CNS_DIL_04    -0.266    0.051   -5.173    0.000   -0.266   -0.249
##  .HEX_CNS_PER_01 ~~                                                      
##    .HEX_CNS_PER_04     0.430    0.057    7.485    0.000    0.430    0.206
##  .HEX_CNS_PER_02 ~~                                                      
##    .HEX_CNS_PER_03    -0.314    0.076   -4.143    0.000   -0.314   -0.763
##  .HEX_CNS_PRU_01 ~~                                                      
##    .HEX_CNS_PRU_04     0.410    0.045    9.164    0.000    0.410    0.291
##  .HEX_CNS_PRU_02 ~~                                                      
##    .HEX_CNS_PRU_03    -0.015    0.042   -0.351    0.726   -0.015   -0.014
##  .HEX_OPN_INQ_01 ~~                                                      
##    .HEX_OPN_INQ_04    -0.448    0.070   -6.418    0.000   -0.448   -0.295
##  .HEX_OPN_INQ_02 ~~                                                      
##    .HEX_OPN_INQ_03    -0.013    0.061   -0.211    0.833   -0.013   -0.007
##  .HEX_OPN_UNC_01 ~~                                                      
##    .HEX_OPN_UNC_04    -0.073    0.076   -0.958    0.338   -0.073   -0.044
##  .HEX_OPN_UNC_02 ~~                                                      
##    .HEX_OPN_UNC_03     0.334    0.052    6.388    0.000    0.334    0.180
##   HEX_ALT_01 ~~                                                          
##     HEX_ALT_02         0.825    0.047   17.409    0.000    0.825    0.494
##   HEX_ALT_03 ~~                                                          
##     HEX_ALT_04         0.772    0.063   12.204    0.000    0.772    0.327
##  .HEX_AGR_GEN_01 ~~                                                      
##    .HEX_AGR_FLX_01     0.712    0.063   11.265    0.000    0.712    0.325
##  .NFP_SOC_01 ~~                                                          
##    .NFP_SOC_03         0.166    0.051    3.289    0.001    0.166    0.123
##  .NFP_SOC_02 ~~                                                          
##    .NFP_SOC_04         0.382    0.040    9.510    0.000    0.382    0.271
##  .NFP_GOV_01 ~~                                                          
##    .NFP_GOV_03         0.436    0.044    9.870    0.000    0.436    0.335
##  .NFP_GOV_02 ~~                                                          
##    .NFP_GOV_04        -0.094    0.039   -2.429    0.015   -0.094   -0.107
##  .NFP_INF_01 ~~                                                          
##    .NFP_INF_04         0.109    0.030    3.643    0.000    0.109    0.108
##  .NFP_INF_02 ~~                                                          
##    .NFP_INF_03         0.044    0.027    1.657    0.098    0.044    0.061
##  .NFP_ANO_01 ~~                                                          
##    .NFP_ANO_04         0.196    0.073    2.686    0.007    0.196    0.094
##  .NFP_ANO_02 ~~                                                          
##    .NFP_ANO_03         0.547    0.046   11.769    0.000    0.547    0.339
##   HEX_HOH ~~                                                             
##     HEX_EMO           -0.040    0.022   -1.825    0.068   -0.064   -0.064
##     HEX_EXT           -0.017    0.030   -0.572    0.567   -0.020   -0.020
##     HEX_AGR            0.410    0.042    9.772    0.000    0.425    0.425
##     HEX_CNS            0.298    0.032    9.398    0.000    0.416    0.416
##     HEX_OPN            0.149    0.040    3.758    0.000    0.134    0.134
##     NFP_PHY           -0.054    0.038   -1.433    0.152   -0.051   -0.051
##     NFP_PSY           -0.121    0.030   -4.023    0.000   -0.148   -0.148
##     NFP_SOC           -0.058    0.042   -1.367    0.172   -0.049   -0.049
##     NFP_COM            0.088    0.024    3.707    0.000    0.137    0.137
##     NFP_GOV           -0.013    0.035   -0.372    0.710   -0.013   -0.013
##     NFP_ANO           -0.203    0.039   -5.165    0.000   -0.232   -0.232
##     NFP_INF            0.096    0.020    4.919    0.000    0.191    0.191
##     NFP_GEN            0.101    0.029    3.505    0.000    0.120    0.120
##   HEX_EMO ~~                                                             
##     HEX_EXT           -0.362    0.034  -10.637    0.000   -0.548   -0.548
##     HEX_AGR           -0.324    0.034   -9.645    0.000   -0.442   -0.442
##     HEX_CNS           -0.128    0.020   -6.504    0.000   -0.235   -0.235
##     HEX_OPN           -0.084    0.027   -3.119    0.002   -0.099   -0.099
##     NFP_PHY            0.352    0.035    9.983    0.000    0.434    0.434
##     NFP_PSY            0.033    0.020    1.646    0.100    0.053    0.053
##     NFP_SOC            0.312    0.036    8.654    0.000    0.345    0.345
##     NFP_COM           -0.034    0.016   -2.138    0.032   -0.068   -0.068
##     NFP_GOV           -0.071    0.024   -2.911    0.004   -0.090   -0.090
##     NFP_ANO           -0.057    0.026   -2.232    0.026   -0.085   -0.085
##     NFP_INF            0.034    0.013    2.691    0.007    0.089    0.089
##     NFP_GEN           -0.020    0.019   -1.017    0.309   -0.031   -0.031
##   HEX_EXT ~~                                                             
##     HEX_AGR            0.498    0.042   11.945    0.000    0.489    0.489
##     HEX_CNS            0.415    0.034   12.051    0.000    0.549    0.549
##     HEX_OPN            0.281    0.039    7.178    0.000    0.239    0.239
##     NFP_PHY           -0.728    0.048  -15.140    0.000   -0.648   -0.648
##     NFP_PSY           -0.508    0.039  -13.099    0.000   -0.591   -0.591
##     NFP_SOC           -1.209    0.068  -17.712    0.000   -0.964   -0.964
##     NFP_COM           -0.015    0.022   -0.696    0.487   -0.022   -0.022
##     NFP_GOV           -0.084    0.034   -2.498    0.012   -0.077   -0.077
##     NFP_ANO           -0.260    0.038   -6.830    0.000   -0.281   -0.281
##     NFP_INF           -0.071    0.018   -3.944    0.000   -0.135   -0.135
##     NFP_GEN           -0.042    0.027   -1.561    0.118   -0.048   -0.048
##   HEX_AGR ~~                                                             
##     HEX_CNS            0.277    0.032    8.776    0.000    0.329    0.329
##     HEX_OPN            0.371    0.046    8.136    0.000    0.284    0.284
##     NFP_PHY           -0.560    0.047  -11.825    0.000   -0.449   -0.449
##     NFP_PSY           -0.230    0.034   -6.824    0.000   -0.241   -0.241
##     NFP_SOC           -0.632    0.054  -11.742    0.000   -0.454   -0.454
##     NFP_COM            0.011    0.025    0.442    0.658    0.014    0.014
##     NFP_GOV           -0.006    0.038   -0.153    0.879   -0.005   -0.005
##     NFP_ANO           -0.173    0.041   -4.195    0.000   -0.168   -0.168
##     NFP_INF           -0.021    0.020   -1.076    0.282   -0.036   -0.036
##     NFP_GEN            0.056    0.031    1.840    0.066    0.057    0.057
##   HEX_CNS ~~                                                             
##     HEX_OPN            0.236    0.033    7.118    0.000    0.243    0.243
##     NFP_PHY           -0.157    0.030   -5.167    0.000   -0.169   -0.169
##     NFP_PSY           -0.179    0.025   -7.106    0.000   -0.252   -0.252
##     NFP_SOC           -0.427    0.040  -10.579    0.000   -0.412   -0.412
##     NFP_COM            0.076    0.019    4.090    0.000    0.136    0.136
##     NFP_GOV            0.003    0.028    0.125    0.901    0.004    0.004
##     NFP_ANO           -0.190    0.031   -6.043    0.000   -0.248   -0.248
##     NFP_INF            0.086    0.016    5.511    0.000    0.195    0.195
##     NFP_GEN            0.137    0.023    5.815    0.000    0.187    0.187
##   HEX_OPN ~~                                                             
##     NFP_PHY           -0.187    0.046   -4.044    0.000   -0.130   -0.130
##     NFP_PSY           -0.169    0.036   -4.633    0.000   -0.153   -0.153
##     NFP_SOC           -0.237    0.052   -4.521    0.000   -0.147   -0.147
##     NFP_COM            0.131    0.029    4.517    0.000    0.150    0.150
##     NFP_GOV            0.104    0.043    2.403    0.016    0.074    0.074
##     NFP_ANO            0.054    0.045    1.185    0.236    0.045    0.045
##     NFP_INF            0.076    0.023    3.359    0.001    0.112    0.112
##     NFP_GEN            0.195    0.036    5.485    0.000    0.171    0.171
##   NFP_PHY ~~                                                             
##     NFP_PSY            0.572    0.043   13.295    0.000    0.542    0.542
##     NFP_SOC            1.132    0.064   17.639    0.000    0.735    0.735
##     NFP_COM            0.184    0.029    6.334    0.000    0.220    0.220
##     NFP_GOV            0.391    0.044    8.820    0.000    0.291    0.291
##     NFP_ANO            0.419    0.048    8.656    0.000    0.369    0.369
##     NFP_INF            0.283    0.028   10.031    0.000    0.434    0.434
##     NFP_GEN            0.334    0.037    9.026    0.000    0.307    0.307
##   NFP_PSY ~~                                                             
##     NFP_SOC            0.835    0.055   15.212    0.000    0.708    0.708
##     NFP_COM            0.162    0.024    6.851    0.000    0.252    0.252
##     NFP_GOV            0.319    0.036    8.845    0.000    0.309    0.309
##     NFP_ANO            0.437    0.042   10.306    0.000    0.501    0.501
##     NFP_INF            0.173    0.020    8.532    0.000    0.347    0.347
##     NFP_GEN            0.300    0.031    9.659    0.000    0.360    0.360
##   NFP_SOC ~~                                                             
##     NFP_COM            0.091    0.031    2.944    0.003    0.098    0.098
##     NFP_GOV            0.234    0.048    4.871    0.000    0.156    0.156
##     NFP_ANO            0.513    0.056    9.193    0.000    0.404    0.404
##     NFP_INF            0.145    0.026    5.540    0.000    0.199    0.199
##     NFP_GEN            0.236    0.039    6.044    0.000    0.194    0.194
##   NFP_COM ~~                                                             
##     NFP_GOV            0.702    0.050   14.088    0.000    0.859    0.859
##     NFP_ANO            0.578    0.048   12.114    0.000    0.836    0.836
##     NFP_INF            0.339    0.030   11.387    0.000    0.856    0.856
##     NFP_GEN            0.525    0.039   13.429    0.000    0.795    0.795
##   NFP_GOV ~~                                                             
##     NFP_ANO            0.880    0.062   14.135    0.000    0.793    0.793
##     NFP_INF            0.438    0.035   12.374    0.000    0.688    0.688
##     NFP_GEN            0.712    0.046   15.494    0.000    0.671    0.671
##   NFP_ANO ~~                                                             
##     NFP_INF            0.353    0.034   10.522    0.000    0.657    0.657
##     NFP_GEN            0.581    0.046   12.502    0.000    0.647    0.647
##   NFP_INF ~~                                                             
##     NFP_GEN            0.428    0.034   12.660    0.000    0.834    0.834
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_HOH_SIN_01    1.260    0.094   13.432    0.000    1.260    0.439
##    .HEX_HOH_SIN_02    1.900    0.095   19.954    0.000    1.900    0.587
##    .HEX_HOH_SIN_03    1.039    0.085   12.252    0.000    1.039    0.402
##    .HEX_HOH_SIN_04    2.109    0.096   21.948    0.000    2.109    0.659
##    .HEX_HOH_FAI_01    1.180    0.068   17.360    0.000    1.180    0.269
##    .HEX_HOH_FAI_02    1.299    0.056   23.396    0.000    1.299    0.456
##    .HEX_HOH_FAI_03    1.526    0.063   24.184    0.000    1.526    0.504
##    .HEX_HOH_FAI_04    0.991    0.056   17.656    0.000    0.991    0.275
##    .HEX_HOH_GRE_01    2.542    0.102   25.014    0.000    2.542    0.811
##    .HEX_HOH_GRE_02    1.603    0.111   14.500    0.000    1.603    0.467
##    .HEX_HOH_GRE_03    1.312    0.116   11.323    0.000    1.312    0.410
##    .HEX_HOH_GRE_04    1.254    0.121   10.329    0.000    1.254    0.378
##    .HEX_HOH_MOD_01    1.143    0.052   22.160    0.000    1.143    0.578
##    .HEX_HOH_MOD_02    1.690    0.068   24.840    0.000    1.690    0.719
##    .HEX_HOH_MOD_03    1.031    0.054   19.092    0.000    1.031    0.473
##    .HEX_HOH_MOD_04    1.187    0.062   19.018    0.000    1.187    0.471
##    .HEX_EMO_FEA_01    1.541    0.085   18.140    0.000    1.541    0.533
##    .HEX_EMO_FEA_02    2.016    0.086   23.512    0.000    2.016    0.713
##    .HEX_EMO_FEA_03    1.609    0.088   18.311    0.000    1.609    0.537
##    .HEX_EMO_FEA_04    1.861    0.074   25.249    0.000    1.861    0.627
##    .HEX_EMO_ANX_01    1.148    0.056   20.385    0.000    1.148    0.390
##    .HEX_EMO_ANX_02    1.249    0.061   20.498    0.000    1.249    0.393
##    .HEX_EMO_ANX_03    2.319    0.092   25.265    0.000    2.319    0.646
##    .HEX_EMO_ANX_04    1.315    0.054   24.280    0.000    1.315    0.569
##    .HEX_EMO_DEP_01    1.645    0.089   18.520    0.000    1.645    0.632
##    .HEX_EMO_DEP_02    0.930    0.121    7.676    0.000    0.930    0.394
##    .HEX_EMO_DEP_03    0.650    0.140    4.652    0.000    0.650    0.265
##    .HEX_EMO_DEP_04    2.188    0.090   24.227    0.000    2.188    0.772
##    .HEX_EMO_SEN_01    1.119    0.139    8.031    0.000    1.119    0.384
##    .HEX_EMO_SEN_02    1.058    0.075   14.087    0.000    1.058    0.545
##    .HEX_EMO_SEN_03    1.134    0.080   14.265    0.000    1.134    0.578
##    .HEX_EMO_SEN_04    1.908    0.095   20.174    0.000    1.908    0.698
##    .HEX_EXT_SSE_01    1.369    0.062   22.074    0.000    1.369    0.532
##    .HEX_EXT_SSE_02    0.900    0.037   24.429    0.000    0.900    0.687
##    .HEX_EXT_SSE_03    1.353    0.068   19.878    0.000    1.353    0.454
##    .HEX_EXT_SSE_04    1.953    0.089   21.830    0.000    1.953    0.520
##    .HEX_EXT_BOL_01    1.485    0.085   17.485    0.000    1.485    0.489
##    .HEX_EXT_BOL_02    1.366    0.056   24.243    0.000    1.366    0.496
##    .HEX_EXT_BOL_03    1.531    0.076   20.270    0.000    1.531    0.520
##    .HEX_EXT_BOL_04    2.077    0.098   21.111    0.000    2.077    0.629
##    .HEX_EXT_SOC_01    1.860    0.076   24.507    0.000    1.860    0.569
##    .HEX_EXT_SOC_02    1.203    0.054   22.164    0.000    1.203    0.438
##    .HEX_EXT_SOC_03    1.361    0.061   22.213    0.000    1.361    0.441
##    .HEX_EXT_SOC_04    1.204    0.054   22.171    0.000    1.204    0.439
##    .HEX_EXT_LIV_01    1.464    0.064   22.742    0.000    1.464    0.484
##    .HEX_EXT_LIV_02    0.888    0.050   17.864    0.000    0.888    0.347
##    .HEX_EXT_LIV_03    1.666    0.067   25.002    0.000    1.666    0.636
##    .HEX_EXT_LIV_04    1.255    0.061   20.464    0.000    1.255    0.443
##    .HEX_AGR_FOR_01    0.726    0.045   16.010    0.000    0.726    0.244
##    .HEX_AGR_FOR_02    0.847    0.045   18.941    0.000    0.847    0.306
##    .HEX_AGR_FOR_03    1.153    0.042   27.156    0.000    1.153    0.847
##    .HEX_AGR_FOR_04    1.218    0.053   22.783    0.000    1.218    0.427
##    .HEX_AGR_PAT_02    1.476    0.059   24.985    0.000    1.476    0.557
##    .HEX_AGR_GEN_01    1.898    0.077   24.654    0.000    1.898    0.673
##    .HEX_AGR_GEN_02    0.885    0.043   20.444    0.000    0.885    0.473
##    .HEX_AGR_GEN_03    1.092    0.052   21.109    0.000    1.092    0.497
##    .HEX_AGR_GEN_04    1.267    0.054   23.531    0.000    1.267    0.605
##    .HEX_AGR_FLX_01    2.528    0.098   25.782    0.000    2.528    0.809
##    .HEX_AGR_FLX_02    1.347    0.056   24.146    0.000    1.347    0.706
##    .HEX_AGR_FLX_03    1.392    0.065   21.402    0.000    1.392    0.584
##    .HEX_AGR_FLX_04    1.389    0.063   21.967    0.000    1.389    0.605
##    .HEX_AGR_PAT_01    1.225    0.060   20.333    0.000    1.225    0.536
##    .HEX_AGR_PAT_03    0.806    0.068   11.826    0.000    0.806    0.360
##    .HEX_AGR_PAT_04    1.316    0.087   15.094    0.000    1.316    0.460
##    .HEX_CNS_ORG_01    1.726    0.077   22.555    0.000    1.726    0.626
##    .HEX_CNS_ORG_02    1.071    0.046   23.225    0.000    1.071    0.593
##    .HEX_CNS_ORG_03    1.432    0.069   20.725    0.000    1.432    0.479
##    .HEX_CNS_ORG_04    0.907    0.064   14.123    0.000    0.907    0.316
##    .HEX_CNS_DIL_01    1.450    0.056   25.901    0.000    1.450    0.739
##    .HEX_CNS_DIL_02    1.129    0.046   24.785    0.000    1.129    0.642
##    .HEX_CNS_DIL_03    0.988    0.065   15.307    0.000    0.988    0.403
##    .HEX_CNS_DIL_04    1.160    0.068   17.184    0.000    1.160    0.463
##    .HEX_CNS_PER_01    1.484    0.057   25.884    0.000    1.484    0.851
##    .HEX_CNS_PER_02    0.388    0.096    4.037    0.000    0.388    0.261
##    .HEX_CNS_PER_03    0.436    0.073    5.941    0.000    0.436    0.356
##    .HEX_CNS_PER_04    2.929    0.107   27.352    0.000    2.929    0.930
##    .HEX_CNS_PRU_01    1.258    0.055   22.823    0.000    1.258    0.610
##    .HEX_CNS_PRU_02    0.811    0.052   15.638    0.000    0.811    0.426
##    .HEX_CNS_PRU_03    1.404    0.062   22.693    0.000    1.404    0.695
##    .HEX_CNS_PRU_04    1.572    0.063   25.047    0.000    1.572    0.749
##    .HEX_OPN_AES_01    1.410    0.071   19.932    0.000    1.410    0.460
##    .HEX_OPN_AES_02    2.501    0.106   23.619    0.000    2.501    0.606
##    .HEX_OPN_AES_03    2.205    0.092   23.846    0.000    2.205    0.618
##    .HEX_OPN_AES_04    1.786    0.067   26.498    0.000    1.786    0.827
##    .HEX_OPN_INQ_01    1.235    0.083   14.887    0.000    1.235    0.432
##    .HEX_OPN_INQ_02    1.567    0.073   21.370    0.000    1.567    0.585
##    .HEX_OPN_INQ_03    1.957    0.089   22.102    0.000    1.957    0.614
##    .HEX_OPN_INQ_04    1.868    0.101   18.496    0.000    1.868    0.553
##    .HEX_OPN_CRE_01    1.982    0.077   25.594    0.000    1.982    0.715
##    .HEX_OPN_CRE_02    1.262    0.063   19.881    0.000    1.262    0.420
##    .HEX_OPN_CRE_03    1.351    0.057   23.720    0.000    1.351    0.579
##    .HEX_OPN_CRE_04    1.347    0.074   18.183    0.000    1.347    0.373
##    .HEX_OPN_UNC_01    1.896    0.087   21.915    0.000    1.896    0.762
##    .HEX_OPN_UNC_02    1.335    0.054   24.861    0.000    1.335    0.776
##    .HEX_OPN_UNC_03    2.597    0.097   26.791    0.000    2.597    0.912
##    .HEX_OPN_UNC_04    1.419    0.115   12.319    0.000    1.419    0.458
##    .NFP_PHY_01        0.764    0.042   18.019    0.000    0.764    0.356
##    .NFP_PHY_02        1.522    0.062   24.580    0.000    1.522    0.621
##    .NFP_PHY_03        1.841    0.077   23.856    0.000    1.841    0.573
##    .NFP_PHY_04        1.072    0.045   23.894    0.000    1.072    0.576
##    .NFP_GEN_01        0.759    0.033   23.340    0.000    0.759    0.392
##    .NFP_PSY_01        1.322    0.055   24.057    0.000    1.322    0.620
##    .NFP_PSY_02        1.400    0.060   23.431    0.000    1.400    0.585
##    .NFP_PSY_03        1.112    0.060   18.464    0.000    1.112    0.403
##    .NFP_PSY_04        1.812    0.070   25.806    0.000    1.812    0.752
##    .NFP_INF_01        0.981    0.041   24.153    0.000    0.981    0.503
##    .NFP_SOC_01        1.340    0.062   21.684    0.000    1.340    0.438
##    .NFP_SOC_02        1.571    0.062   25.478    0.000    1.571    0.583
##    .NFP_SOC_03        1.353    0.066   20.535    0.000    1.353    0.397
##    .NFP_SOC_04        1.267    0.047   26.711    0.000    1.267    0.739
##    .NFP_COM_01        1.862    0.069   26.903    0.000    1.862    0.786
##    .NFP_COM_02        1.681    0.063   26.651    0.000    1.681    0.743
##    .NFP_COM_03        1.014    0.043   23.449    0.000    1.014    0.461
##    .NFP_COM_04        0.709    0.035   20.543    0.000    0.709    0.360
##    .NFP_GOV_01        1.103    0.049   22.440    0.000    1.103    0.457
##    .NFP_GOV_02        0.827    0.049   16.914    0.000    0.827    0.344
##    .NFP_GOV_03        1.533    0.065   23.685    0.000    1.533    0.528
##    .NFP_GOV_04        0.928    0.052   17.859    0.000    0.928    0.374
##    .NFP_ANO_01        2.625    0.110   23.890    0.000    2.625    0.737
##    .NFP_ANO_02        1.604    0.064   24.952    0.000    1.604    0.748
##    .NFP_ANO_03        1.621    0.060   27.199    0.000    1.621    0.913
##    .NFP_ANO_04        1.643    0.079   20.685    0.000    1.643    0.629
##    .NFP_INF_02        0.785    0.036   21.880    0.000    0.785    0.527
##    .NFP_INF_03        0.663    0.034   19.713    0.000    0.663    0.441
##    .NFP_INF_04        1.042    0.043   24.048    0.000    1.042    0.567
##    .NFP_GEN_02        0.363    0.019   18.891    0.000    0.363    0.270
##    .NFP_GEN_03        1.547    0.060   25.743    0.000    1.547    0.607
##    .NFP_GEN_04        0.390    0.019   20.185    0.000    0.390    0.302
##     HEX_ALT_01        1.377    0.050   27.803    0.000    1.377    1.000
##     HEX_ALT_03        2.394    0.086   27.803    0.000    2.394    1.000
##     HEX_ALT_02        2.027    0.073   27.803    0.000    2.027    1.000
##     HEX_ALT_04        2.338    0.084   27.803    0.000    2.338    1.000
##     HEX_HOH           0.821    0.084    9.824    0.000    1.000    1.000
##    .HEX_HOH_SIN       0.787    0.086    9.136    0.000    0.489    0.489
##    .HEX_HOH_FAI       2.189    0.129   16.981    0.000    0.682    0.682
##    .HEX_HOH_GRE       0.382    0.052    7.294    0.000    0.645    0.645
##    .HEX_HOH_MOD       0.496    0.046   10.887    0.000    0.594    0.594
##     HEX_EMO           0.476    0.059    8.102    0.000    1.000    1.000
##    .HEX_EMO_FEA       0.877    0.081   10.825    0.000    0.648    0.648
##    .HEX_EMO_ANX       0.028    0.073    0.386    0.700    0.016    0.016
##    .HEX_EMO_DEP       0.803    0.076   10.602    0.000    0.840    0.840
##    .HEX_EMO_SEN       1.538    0.149   10.346    0.000    0.857    0.857
##     HEX_EXT           0.915    0.073   12.594    0.000    1.000    1.000
##    .HEX_EXT_SSE       0.290    0.036    8.013    0.000    0.240    0.240
##    .HEX_EXT_BOL       0.649    0.066    9.762    0.000    0.418    0.418
##    .HEX_EXT_SOC       0.521    0.045   11.573    0.000    0.370    0.370
##    .HEX_EXT_LIV       0.486    0.040   12.187    0.000    0.312    0.312
##     HEX_AGR           1.130    0.090   12.550    0.000    1.000    1.000
##    .HEX_AGR_FOR       1.113    0.071   15.597    0.000    0.496    0.496
##    .HEX_AGR_GEN       0.289    0.035    8.236    0.000    0.314    0.314
##    .HEX_AGR_FLX       0.162    0.028    5.783    0.000    0.273    0.273
##    .HEX_AGR_PAT       0.558    0.045   12.407    0.000    0.525    0.525
##     HEX_CNS           0.625    0.062   10.099    0.000    1.000    1.000
##    .HEX_CNS_ORG       0.407    0.043    9.567    0.000    0.394    0.394
##    .HEX_CNS_DIL       0.091    0.017    5.344    0.000    0.179    0.179
##    .HEX_CNS_PER       0.156    0.021    7.460    0.000    0.601    0.601
##    .HEX_CNS_PRU       0.228    0.031    7.437    0.000    0.283    0.283
##     HEX_OPN           1.504    0.108   13.934    0.000    1.000    1.000
##    .HEX_OPN_AES       0.150    0.055    2.750    0.006    0.091    0.091
##    .HEX_OPN_INQ       0.847    0.076   11.145    0.000    0.522    0.522
##    .HEX_OPN_CRE       0.306    0.035    8.724    0.000    0.386    0.386
##    .HEX_OPN_UNC       0.202    0.042    4.850    0.000    0.341    0.341
##     NFP_PHY           1.380    0.079   17.483    0.000    1.000    1.000
##     NFP_PSY           0.809    0.066   12.232    0.000    1.000    1.000
##     NFP_SOC           1.717    0.106   16.182    0.000    1.000    1.000
##     NFP_COM           0.508    0.056    9.148    0.000    1.000    1.000
##     NFP_GOV           1.313    0.083   15.896    0.000    1.000    1.000
##     NFP_ANO           0.938    0.103    9.084    0.000    1.000    1.000
##     NFP_INF           0.308    0.037    8.279    0.000    1.000    1.000
##     NFP_GEN           0.858    0.063   13.623    0.000    1.000    1.000
# get standardized data
d_dim <- standardizedsolution(fit_dim)

Throws two warnings (covariance matrix of latent variables and residuals is not positive definite). Fit is also poor. Hence let’s use means of observed values for personality and for privacy. Let’s specify errors as preregistered.

model_dim_err <- "
# Personality Factors
HEX_HOH =~ HEX_HOH_M
HEX_EMO =~ HEX_EMO_M
HEX_EXT =~ HEX_EXT_M
HEX_AGR =~ HEX_AGR_M
HEX_CNS =~ HEX_CNS_M
HEX_OPN =~ HEX_OPN_M

# Privacy
NFP_PHY =~ NFP_PHY_M
NFP_PSY =~ NFP_PSY_M
NFP_SOC =~ NFP_SOC_M
NFP_GOV =~ NFP_GOV_M
NFP_COM =~ NFP_COM_M
NFP_INF =~ NFP_INF_M
NFP_ANO =~ NFP_ANO_M
NFP_GEN =~ NFP_GEN_M

# Define Error
HEX_HOH_M ~~ 0.104 * HEX_HOH_M
HEX_EMO_M ~~ 0.087 * HEX_EMO_M
HEX_EXT_M ~~ 0.099 * HEX_EXT_M
HEX_AGR_M ~~ 0.079 * HEX_AGR_M
HEX_CNS_M ~~ 0.085 * HEX_CNS_M
HEX_OPN_M ~~ 0.108 * HEX_OPN_M
NFP_PHY_M ~~ 0.353 * NFP_PHY_M
NFP_PSY_M ~~ 0.457 * NFP_PSY_M
NFP_SOC_M ~~ 0.328 * NFP_SOC_M
NFP_GOV_M ~~ 0.261 * NFP_GOV_M
NFP_COM_M ~~ 0.331 * NFP_COM_M
NFP_INF_M ~~ 0.284 * NFP_INF_M
NFP_ANO_M ~~ 0.603 * NFP_ANO_M
NFP_GEN_M ~~ 0.207 * NFP_GEN_M
"
fit_dim_err <- sem(model_dim_err, d, estimator = "ML", fixed.x = TRUE)
## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.
summary(fit_dim_err, standardized = TRUE, fit = TRUE)
## lavaan 0.6.17 ended normally after 85 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       105
## 
##                                                   Used       Total
##   Number of observations                          1546        1550
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                              8758.219
##   Degrees of freedom                                91
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -27429.511
##   Loglikelihood unrestricted model (H1)     -27429.511
##                                                       
##   Akaike (AIC)                               55069.021
##   Bayesian (BIC)                             55630.081
##   Sample-size adjusted Bayesian (SABIC)      55296.521
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                       NA
##   P-value H_0: RMSEA >= 0.080                       NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_HOH =~                                                            
##     HEX_HOH_M         1.000                               0.906    0.942
##   HEX_EMO =~                                                            
##     HEX_EMO_M         1.000                               0.844    0.944
##   HEX_EXT =~                                                            
##     HEX_EXT_M         1.000                               1.020    0.956
##   HEX_AGR =~                                                            
##     HEX_AGR_M         1.000                               0.872    0.952
##   HEX_CNS =~                                                            
##     HEX_CNS_M         1.000                               0.800    0.940
##   HEX_OPN =~                                                            
##     HEX_OPN_M         1.000                               0.911    0.941
##   NFP_PHY =~                                                            
##     NFP_PHY_M         1.000                               1.030    0.866
##   NFP_PSY =~                                                            
##     NFP_PSY_M         1.000                               0.932    0.809
##   NFP_SOC =~                                                            
##     NFP_SOC_M         1.000                               1.149    0.895
##   NFP_GOV =~                                                            
##     NFP_GOV_M         1.000                               1.228    0.923
##   NFP_COM =~                                                            
##     NFP_COM_M         1.000                               0.922    0.848
##   NFP_INF =~                                                            
##     NFP_INF_M         1.000                               0.841    0.845
##   NFP_ANO =~                                                            
##     NFP_ANO_M         1.000                               0.742    0.691
##   NFP_GEN =~                                                            
##     NFP_GEN_M         1.000                               0.980    0.907
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_HOH ~~                                                            
##     HEX_EMO           0.004    0.022    0.177    0.859    0.005    0.005
##     HEX_EXT           0.012    0.026    0.459    0.646    0.013    0.013
##     HEX_AGR           0.283    0.024   12.030    0.000    0.358    0.358
##     HEX_CNS           0.224    0.022   10.376    0.000    0.309    0.309
##     HEX_OPN           0.084    0.024    3.534    0.000    0.102    0.102
##     NFP_PHY          -0.061    0.029   -2.093    0.036   -0.065   -0.065
##     NFP_PSY          -0.124    0.028   -4.391    0.000   -0.147   -0.147
##     NFP_SOC          -0.042    0.031   -1.339    0.181   -0.040   -0.040
##     NFP_GOV           0.001    0.033    0.040    0.968    0.001    0.001
##     NFP_COM           0.132    0.027    4.938    0.000    0.158    0.158
##     NFP_INF           0.098    0.024    4.004    0.000    0.129    0.129
##     NFP_ANO          -0.176    0.027   -6.611    0.000   -0.262   -0.262
##     NFP_GEN           0.072    0.026    2.704    0.007    0.081    0.081
##   HEX_EMO ~~                                                            
##     HEX_EXT          -0.174    0.025   -7.046    0.000   -0.202   -0.202
##     HEX_AGR          -0.171    0.021   -8.027    0.000   -0.232   -0.232
##     HEX_CNS          -0.029    0.019   -1.504    0.133   -0.043   -0.043
##     HEX_OPN          -0.053    0.022   -2.397    0.017   -0.069   -0.069
##     NFP_PHY           0.208    0.028    7.548    0.000    0.239    0.239
##     NFP_PSY          -0.206    0.027   -7.709    0.000   -0.262   -0.262
##     NFP_SOC           0.027    0.029    0.918    0.358    0.028    0.028
##     NFP_GOV          -0.161    0.031   -5.288    0.000   -0.156   -0.156
##     NFP_COM          -0.075    0.025   -3.015    0.003   -0.096   -0.096
##     NFP_INF           0.020    0.023    0.891    0.373    0.028    0.028
##     NFP_ANO          -0.144    0.025   -5.818    0.000   -0.229   -0.229
##     NFP_GEN          -0.031    0.025   -1.255    0.209   -0.037   -0.037
##   HEX_EXT ~~                                                            
##     HEX_AGR           0.392    0.027   14.621    0.000    0.440    0.440
##     HEX_CNS           0.348    0.025   14.080    0.000    0.427    0.427
##     HEX_OPN           0.219    0.027    8.165    0.000    0.236    0.236
##     NFP_PHY          -0.705    0.037  -19.091    0.000   -0.671   -0.671
##     NFP_PSY          -0.559    0.034  -16.285    0.000   -0.588   -0.588
##     NFP_SOC          -1.052    0.044  -23.950    0.000   -0.898   -0.898
##     NFP_GOV          -0.110    0.036   -3.041    0.002   -0.088   -0.088
##     NFP_COM           0.005    0.030    0.178    0.859    0.006    0.006
##     NFP_INF          -0.235    0.028   -8.481    0.000   -0.274   -0.274
##     NFP_ANO          -0.219    0.030   -7.396    0.000   -0.290   -0.290
##     NFP_GEN          -0.118    0.029   -3.993    0.000   -0.118   -0.118
##   HEX_AGR ~~                                                            
##     HEX_CNS           0.166    0.020    8.201    0.000    0.239    0.239
##     HEX_OPN           0.183    0.023    7.928    0.000    0.230    0.230
##     NFP_PHY          -0.410    0.030  -13.847    0.000   -0.456   -0.456
##     NFP_PSY          -0.219    0.027   -8.012    0.000   -0.270   -0.270
##     NFP_SOC          -0.438    0.032  -13.726    0.000   -0.437   -0.437
##     NFP_GOV          -0.034    0.031   -1.110    0.267   -0.032   -0.032
##     NFP_COM           0.018    0.025    0.694    0.488    0.022    0.022
##     NFP_INF          -0.092    0.023   -3.958    0.000   -0.126   -0.126
##     NFP_ANO          -0.130    0.025   -5.156    0.000   -0.201   -0.201
##     NFP_GEN          -0.015    0.025   -0.588    0.556   -0.017   -0.017
##   HEX_CNS ~~                                                            
##     HEX_OPN           0.153    0.021    7.176    0.000    0.210    0.210
##     NFP_PHY          -0.090    0.026   -3.488    0.000   -0.109   -0.109
##     NFP_PSY          -0.144    0.025   -5.724    0.000   -0.193   -0.193
##     NFP_SOC          -0.261    0.029   -9.127    0.000   -0.284   -0.284
##     NFP_GOV           0.017    0.029    0.580    0.562    0.017    0.017
##     NFP_COM           0.128    0.024    5.401    0.000    0.174    0.174
##     NFP_INF           0.110    0.022    5.064    0.000    0.164    0.164
##     NFP_ANO          -0.151    0.024   -6.420    0.000   -0.255   -0.255
##     NFP_GEN           0.159    0.024    6.706    0.000    0.203    0.203
##   HEX_OPN ~~                                                            
##     NFP_PHY          -0.136    0.029   -4.600    0.000   -0.145   -0.145
##     NFP_PSY          -0.119    0.029   -4.181    0.000   -0.140   -0.140
##     NFP_SOC          -0.109    0.032   -3.449    0.001   -0.105   -0.105
##     NFP_GOV           0.125    0.033    3.798    0.000    0.112    0.112
##     NFP_COM           0.153    0.027    5.648    0.000    0.182    0.182
##     NFP_INF           0.051    0.025    2.070    0.038    0.066    0.066
##     NFP_ANO           0.034    0.026    1.266    0.205    0.050    0.050
##     NFP_GEN           0.152    0.027    5.659    0.000    0.170    0.170
##   NFP_PHY ~~                                                            
##     NFP_PSY           0.577    0.038   15.285    0.000    0.602    0.602
##     NFP_SOC           0.912    0.045   20.172    0.000    0.771    0.771
##     NFP_GOV           0.365    0.041    8.847    0.000    0.289    0.289
##     NFP_COM           0.169    0.033    5.097    0.000    0.178    0.178
##     NFP_INF           0.478    0.032   14.719    0.000    0.552    0.552
##     NFP_ANO           0.278    0.033    8.353    0.000    0.363    0.363
##     NFP_GEN           0.368    0.034   10.823    0.000    0.364    0.364
##   NFP_PSY ~~                                                            
##     NFP_SOC           0.787    0.043   18.471    0.000    0.735    0.735
##     NFP_GOV           0.383    0.040    9.527    0.000    0.334    0.334
##     NFP_COM           0.218    0.032    6.744    0.000    0.253    0.253
##     NFP_INF           0.452    0.031   14.432    0.000    0.577    0.577
##     NFP_ANO           0.409    0.033   12.344    0.000    0.591    0.591
##     NFP_GEN           0.425    0.033   12.702    0.000    0.465    0.465
##   NFP_SOC ~~                                                            
##     NFP_GOV           0.245    0.044    5.586    0.000    0.174    0.174
##     NFP_COM           0.098    0.036    2.764    0.006    0.093    0.093
##     NFP_INF           0.387    0.034   11.381    0.000    0.400    0.400
##     NFP_ANO           0.360    0.036    9.944    0.000    0.423    0.423
##     NFP_GEN           0.337    0.036    9.289    0.000    0.299    0.299
##   NFP_GOV ~~                                                            
##     NFP_COM           0.951    0.044   21.598    0.000    0.839    0.839
##     NFP_INF           0.729    0.038   18.945    0.000    0.705    0.705
##     NFP_ANO           0.715    0.041   17.592    0.000    0.785    0.785
##     NFP_GEN           0.830    0.042   19.651    0.000    0.689    0.689
##   NFP_COM ~~                                                            
##     NFP_INF           0.638    0.032   19.966    0.000    0.822    0.822
##     NFP_ANO           0.572    0.033   17.309    0.000    0.837    0.837
##     NFP_GEN           0.755    0.036   21.262    0.000    0.835    0.835
##   NFP_INF ~~                                                            
##     NFP_ANO           0.437    0.029   14.875    0.000    0.701    0.701
##     NFP_GEN           0.722    0.033   21.898    0.000    0.875    0.875
##   NFP_ANO ~~                                                            
##     NFP_GEN           0.518    0.032   16.031    0.000    0.713    0.713
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_HOH_M         0.104                               0.104    0.113
##    .HEX_EMO_M         0.087                               0.087    0.109
##    .HEX_EXT_M         0.099                               0.099    0.087
##    .HEX_AGR_M         0.079                               0.079    0.094
##    .HEX_CNS_M         0.085                               0.085    0.117
##    .HEX_OPN_M         0.108                               0.108    0.115
##    .NFP_PHY_M         0.353                               0.353    0.250
##    .NFP_PSY_M         0.457                               0.457    0.345
##    .NFP_SOC_M         0.328                               0.328    0.199
##    .NFP_GOV_M         0.261                               0.261    0.147
##    .NFP_COM_M         0.331                               0.331    0.280
##    .NFP_INF_M         0.284                               0.284    0.286
##    .NFP_ANO_M         0.603                               0.603    0.523
##    .NFP_GEN_M         0.207                               0.207    0.177
##     HEX_HOH           0.820    0.033   24.674    0.000    1.000    1.000
##     HEX_EMO           0.712    0.029   24.776    0.000    1.000    1.000
##     HEX_EXT           1.040    0.041   25.386    0.000    1.000    1.000
##     HEX_AGR           0.760    0.030   25.184    0.000    1.000    1.000
##     HEX_CNS           0.640    0.026   24.541    0.000    1.000    1.000
##     HEX_OPN           0.830    0.034   24.601    0.000    1.000    1.000
##     NFP_PHY           1.060    0.051   20.858    0.000    1.000    1.000
##     NFP_PSY           0.869    0.048   18.218    0.000    1.000    1.000
##     NFP_SOC           1.320    0.059   22.271    0.000    1.000    1.000
##     NFP_GOV           1.509    0.064   23.704    0.000    1.000    1.000
##     NFP_COM           0.851    0.043   20.016    0.000    1.000    1.000
##     NFP_INF           0.708    0.036   19.841    0.000    1.000    1.000
##     NFP_ANO           0.550    0.041   13.262    0.000    1.000    1.000
##     NFP_GEN           0.961    0.042   22.874    0.000    1.000    1.000

Similarly, throws a warning: “covariance matrix of latent variables is not positive definite.” Let’s hence look at correlations of observed mean scores. Also do in subsequent analyses (i.e., facets and SES), to maintain comparability.

# make table
tab_cor_dim_m <- d %>%
    select(paste0(vars_pers_dim, "_M"), paste0(vars_pri, "_M")) %>%
    cor(use = "pairwise") %>%
    round(2) %>%
    as.data.frame() %>%
    select(starts_with("NFP")) %>%
    head(6) %>%
    cbind(`Personality dimension` = factor(vars_pers_dim, levels = vars_pers_dim, labels = vars_pers_dim_txt), .) %>%
    remove_rownames() %>%
    set_names(c("Personality factors", vars_pri_txt_abr))

tab_cor_dim_m

Facets

Let’s first look at latent model to confirm it’s also not converging.

model_fac <- "

# Personality
HEX_HOH_SIN =~ HEX_HOH_SIN_01 + HEX_HOH_SIN_02 + HEX_HOH_SIN_03 + HEX_HOH_SIN_04
HEX_HOH_FAI =~ HEX_HOH_FAI_01 + HEX_HOH_FAI_02 + HEX_HOH_FAI_03 + HEX_HOH_FAI_04
HEX_HOH_GRE =~ HEX_HOH_GRE_01 + HEX_HOH_GRE_02 + HEX_HOH_GRE_03 + HEX_HOH_GRE_04
HEX_HOH_MOD =~ HEX_HOH_MOD_01 + HEX_HOH_MOD_02 + HEX_HOH_MOD_03 + HEX_HOH_MOD_04
HEX_EMO_FEA =~ HEX_EMO_FEA_01 + HEX_EMO_FEA_02 + HEX_EMO_FEA_03 + HEX_EMO_FEA_04
HEX_EMO_ANX =~ HEX_EMO_ANX_01 + HEX_EMO_ANX_02 + HEX_EMO_ANX_03 + HEX_EMO_ANX_04 + HEX_EMO_FEA_04
HEX_EMO_DEP =~ HEX_EMO_DEP_01 + HEX_EMO_DEP_02 + HEX_EMO_DEP_03 + HEX_EMO_DEP_04
HEX_EMO_SEN =~ HEX_EMO_SEN_01 + HEX_EMO_SEN_02 + HEX_EMO_SEN_03 + HEX_EMO_SEN_04
HEX_EXT_SSE =~ HEX_EXT_SSE_01 + HEX_EXT_SSE_02 + HEX_EXT_SSE_03 + HEX_EXT_SSE_04
HEX_EXT_BOL =~ HEX_EXT_BOL_01 + HEX_EXT_BOL_02 + HEX_EXT_BOL_03 + HEX_EXT_BOL_04
HEX_EXT_SOC =~ HEX_EXT_SOC_01 + HEX_EXT_SOC_02 + HEX_EXT_SOC_03 + HEX_EXT_SOC_04 + HEX_EXT_BOL_02
HEX_EXT_LIV =~ HEX_EXT_LIV_01 + HEX_EXT_LIV_02 + HEX_EXT_LIV_03 + HEX_EXT_LIV_04
HEX_AGR_FOR =~ HEX_AGR_FOR_01 + HEX_AGR_FOR_02 + HEX_AGR_FOR_03 + HEX_AGR_FOR_04 + HEX_AGR_PAT_02
HEX_AGR_GEN =~ HEX_AGR_GEN_01 + HEX_AGR_GEN_02 + HEX_AGR_GEN_03 + HEX_AGR_GEN_04
HEX_AGR_FLX =~ HEX_AGR_FLX_01 + HEX_AGR_FLX_02 + HEX_AGR_FLX_03 + HEX_AGR_FLX_04
HEX_AGR_PAT =~ HEX_AGR_PAT_01 + HEX_AGR_PAT_02 + HEX_AGR_PAT_03 + HEX_AGR_PAT_04
HEX_CNS_ORG =~ HEX_CNS_ORG_01 + HEX_CNS_ORG_02 + HEX_CNS_ORG_03 + HEX_CNS_ORG_04
HEX_CNS_DIL =~ HEX_CNS_DIL_01 + HEX_CNS_DIL_02 + HEX_CNS_DIL_03 + HEX_CNS_DIL_04
HEX_CNS_PER =~ HEX_CNS_PER_01 + HEX_CNS_PER_02 + HEX_CNS_PER_03 + HEX_CNS_PER_04
HEX_CNS_PRU =~ HEX_CNS_PRU_01 + HEX_CNS_PRU_02 + HEX_CNS_PRU_03 + HEX_CNS_PRU_04
HEX_OPN_AES =~ HEX_OPN_AES_01 + HEX_OPN_AES_02 + HEX_OPN_AES_03 + HEX_OPN_AES_04
HEX_OPN_INQ =~ HEX_OPN_INQ_01 + HEX_OPN_INQ_02 + HEX_OPN_INQ_03 + HEX_OPN_INQ_04
HEX_OPN_CRE =~ HEX_OPN_CRE_01 + HEX_OPN_CRE_02 + HEX_OPN_CRE_03 + HEX_OPN_CRE_04
HEX_OPN_UNC =~ HEX_OPN_UNC_01 + HEX_OPN_UNC_02 + HEX_OPN_UNC_03 + HEX_OPN_UNC_04
HEX_ALT =~ HEX_ALT_01 + HEX_ALT_02 + HEX_ALT_03 + HEX_ALT_04

# Privacy
NFP_PHY =~ NFP_PHY_01 + NFP_PHY_02 + NFP_PHY_03 + NFP_PHY_04 + NFP_GEN_01
NFP_PSY =~ NFP_PSY_01 + NFP_PSY_02 + NFP_PSY_03 + NFP_PSY_04 + NFP_GEN_01 + NFP_INF_01
NFP_SOC =~ NFP_SOC_01 + NFP_SOC_02 + NFP_SOC_03 + NFP_SOC_04 + NFP_GEN_01 + NFP_INF_01
NFP_COM =~ NFP_COM_01 + NFP_COM_02 + NFP_COM_03 + NFP_COM_04
NFP_GOV =~ NFP_GOV_01 + NFP_GOV_02 + NFP_GOV_03 + NFP_GOV_04
NFP_ANO =~ NFP_ANO_01 + NFP_ANO_02 + NFP_ANO_03 + NFP_ANO_04
NFP_INF =~ NFP_INF_01 + NFP_INF_02 + NFP_INF_03 + NFP_INF_04
NFP_GEN =~ NFP_GEN_01 + NFP_GEN_02 + NFP_GEN_03 + NFP_GEN_04

# Covariances
HEX_HOH_SIN_01 ~~ HEX_HOH_SIN_03
HEX_HOH_SIN_02 ~~ HEX_HOH_SIN_04
HEX_HOH_GRE_01 ~~ HEX_HOH_GRE_02
HEX_HOH_GRE_03 ~~ HEX_HOH_GRE_04
HEX_EMO_DEP_01 ~~ HEX_EMO_DEP_04
HEX_EMO_DEP_02 ~~ HEX_EMO_DEP_03
HEX_EMO_SEN_01 ~~ HEX_EMO_SEN_03
HEX_EMO_SEN_02 ~~ HEX_EMO_SEN_04
HEX_EXT_SSE_01 ~~ HEX_EXT_SSE_04
HEX_EXT_SSE_02 ~~ HEX_EXT_SSE_03
HEX_EXT_BOL_01 ~~ HEX_EXT_BOL_04
HEX_EXT_BOL_02 ~~ HEX_EXT_BOL_03
HEX_EXT_LIV_01 ~~ HEX_EXT_LIV_03
HEX_EXT_LIV_02 ~~ HEX_EXT_LIV_04
HEX_AGR_PAT_01 ~~ HEX_AGR_PAT_02
HEX_AGR_PAT_03 ~~ HEX_AGR_PAT_04
HEX_CNS_ORG_01 ~~ HEX_CNS_ORG_04
HEX_CNS_ORG_02 ~~ HEX_CNS_ORG_03
HEX_CNS_DIL_01 ~~ HEX_CNS_DIL_02
HEX_CNS_DIL_03 ~~ HEX_CNS_DIL_04
HEX_CNS_PER_01 ~~ HEX_CNS_PER_04
HEX_CNS_PER_02 ~~ HEX_CNS_PER_03
HEX_CNS_PRU_01 ~~ HEX_CNS_PRU_04
HEX_CNS_PRU_02 ~~ HEX_CNS_PRU_03
HEX_OPN_INQ_01 ~~ HEX_OPN_INQ_04
HEX_OPN_INQ_02 ~~ HEX_OPN_INQ_03
HEX_OPN_UNC_01 ~~ HEX_OPN_UNC_04
HEX_OPN_UNC_02 ~~ HEX_OPN_UNC_03
HEX_AGR_GEN_01\t~~\tHEX_AGR_FLX_01

HEX_ALT_01 ~~ HEX_ALT_02
HEX_ALT_03 ~~ HEX_ALT_04
NFP_SOC_01 ~~ NFP_SOC_03
NFP_SOC_02 ~~ NFP_SOC_04
NFP_GOV_01 ~~ NFP_GOV_03
NFP_GOV_02 ~~ NFP_GOV_04
NFP_INF_01 ~~ NFP_INF_04
NFP_INF_02 ~~ NFP_INF_03
NFP_ANO_01 ~~ NFP_ANO_04
NFP_ANO_02 ~~ NFP_ANO_03
"
fit_fac <- sem(model_fac, d, estimator = "ML", fixed.x = TRUE)
## Warning in lav_object_post_check(object): lavaan WARNING: covariance matrix of latent variables
##                 is not positive definite;
##                 use lavInspect(fit, "cov.lv") to investigate.
summary(fit_fac, standardized = TRUE, fit = TRUE)
## lavaan 0.6.17 ended normally after 198 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       839
## 
##                                                   Used       Total
##   Number of observations                          1546        1550
## 
## Model Test User Model:
##                                                        
##   Test statistic                              26363.614
##   Degrees of freedom                               7939
##   P-value (Chi-square)                            0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                            104214.739
##   Degrees of freedom                              8646
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.807
##   Tucker-Lewis Index (TLI)                       0.790
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)            -343696.749
##   Loglikelihood unrestricted model (H1)    -330514.942
##                                                       
##   Akaike (AIC)                              689071.497
##   Bayesian (BIC)                            693554.632
##   Sample-size adjusted Bayesian (SABIC)     690889.330
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.039
##   90 Percent confidence interval - lower         0.038
##   90 Percent confidence interval - upper         0.039
##   P-value H_0: RMSEA <= 0.050                    1.000
##   P-value H_0: RMSEA >= 0.080                    0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.062
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   HEX_HOH_SIN =~                                                        
##     HEX_HOH_SIN_01    1.000                               1.239    0.731
##     HEX_HOH_SIN_02    0.947    0.051   18.669    0.000    1.173    0.652
##     HEX_HOH_SIN_03    0.999    0.035   28.718    0.000    1.238    0.770
##     HEX_HOH_SIN_04    0.854    0.049   17.387    0.000    1.058    0.592
##   HEX_HOH_FAI =~                                                        
##     HEX_HOH_FAI_01    1.000                               1.796    0.857
##     HEX_HOH_FAI_02    0.698    0.021   32.864    0.000    1.254    0.743
##     HEX_HOH_FAI_03    0.691    0.022   31.063    0.000    1.241    0.713
##     HEX_HOH_FAI_04    0.888    0.023   38.802    0.000    1.595    0.840
##   HEX_HOH_GRE =~                                                        
##     HEX_HOH_GRE_01    1.000                               0.735    0.415
##     HEX_HOH_GRE_02    1.788    0.111   16.066    0.000    1.315    0.709
##     HEX_HOH_GRE_03    1.968    0.143   13.795    0.000    1.447    0.809
##     HEX_HOH_GRE_04    1.964    0.143   13.718    0.000    1.445    0.794
##   HEX_HOH_MOD =~                                                        
##     HEX_HOH_MOD_01    1.000                               0.848    0.603
##     HEX_HOH_MOD_02    0.912    0.056   16.261    0.000    0.774    0.505
##     HEX_HOH_MOD_03    1.239    0.059   20.895    0.000    1.051    0.712
##     HEX_HOH_MOD_04    1.460    0.066   21.960    0.000    1.239    0.780
##   HEX_EMO_FEA =~                                                        
##     HEX_EMO_FEA_01    1.000                               1.147    0.674
##     HEX_EMO_FEA_02    0.795    0.046   17.195    0.000    0.912    0.542
##     HEX_EMO_FEA_03    1.035    0.051   20.372    0.000    1.188    0.686
##     HEX_EMO_FEA_04    0.395    0.050    7.914    0.000    0.453    0.263
##   HEX_EMO_ANX =~                                                        
##     HEX_EMO_ANX_01    1.000                               1.349    0.786
##     HEX_EMO_ANX_02    1.023    0.033   30.744    0.000    1.380    0.774
##     HEX_EMO_ANX_03    0.847    0.036   23.279    0.000    1.142    0.603
##     HEX_EMO_ANX_04    0.737    0.029   25.484    0.000    0.994    0.654
##     HEX_EMO_FEA_04    0.537    0.040   13.434    0.000    0.725    0.421
##   HEX_EMO_DEP =~                                                        
##     HEX_EMO_DEP_01    1.000                               1.143    0.709
##     HEX_EMO_DEP_02    0.751    0.039   19.021    0.000    0.859    0.559
##     HEX_EMO_DEP_03    0.986    0.041   23.921    0.000    1.128    0.720
##     HEX_EMO_DEP_04    0.992    0.048   20.749    0.000    1.134    0.674
##   HEX_EMO_SEN =~                                                        
##     HEX_EMO_SEN_01    1.000                               1.178    0.690
##     HEX_EMO_SEN_02    0.878    0.038   23.325    0.000    1.034    0.742
##     HEX_EMO_SEN_03    0.738    0.036   20.510    0.000    0.869    0.620
##     HEX_EMO_SEN_04    0.849    0.043   19.550    0.000    1.000    0.605
##   HEX_EXT_SSE =~                                                        
##     HEX_EXT_SSE_01    1.000                               1.212    0.756
##     HEX_EXT_SSE_02    0.496    0.025   19.694    0.000    0.601    0.525
##     HEX_EXT_SSE_03    0.954    0.037   25.500    0.000    1.157    0.670
##     HEX_EXT_SSE_04    1.201    0.036   33.723    0.000    1.456    0.751
##   HEX_EXT_BOL =~                                                        
##     HEX_EXT_BOL_01    1.000                               1.194    0.685
##     HEX_EXT_BOL_02    0.491    0.045   10.921    0.000    0.587    0.352
##     HEX_EXT_BOL_03    1.019    0.045   22.417    0.000    1.216    0.709
##     HEX_EXT_BOL_04    0.926    0.046   20.054    0.000    1.106    0.608
##   HEX_EXT_SOC =~                                                        
##     HEX_EXT_SOC_01    1.000                               1.159    0.641
##     HEX_EXT_SOC_02    1.108    0.043   25.699    0.000    1.284    0.775
##     HEX_EXT_SOC_03    1.157    0.046   25.378    0.000    1.340    0.763
##     HEX_EXT_SOC_04    1.043    0.043   24.517    0.000    1.209    0.730
##     HEX_EXT_BOL_02    0.631    0.043   14.732    0.000    0.731    0.438
##   HEX_EXT_LIV =~                                                        
##     HEX_EXT_LIV_01    1.000                               1.238    0.712
##     HEX_EXT_LIV_02    1.087    0.036   29.974    0.000    1.345    0.841
##     HEX_EXT_LIV_03    0.784    0.040   19.781    0.000    0.971    0.600
##     HEX_EXT_LIV_04    0.968    0.038   25.465    0.000    1.199    0.712
##   HEX_AGR_FOR =~                                                        
##     HEX_AGR_FOR_01    1.000                               1.490    0.865
##     HEX_AGR_FOR_02    0.937    0.024   38.610    0.000    1.396    0.839
##     HEX_AGR_FOR_03    0.313    0.020   15.561    0.000    0.467    0.400
##     HEX_AGR_FOR_04    0.849    0.025   33.312    0.000    1.266    0.750
##     HEX_AGR_PAT_02    0.423    0.029   14.647    0.000    0.630    0.388
##   HEX_AGR_GEN =~                                                        
##     HEX_AGR_GEN_01    1.000                               0.965    0.574
##     HEX_AGR_GEN_02    1.010    0.050   20.181    0.000    0.975    0.713
##     HEX_AGR_GEN_03    1.096    0.054   20.199    0.000    1.058    0.714
##     HEX_AGR_GEN_04    0.955    0.051   18.821    0.000    0.922    0.637
##   HEX_AGR_FLX =~                                                        
##     HEX_AGR_FLX_01    1.000                               0.783    0.444
##     HEX_AGR_FLX_02    0.920    0.069   13.285    0.000    0.720    0.521
##     HEX_AGR_FLX_03    1.283    0.087   14.706    0.000    1.004    0.650
##     HEX_AGR_FLX_04    1.238    0.085   14.609    0.000    0.969    0.639
##   HEX_AGR_PAT =~                                                        
##     HEX_AGR_PAT_01    1.000                               1.062    0.703
##     HEX_AGR_PAT_02    0.597    0.045   13.370    0.000    0.634    0.391
##     HEX_AGR_PAT_03    1.090    0.048   22.621    0.000    1.158    0.774
##     HEX_AGR_PAT_04    1.158    0.054   21.517    0.000    1.230    0.727
##   HEX_CNS_ORG =~                                                        
##     HEX_CNS_ORG_01    1.000                               0.998    0.601
##     HEX_CNS_ORG_02    0.882    0.047   18.826    0.000    0.880    0.655
##     HEX_CNS_ORG_03    1.264    0.063   20.161    0.000    1.261    0.730
##     HEX_CNS_ORG_04    1.380    0.064   21.428    0.000    1.377    0.812
##   HEX_CNS_DIL =~                                                        
##     HEX_CNS_DIL_01    1.000                               0.760    0.543
##     HEX_CNS_DIL_02    1.078    0.047   22.977    0.000    0.819    0.618
##     HEX_CNS_DIL_03    1.533    0.079   19.491    0.000    1.165    0.744
##     HEX_CNS_DIL_04    1.456    0.077   18.797    0.000    1.106    0.699
##   HEX_CNS_PER =~                                                        
##     HEX_CNS_PER_01    1.000                               0.593    0.449
##     HEX_CNS_PER_02    1.475    0.103   14.372    0.000    0.875    0.717
##     HEX_CNS_PER_03    1.217    0.088   13.816    0.000    0.722    0.652
##     HEX_CNS_PER_04    1.030    0.093   11.133    0.000    0.611    0.344
##   HEX_CNS_PRU =~                                                        
##     HEX_CNS_PRU_01    1.000                               0.918    0.640
##     HEX_CNS_PRU_02    1.096    0.048   22.614    0.000    1.007    0.730
##     HEX_CNS_PRU_03    0.834    0.047   17.608    0.000    0.766    0.539
##     HEX_CNS_PRU_04    0.832    0.041   20.517    0.000    0.764    0.527
##   HEX_OPN_AES =~                                                        
##     HEX_OPN_AES_01    1.000                               1.300    0.743
##     HEX_OPN_AES_02    0.983    0.044   22.306    0.000    1.278    0.629
##     HEX_OPN_AES_03    0.879    0.041   21.482    0.000    1.143    0.605
##     HEX_OPN_AES_04    0.472    0.032   14.923    0.000    0.614    0.418
##   HEX_OPN_INQ =~                                                        
##     HEX_OPN_INQ_01    1.000                               1.228    0.726
##     HEX_OPN_INQ_02    0.878    0.043   20.413    0.000    1.077    0.658
##     HEX_OPN_INQ_03    0.956    0.047   20.393    0.000    1.173    0.657
##     HEX_OPN_INQ_04    0.962    0.048   20.024    0.000    1.181    0.642
##   HEX_OPN_CRE =~                                                        
##     HEX_OPN_CRE_01    1.000                               0.896    0.538
##     HEX_OPN_CRE_02    1.473    0.075   19.688    0.000    1.320    0.762
##     HEX_OPN_CRE_03    1.123    0.062   18.252    0.000    1.006    0.659
##     HEX_OPN_CRE_04    1.659    0.083   19.908    0.000    1.486    0.781
##   HEX_OPN_UNC =~                                                        
##     HEX_OPN_UNC_01    1.000                               0.717    0.454
##     HEX_OPN_UNC_02    0.887    0.072   12.382    0.000    0.636    0.485
##     HEX_OPN_UNC_03    0.845    0.082   10.265    0.000    0.606    0.359
##     HEX_OPN_UNC_04    1.670    0.110   15.124    0.000    1.197    0.680
##   HEX_ALT =~                                                            
##     HEX_ALT_01        1.000                               0.705    0.601
##     HEX_ALT_02        0.965    0.049   19.718    0.000    0.680    0.478
##     HEX_ALT_03        1.110    0.063   17.534    0.000    0.782    0.506
##     HEX_ALT_04        1.206    0.064   18.954    0.000    0.850    0.556
##   NFP_PHY =~                                                            
##     NFP_PHY_01        1.000                               1.167    0.797
##     NFP_PHY_02        0.832    0.035   23.566    0.000    0.971    0.620
##     NFP_PHY_03        1.008    0.040   25.063    0.000    1.177    0.657
##     NFP_PHY_04        0.760    0.031   24.775    0.000    0.886    0.650
##     NFP_GEN_01        0.024    0.040    0.589    0.556    0.028    0.020
##   NFP_PSY =~                                                            
##     NFP_PSY_01        1.000                               0.893    0.612
##     NFP_PSY_02        1.079    0.054   19.852    0.000    0.963    0.623
##     NFP_PSY_03        1.475    0.063   23.415    0.000    1.317    0.792
##     NFP_PSY_04        0.888    0.052   16.949    0.000    0.792    0.510
##     NFP_GEN_01        0.032    0.048    0.662    0.508    0.029    0.021
##     NFP_INF_01        0.576    0.056   10.291    0.000    0.515    0.368
##   NFP_SOC =~                                                            
##     NFP_SOC_01        1.000                               1.287    0.736
##     NFP_SOC_02        0.828    0.032   25.721    0.000    1.066    0.649
##     NFP_SOC_03        1.094    0.033   33.532    0.000    1.409    0.764
##     NFP_SOC_04        0.553    0.026   21.316    0.000    0.711    0.543
##     NFP_GEN_01        0.269    0.041    6.551    0.000    0.347    0.249
##     NFP_INF_01        0.122    0.033    3.681    0.000    0.156    0.112
##   NFP_COM =~                                                            
##     NFP_COM_01        1.000                               0.723    0.470
##     NFP_COM_02        1.049    0.072   14.650    0.000    0.759    0.504
##     NFP_COM_03        1.502    0.085   17.730    0.000    1.086    0.733
##     NFP_COM_04        1.551    0.085   18.340    0.000    1.122    0.800
##   NFP_GOV =~                                                            
##     NFP_GOV_01        1.000                               1.152    0.741
##     NFP_GOV_02        1.089    0.038   28.766    0.000    1.254    0.808
##     NFP_GOV_03        1.025    0.032   32.026    0.000    1.181    0.693
##     NFP_GOV_04        1.072    0.038   27.868    0.000    1.235    0.784
##   NFP_ANO =~                                                            
##     NFP_ANO_01        1.000                               0.922    0.489
##     NFP_ANO_02        0.821    0.054   15.128    0.000    0.758    0.517
##     NFP_ANO_03        0.448    0.043   10.407    0.000    0.413    0.310
##     NFP_ANO_04        1.037    0.059   17.516    0.000    0.957    0.592
##   NFP_INF =~                                                            
##     NFP_INF_01        1.000                               0.559    0.400
##     NFP_INF_02        1.519    0.096   15.762    0.000    0.850    0.696
##     NFP_INF_03        1.631    0.101   16.167    0.000    0.912    0.743
##     NFP_INF_04        1.600    0.098   16.323    0.000    0.895    0.660
##   NFP_GEN =~                                                            
##     NFP_GEN_01        1.000                               0.931    0.669
##     NFP_GEN_02        1.059    0.038   27.964    0.000    0.986    0.850
##     NFP_GEN_03        1.088    0.049   22.117    0.000    1.013    0.634
##     NFP_GEN_04        1.015    0.037   27.570    0.000    0.945    0.832
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .HEX_HOH_SIN_01 ~~                                                      
##    .HEX_HOH_SIN_03     0.260    0.066    3.912    0.000    0.260    0.219
##  .HEX_HOH_SIN_02 ~~                                                      
##    .HEX_HOH_SIN_04     0.280    0.070    4.026    0.000    0.280    0.142
##  .HEX_HOH_GRE_01 ~~                                                      
##    .HEX_HOH_GRE_02     0.471    0.068    6.894    0.000    0.471    0.224
##  .HEX_HOH_GRE_03 ~~                                                      
##    .HEX_HOH_GRE_04     0.083    0.081    1.029    0.303    0.083    0.071
##  .HEX_EMO_DEP_01 ~~                                                      
##    .HEX_EMO_DEP_04    -0.398    0.047   -8.462    0.000   -0.398   -0.281
##  .HEX_EMO_DEP_02 ~~                                                      
##    .HEX_EMO_DEP_03    -0.223    0.042   -5.281    0.000   -0.223   -0.161
##  .HEX_EMO_SEN_01 ~~                                                      
##    .HEX_EMO_SEN_03    -0.113    0.043   -2.637    0.008   -0.113   -0.083
##  .HEX_EMO_SEN_02 ~~                                                      
##    .HEX_EMO_SEN_04    -0.308    0.042   -7.403    0.000   -0.308   -0.251
##  .HEX_EXT_SSE_01 ~~                                                      
##    .HEX_EXT_SSE_04     0.324    0.053    6.138    0.000    0.324    0.241
##  .HEX_EXT_SSE_02 ~~                                                      
##    .HEX_EXT_SSE_03     0.230    0.036    6.347    0.000    0.230    0.184
##  .HEX_EXT_BOL_01 ~~                                                      
##    .HEX_EXT_BOL_04    -0.050    0.062   -0.813    0.416   -0.050   -0.027
##  .HEX_EXT_BOL_02 ~~                                                      
##    .HEX_EXT_BOL_03     0.499    0.048   10.293    0.000    0.499    0.354
##  .HEX_EXT_LIV_01 ~~                                                      
##    .HEX_EXT_LIV_03    -0.434    0.046   -9.530    0.000   -0.434   -0.275
##  .HEX_EXT_LIV_02 ~~                                                      
##    .HEX_EXT_LIV_04    -0.209    0.037   -5.729    0.000   -0.209   -0.204
##  .HEX_AGR_PAT_02 ~~                                                      
##    .HEX_AGR_PAT_01    -0.212    0.041   -5.190    0.000   -0.212   -0.163
##  .HEX_AGR_PAT_03 ~~                                                      
##    .HEX_AGR_PAT_04    -0.323    0.051   -6.368    0.000   -0.323   -0.294
##  .HEX_CNS_ORG_01 ~~                                                      
##    .HEX_CNS_ORG_04    -0.216    0.048   -4.474    0.000   -0.216   -0.165
##  .HEX_CNS_ORG_02 ~~                                                      
##    .HEX_CNS_ORG_03    -0.129    0.040   -3.243    0.001   -0.129   -0.108
##  .HEX_CNS_DIL_01 ~~                                                      
##    .HEX_CNS_DIL_02     0.478    0.038   12.751    0.000    0.478    0.390
##  .HEX_CNS_DIL_03 ~~                                                      
##    .HEX_CNS_DIL_04    -0.153    0.046   -3.333    0.001   -0.153   -0.129
##  .HEX_CNS_PER_01 ~~                                                      
##    .HEX_CNS_PER_04     0.308    0.054    5.708    0.000    0.308    0.157
##  .HEX_CNS_PER_02 ~~                                                      
##    .HEX_CNS_PER_03    -0.014    0.036   -0.384    0.701   -0.014   -0.019
##  .HEX_CNS_PRU_01 ~~                                                      
##    .HEX_CNS_PRU_04     0.359    0.042    8.607    0.000    0.359    0.264
##  .HEX_CNS_PRU_02 ~~                                                      
##    .HEX_CNS_PRU_03     0.034    0.038    0.899    0.369    0.034    0.030
##  .HEX_OPN_INQ_01 ~~                                                      
##    .HEX_OPN_INQ_04    -0.331    0.061   -5.408    0.000   -0.331   -0.202
##  .HEX_OPN_INQ_02 ~~                                                      
##    .HEX_OPN_INQ_03    -0.107    0.057   -1.884    0.060   -0.107   -0.064
##  .HEX_OPN_UNC_01 ~~                                                      
##    .HEX_OPN_UNC_04     0.068    0.065    1.035    0.301    0.068    0.037
##  .HEX_OPN_UNC_02 ~~                                                      
##    .HEX_OPN_UNC_03     0.261    0.051    5.140    0.000    0.261    0.144
##  .HEX_AGR_GEN_01 ~~                                                      
##    .HEX_AGR_FLX_01     0.689    0.063   11.017    0.000    0.689    0.317
##  .HEX_ALT_01 ~~                                                          
##    .HEX_ALT_02         0.345    0.036    9.573    0.000    0.345    0.294
##  .HEX_ALT_03 ~~                                                          
##    .HEX_ALT_04         0.107    0.050    2.143    0.032    0.107    0.063
##  .NFP_SOC_01 ~~                                                          
##    .NFP_SOC_03         0.230    0.048    4.755    0.000    0.230    0.163
##  .NFP_SOC_02 ~~                                                          
##    .NFP_SOC_04         0.334    0.039    8.670    0.000    0.334    0.243
##  .NFP_GOV_01 ~~                                                          
##    .NFP_GOV_03         0.419    0.043    9.667    0.000    0.419    0.326
##  .NFP_GOV_02 ~~                                                          
##    .NFP_GOV_04        -0.076    0.038   -2.018    0.044   -0.076   -0.085
##  .NFP_INF_01 ~~                                                          
##    .NFP_INF_04         0.110    0.030    3.668    0.000    0.110    0.107
##  .NFP_INF_02 ~~                                                          
##    .NFP_INF_03         0.040    0.026    1.530    0.126    0.040    0.055
##  .NFP_ANO_01 ~~                                                          
##    .NFP_ANO_04         0.268    0.071    3.763    0.000    0.268    0.125
##  .NFP_ANO_02 ~~                                                          
##    .NFP_ANO_03         0.523    0.046   11.405    0.000    0.523    0.329
##   HEX_HOH_SIN ~~                                                         
##     HEX_HOH_FAI        1.071    0.080   13.341    0.000    0.482    0.482
##     HEX_HOH_GRE        0.365    0.040    9.140    0.000    0.400    0.400
##     HEX_HOH_MOD        0.414    0.040   10.247    0.000    0.394    0.394
##     HEX_EMO_FEA       -0.023    0.050   -0.463    0.643   -0.016   -0.016
##     HEX_EMO_ANX       -0.282    0.055   -5.161    0.000   -0.169   -0.169
##     HEX_EMO_DEP       -0.262    0.047   -5.556    0.000   -0.185   -0.185
##     HEX_EMO_SEN        0.087    0.048    1.837    0.066    0.060    0.060
##     HEX_EXT_SSE        0.194    0.051    3.819    0.000    0.129    0.129
##     HEX_EXT_BOL       -0.091    0.051   -1.791    0.073   -0.062   -0.062
##     HEX_EXT_SOC       -0.198    0.047   -4.253    0.000   -0.138   -0.138
##     HEX_EXT_LIV        0.184    0.049    3.781    0.000    0.120    0.120
##     HEX_AGR_FOR        0.503    0.060    8.322    0.000    0.273    0.273
##     HEX_AGR_GEN        0.386    0.044    8.697    0.000    0.323    0.323
##     HEX_AGR_FLX        0.299    0.040    7.565    0.000    0.308    0.308
##     HEX_AGR_PAT        0.303    0.044    6.846    0.000    0.230    0.230
##     HEX_CNS_ORG        0.276    0.042    6.610    0.000    0.224    0.224
##     HEX_CNS_DIL        0.253    0.034    7.398    0.000    0.269    0.269
##     HEX_CNS_PER        0.195    0.029    6.707    0.000    0.265    0.265
##     HEX_CNS_PRU        0.405    0.044    9.278    0.000    0.356    0.356
##     HEX_OPN_AES        0.239    0.056    4.295    0.000    0.149    0.149
##     HEX_OPN_INQ        0.120    0.050    2.409    0.016    0.079    0.079
##     HEX_OPN_CRE        0.119    0.037    3.260    0.001    0.107    0.107
##     HEX_OPN_UNC        0.072    0.034    2.140    0.032    0.081    0.081
##     HEX_ALT            0.305    0.036    8.495    0.000    0.349    0.349
##     NFP_PHY           -0.110    0.047   -2.317    0.021   -0.076   -0.076
##     NFP_PSY           -0.036    0.036   -0.990    0.322   -0.033   -0.033
##     NFP_SOC           -0.031    0.053   -0.593    0.553   -0.020   -0.020
##     NFP_COM            0.162    0.031    5.229    0.000    0.181    0.181
##     NFP_GOV            0.118    0.045    2.606    0.009    0.083    0.083
##     NFP_ANO           -0.082    0.046   -1.792    0.073   -0.072   -0.072
##     NFP_INF            0.106    0.024    4.383    0.000    0.153    0.153
##     NFP_GEN            0.226    0.037    6.053    0.000    0.196    0.196
##   HEX_HOH_FAI ~~                                                         
##     HEX_HOH_GRE        0.350    0.047    7.487    0.000    0.265    0.265
##     HEX_HOH_MOD        0.346    0.049    7.012    0.000    0.227    0.227
##     HEX_EMO_FEA        0.302    0.068    4.432    0.000    0.147    0.147
##     HEX_EMO_ANX       -0.430    0.074   -5.831    0.000   -0.178   -0.178
##     HEX_EMO_DEP        0.100    0.062    1.622    0.105    0.049    0.049
##     HEX_EMO_SEN        0.555    0.068    8.183    0.000    0.262    0.262
##     HEX_EXT_SSE        0.817    0.073   11.154    0.000    0.375    0.375
##     HEX_EXT_BOL        0.369    0.070    5.264    0.000    0.172    0.172
##     HEX_EXT_SOC        0.278    0.063    4.430    0.000    0.133    0.133
##     HEX_EXT_LIV        0.835    0.072   11.562    0.000    0.376    0.376
##     HEX_AGR_FOR        0.773    0.081    9.517    0.000    0.289    0.289
##     HEX_AGR_GEN        0.487    0.058    8.345    0.000    0.281    0.281
##     HEX_AGR_FLX        0.508    0.056    9.080    0.000    0.362    0.362
##     HEX_AGR_PAT        0.487    0.060    8.093    0.000    0.255    0.255
##     HEX_CNS_ORG        0.664    0.062   10.779    0.000    0.370    0.370
##     HEX_CNS_DIL        0.678    0.054   12.487    0.000    0.497    0.497
##     HEX_CNS_PER        0.425    0.045    9.542    0.000    0.399    0.399
##     HEX_CNS_PRU        0.678    0.060   11.272    0.000    0.411    0.411
##     HEX_OPN_AES        0.359    0.075    4.779    0.000    0.154    0.154
##     HEX_OPN_INQ        0.342    0.068    5.010    0.000    0.155    0.155
##     HEX_OPN_CRE        0.189    0.050    3.820    0.000    0.118    0.118
##     HEX_OPN_UNC       -0.092    0.045   -2.028    0.043   -0.072   -0.072
##     HEX_ALT            0.680    0.052   13.013    0.000    0.537    0.537
##     NFP_PHY           -0.425    0.065   -6.519    0.000   -0.203   -0.203
##     NFP_PSY           -0.369    0.052   -7.108    0.000   -0.230   -0.230
##     NFP_SOC           -0.712    0.076   -9.415    0.000   -0.308   -0.308
##     NFP_COM            0.150    0.041    3.684    0.000    0.115    0.115
##     NFP_GOV           -0.092    0.061   -1.505    0.132   -0.044   -0.044
##     NFP_ANO           -0.369    0.064   -5.751    0.000   -0.223   -0.223
##     NFP_INF            0.146    0.033    4.484    0.000    0.145    0.145
##     NFP_GEN            0.275    0.050    5.520    0.000    0.164    0.164
##   HEX_HOH_GRE ~~                                                         
##     HEX_HOH_MOD        0.389    0.036   10.720    0.000    0.624    0.624
##     HEX_EMO_FEA       -0.051    0.029   -1.779    0.075   -0.061   -0.061
##     HEX_EMO_ANX       -0.013    0.031   -0.424    0.671   -0.013   -0.013
##     HEX_EMO_DEP       -0.117    0.028   -4.217    0.000   -0.139   -0.139
##     HEX_EMO_SEN       -0.017    0.027   -0.615    0.539   -0.019   -0.019
##     HEX_EXT_SSE       -0.042    0.029   -1.445    0.149   -0.047   -0.047
##     HEX_EXT_BOL       -0.107    0.030   -3.546    0.000   -0.122   -0.122
##     HEX_EXT_SOC       -0.247    0.032   -7.671    0.000   -0.290   -0.290
##     HEX_EXT_LIV       -0.084    0.028   -2.968    0.003   -0.092   -0.092
##     HEX_AGR_FOR        0.050    0.033    1.496    0.135    0.045    0.045
##     HEX_AGR_GEN        0.081    0.024    3.428    0.001    0.115    0.115
##     HEX_AGR_FLX        0.088    0.021    4.150    0.000    0.153    0.153
##     HEX_AGR_PAT        0.126    0.026    4.876    0.000    0.162    0.162
##     HEX_CNS_ORG        0.003    0.023    0.139    0.889    0.004    0.004
##     HEX_CNS_DIL        0.023    0.018    1.245    0.213    0.040    0.040
##     HEX_CNS_PER        0.020    0.015    1.368    0.171    0.047    0.047
##     HEX_CNS_PRU        0.066    0.023    2.860    0.004    0.098    0.098
##     HEX_OPN_AES        0.030    0.032    0.946    0.344    0.031    0.031
##     HEX_OPN_INQ        0.034    0.029    1.198    0.231    0.038    0.038
##     HEX_OPN_CRE       -0.035    0.021   -1.670    0.095   -0.053   -0.053
##     HEX_OPN_UNC        0.003    0.019    0.166    0.868    0.006    0.006
##     HEX_ALT            0.106    0.021    5.151    0.000    0.205    0.205
##     NFP_PHY            0.039    0.027    1.426    0.154    0.045    0.045
##     NFP_PSY           -0.036    0.021   -1.723    0.085   -0.056   -0.056
##     NFP_SOC            0.086    0.031    2.763    0.006    0.091    0.091
##     NFP_COM            0.018    0.017    1.058    0.290    0.034    0.034
##     NFP_GOV           -0.029    0.026   -1.112    0.266   -0.034   -0.034
##     NFP_ANO           -0.069    0.027   -2.572    0.010   -0.101   -0.101
##     NFP_INF            0.014    0.013    1.056    0.291    0.034    0.034
##     NFP_GEN           -0.025    0.021   -1.224    0.221   -0.037   -0.037
##   HEX_HOH_MOD ~~                                                         
##     HEX_EMO_FEA        0.110    0.034    3.222    0.001    0.113    0.113
##     HEX_EMO_ANX        0.197    0.038    5.261    0.000    0.172    0.172
##     HEX_EMO_DEP       -0.094    0.031   -2.988    0.003   -0.097   -0.097
##     HEX_EMO_SEN        0.186    0.034    5.545    0.000    0.186    0.186
##     HEX_EXT_SSE       -0.190    0.035   -5.393    0.000   -0.185   -0.185
##     HEX_EXT_BOL       -0.329    0.038   -8.607    0.000   -0.325   -0.325
##     HEX_EXT_SOC       -0.339    0.036   -9.476    0.000   -0.344   -0.344
##     HEX_EXT_LIV       -0.164    0.034   -4.870    0.000   -0.156   -0.156
##     HEX_AGR_FOR       -0.018    0.039   -0.473    0.636   -0.015   -0.015
##     HEX_AGR_GEN        0.147    0.028    5.218    0.000    0.180    0.180
##     HEX_AGR_FLX        0.102    0.024    4.192    0.000    0.154    0.154
##     HEX_AGR_PAT        0.101    0.029    3.490    0.000    0.112    0.112
##     HEX_CNS_ORG        0.037    0.027    1.368    0.171    0.043    0.043
##     HEX_CNS_DIL        0.030    0.021    1.419    0.156    0.047    0.047
##     HEX_CNS_PER        0.052    0.018    2.923    0.003    0.104    0.104
##     HEX_CNS_PRU        0.150    0.028    5.374    0.000    0.193    0.193
##     HEX_OPN_AES        0.098    0.038    2.613    0.009    0.089    0.089
##     HEX_OPN_INQ        0.010    0.034    0.284    0.777    0.009    0.009
##     HEX_OPN_CRE       -0.032    0.025   -1.300    0.193   -0.042   -0.042
##     HEX_OPN_UNC        0.026    0.023    1.131    0.258    0.042    0.042
##     HEX_ALT            0.291    0.027   10.787    0.000    0.487    0.487
##     NFP_PHY            0.127    0.033    3.910    0.000    0.129    0.129
##     NFP_PSY           -0.053    0.025   -2.119    0.034   -0.070   -0.070
##     NFP_SOC            0.145    0.037    3.966    0.000    0.133    0.133
##     NFP_COM           -0.006    0.020   -0.308    0.758   -0.010   -0.010
##     NFP_GOV           -0.058    0.031   -1.875    0.061   -0.059   -0.059
##     NFP_ANO           -0.182    0.033   -5.570    0.000   -0.233   -0.233
##     NFP_INF            0.068    0.016    4.110    0.000    0.142    0.142
##     NFP_GEN           -0.045    0.025   -1.824    0.068   -0.057   -0.057
##   HEX_EMO_FEA ~~                                                         
##     HEX_EMO_ANX        0.863    0.064   13.555    0.000    0.558    0.558
##     HEX_EMO_DEP        0.501    0.050   10.023    0.000    0.382    0.382
##     HEX_EMO_SEN        0.615    0.054   11.303    0.000    0.455    0.455
##     HEX_EXT_SSE       -0.255    0.050   -5.082    0.000   -0.183   -0.183
##     HEX_EXT_BOL       -0.507    0.055   -9.288    0.000   -0.370   -0.370
##     HEX_EXT_SOC       -0.167    0.045   -3.698    0.000   -0.126   -0.126
##     HEX_EXT_LIV       -0.269    0.048   -5.563    0.000   -0.189   -0.189
##     HEX_AGR_FOR       -0.295    0.057   -5.154    0.000   -0.172   -0.172
##     HEX_AGR_GEN       -0.065    0.039   -1.681    0.093   -0.059   -0.059
##     HEX_AGR_FLX       -0.132    0.035   -3.826    0.000   -0.147   -0.147
##     HEX_AGR_PAT       -0.168    0.042   -4.038    0.000   -0.138   -0.138
##     HEX_CNS_ORG       -0.011    0.038   -0.282    0.778   -0.009   -0.009
##     HEX_CNS_DIL       -0.112    0.031   -3.608    0.000   -0.129   -0.129
##     HEX_CNS_PER        0.073    0.026    2.830    0.005    0.107    0.107
##     HEX_CNS_PRU       -0.005    0.038   -0.118    0.906   -0.004   -0.004
##     HEX_OPN_AES       -0.062    0.054   -1.150    0.250   -0.041   -0.041
##     HEX_OPN_INQ       -0.401    0.052   -7.768    0.000   -0.285   -0.285
##     HEX_OPN_CRE       -0.077    0.035   -2.174    0.030   -0.075   -0.075
##     HEX_OPN_UNC       -0.171    0.034   -4.977    0.000   -0.208   -0.208
##     HEX_ALT            0.261    0.034    7.571    0.000    0.323    0.323
##     NFP_PHY            0.457    0.050    9.199    0.000    0.341    0.341
##     NFP_PSY            0.048    0.036    1.345    0.179    0.047    0.047
##     NFP_SOC            0.237    0.053    4.502    0.000    0.160    0.160
##     NFP_COM           -0.007    0.029   -0.241    0.809   -0.008   -0.008
##     NFP_GOV           -0.118    0.044   -2.667    0.008   -0.089   -0.089
##     NFP_ANO           -0.054    0.044   -1.215    0.225   -0.051   -0.051
##     NFP_INF            0.105    0.024    4.423    0.000    0.163    0.163
##     NFP_GEN            0.115    0.036    3.226    0.001    0.107    0.107
##   HEX_EMO_ANX ~~                                                         
##     HEX_EMO_DEP        0.525    0.052   10.024    0.000    0.341    0.341
##     HEX_EMO_SEN        0.562    0.055   10.214    0.000    0.354    0.354
##     HEX_EXT_SSE       -0.958    0.063  -15.205    0.000   -0.586   -0.586
##     HEX_EXT_BOL       -0.777    0.062  -12.571    0.000   -0.483   -0.483
##     HEX_EXT_SOC       -0.562    0.054  -10.477    0.000   -0.360   -0.360
##     HEX_EXT_LIV       -0.970    0.064  -15.243    0.000   -0.581   -0.581
##     HEX_AGR_FOR       -0.887    0.067  -13.191    0.000   -0.441   -0.441
##     HEX_AGR_GEN       -0.407    0.046   -8.826    0.000   -0.313   -0.313
##     HEX_AGR_FLX       -0.395    0.044   -9.030    0.000   -0.374   -0.374
##     HEX_AGR_PAT       -0.535    0.050  -10.739    0.000   -0.374   -0.374
##     HEX_CNS_ORG       -0.312    0.044   -7.103    0.000   -0.232   -0.232
##     HEX_CNS_DIL       -0.282    0.036   -7.861    0.000   -0.275   -0.275
##     HEX_CNS_PER        0.041    0.027    1.496    0.135    0.051    0.051
##     HEX_CNS_PRU       -0.314    0.043   -7.212    0.000   -0.253   -0.253
##     HEX_OPN_AES       -0.097    0.058   -1.683    0.092   -0.055   -0.055
##     HEX_OPN_INQ       -0.353    0.054   -6.543    0.000   -0.213   -0.213
##     HEX_OPN_CRE       -0.110    0.038   -2.870    0.004   -0.091   -0.091
##     HEX_OPN_UNC       -0.035    0.035   -0.988    0.323   -0.036   -0.036
##     HEX_ALT            0.096    0.035    2.755    0.006    0.101    0.101
##     NFP_PHY            0.718    0.056   12.910    0.000    0.456    0.456
##     NFP_PSY            0.138    0.039    3.562    0.000    0.115    0.115
##     NFP_SOC            0.719    0.061   11.692    0.000    0.414    0.414
##     NFP_COM           -0.070    0.031   -2.236    0.025   -0.071   -0.071
##     NFP_GOV           -0.109    0.048   -2.289    0.022   -0.070   -0.070
##     NFP_ANO           -0.089    0.048   -1.867    0.062   -0.072   -0.072
##     NFP_INF            0.060    0.025    2.414    0.016    0.079    0.079
##     NFP_GEN           -0.049    0.038   -1.298    0.194   -0.039   -0.039
##   HEX_EMO_DEP ~~                                                         
##     HEX_EMO_SEN        0.704    0.053   13.220    0.000    0.523    0.523
##     HEX_EXT_SSE        0.125    0.045    2.778    0.005    0.091    0.091
##     HEX_EXT_BOL        0.126    0.046    2.763    0.006    0.093    0.093
##     HEX_EXT_SOC        0.549    0.048   11.370    0.000    0.414    0.414
##     HEX_EXT_LIV        0.122    0.043    2.814    0.005    0.086    0.086
##     HEX_AGR_FOR        0.049    0.051    0.946    0.344    0.029    0.029
##     HEX_AGR_GEN       -0.069    0.036   -1.933    0.053   -0.063   -0.063
##     HEX_AGR_FLX       -0.051    0.031   -1.646    0.100   -0.057   -0.057
##     HEX_AGR_PAT       -0.196    0.039   -5.081    0.000   -0.161   -0.161
##     HEX_CNS_ORG       -0.049    0.035   -1.390    0.164   -0.043   -0.043
##     HEX_CNS_DIL        0.009    0.028    0.328    0.743    0.011    0.011
##     HEX_CNS_PER        0.009    0.023    0.378    0.706    0.013    0.013
##     HEX_CNS_PRU       -0.193    0.036   -5.306    0.000   -0.184   -0.184
##     HEX_OPN_AES       -0.013    0.049   -0.260    0.795   -0.009   -0.009
##     HEX_OPN_INQ       -0.148    0.045   -3.305    0.001   -0.106   -0.106
##     HEX_OPN_CRE        0.041    0.032    1.268    0.205    0.040    0.040
##     HEX_OPN_UNC       -0.035    0.030   -1.163    0.245   -0.043   -0.043
##     HEX_ALT            0.268    0.032    8.365    0.000    0.332    0.332
##     NFP_PHY           -0.172    0.043   -4.032    0.000   -0.129   -0.129
##     NFP_PSY           -0.645    0.045  -14.204    0.000   -0.632   -0.632
##     NFP_SOC           -0.533    0.052  -10.212    0.000   -0.362   -0.362
##     NFP_COM           -0.081    0.027   -3.018    0.003   -0.098   -0.098
##     NFP_GOV           -0.211    0.041   -5.089    0.000   -0.160   -0.160
##     NFP_ANO           -0.178    0.042   -4.261    0.000   -0.169   -0.169
##     NFP_INF           -0.071    0.022   -3.324    0.001   -0.112   -0.112
##     NFP_GEN           -0.181    0.034   -5.374    0.000   -0.170   -0.170
##   HEX_EMO_SEN ~~                                                         
##     HEX_EXT_SSE        0.135    0.047    2.874    0.004    0.094    0.094
##     HEX_EXT_BOL        0.017    0.047    0.367    0.713    0.012    0.012
##     HEX_EXT_SOC        0.348    0.046    7.639    0.000    0.255    0.255
##     HEX_EXT_LIV        0.194    0.045    4.268    0.000    0.133    0.133
##     HEX_AGR_FOR        0.238    0.054    4.392    0.000    0.135    0.135
##     HEX_AGR_GEN        0.286    0.040    7.175    0.000    0.251    0.251
##     HEX_AGR_FLX        0.100    0.033    3.054    0.002    0.108    0.108
##     HEX_AGR_PAT       -0.010    0.039   -0.250    0.802   -0.008   -0.008
##     HEX_CNS_ORG        0.103    0.037    2.780    0.005    0.087    0.087
##     HEX_CNS_DIL        0.171    0.031    5.581    0.000    0.191    0.191
##     HEX_CNS_PER        0.228    0.029    7.931    0.000    0.327    0.327
##     HEX_CNS_PRU        0.081    0.037    2.197    0.028    0.075    0.075
##     HEX_OPN_AES        0.390    0.054    7.276    0.000    0.255    0.255
##     HEX_OPN_INQ        0.078    0.046    1.687    0.092    0.054    0.054
##     HEX_OPN_CRE        0.259    0.036    7.088    0.000    0.245    0.245
##     HEX_OPN_UNC        0.105    0.032    3.299    0.001    0.124    0.124
##     HEX_ALT            0.664    0.044   15.207    0.000    0.799    0.799
##     NFP_PHY           -0.029    0.044   -0.651    0.515   -0.021   -0.021
##     NFP_PSY           -0.361    0.038   -9.388    0.000   -0.343   -0.343
##     NFP_SOC           -0.341    0.051   -6.651    0.000   -0.225   -0.225
##     NFP_COM            0.035    0.027    1.284    0.199    0.041    0.041
##     NFP_GOV           -0.122    0.042   -2.883    0.004   -0.090   -0.090
##     NFP_ANO           -0.239    0.044   -5.397    0.000   -0.220   -0.220
##     NFP_INF            0.074    0.022    3.367    0.001    0.113    0.113
##     NFP_GEN            0.052    0.034    1.548    0.122    0.047    0.047
##   HEX_EXT_SSE ~~                                                         
##     HEX_EXT_BOL        0.935    0.063   14.932    0.000    0.646    0.646
##     HEX_EXT_SOC        0.727    0.055   13.274    0.000    0.518    0.518
##     HEX_EXT_LIV        1.342    0.072   18.729    0.000    0.894    0.894
##     HEX_AGR_FOR        0.640    0.060   10.596    0.000    0.354    0.354
##     HEX_AGR_GEN        0.336    0.042    7.933    0.000    0.287    0.287
##     HEX_AGR_FLX        0.337    0.040    8.456    0.000    0.355    0.355
##     HEX_AGR_PAT        0.410    0.045    9.132    0.000    0.319    0.319
##     HEX_CNS_ORG        0.617    0.049   12.635    0.000    0.510    0.510
##     HEX_CNS_DIL        0.630    0.045   14.065    0.000    0.684    0.684
##     HEX_CNS_PER        0.210    0.029    7.266    0.000    0.293    0.293
##     HEX_CNS_PRU        0.569    0.046   12.427    0.000    0.511    0.511
##     HEX_OPN_AES        0.190    0.054    3.500    0.000    0.121    0.121
##     HEX_OPN_INQ        0.305    0.050    6.079    0.000    0.205    0.205
##     HEX_OPN_CRE        0.206    0.037    5.579    0.000    0.190    0.190
##     HEX_OPN_UNC        0.026    0.033    0.798    0.425    0.030    0.030
##     HEX_ALT            0.274    0.034    7.940    0.000    0.320    0.320
##     NFP_PHY           -0.674    0.052  -12.932    0.000   -0.477   -0.477
##     NFP_PSY           -0.504    0.043  -11.824    0.000   -0.465   -0.465
##     NFP_SOC           -1.129    0.067  -16.971    0.000   -0.723   -0.723
##     NFP_COM           -0.024    0.029   -0.844    0.399   -0.028   -0.028
##     NFP_GOV           -0.111    0.045   -2.486    0.013   -0.079   -0.079
##     NFP_ANO           -0.335    0.048   -6.995    0.000   -0.300   -0.300
##     NFP_INF           -0.035    0.023   -1.524    0.128   -0.052   -0.052
##     NFP_GEN            0.014    0.036    0.382    0.702    0.012    0.012
##   HEX_EXT_BOL ~~                                                         
##     HEX_EXT_SOC        0.893    0.062   14.429    0.000    0.645    0.645
##     HEX_EXT_LIV        0.849    0.061   14.004    0.000    0.574    0.574
##     HEX_AGR_FOR        0.400    0.059    6.776    0.000    0.225    0.225
##     HEX_AGR_GEN        0.083    0.040    2.088    0.037    0.072    0.072
##     HEX_AGR_FLX        0.169    0.036    4.712    0.000    0.181    0.181
##     HEX_AGR_PAT        0.159    0.042    3.760    0.000    0.125    0.125
##     HEX_CNS_ORG        0.326    0.043    7.652    0.000    0.274    0.274
##     HEX_CNS_DIL        0.445    0.040   11.248    0.000    0.490    0.490
##     HEX_CNS_PER        0.079    0.026    2.993    0.003    0.111    0.111
##     HEX_CNS_PRU        0.262    0.041    6.377    0.000    0.239    0.239
##     HEX_OPN_AES        0.342    0.056    6.064    0.000    0.220    0.220
##     HEX_OPN_INQ        0.474    0.054    8.849    0.000    0.324    0.324
##     HEX_OPN_CRE        0.341    0.040    8.425    0.000    0.319    0.319
##     HEX_OPN_UNC        0.199    0.036    5.584    0.000    0.232    0.232
##     HEX_ALT            0.097    0.033    2.921    0.003    0.115    0.115
##     NFP_PHY           -0.694    0.054  -12.745    0.000   -0.498   -0.498
##     NFP_PSY           -0.503    0.044  -11.454    0.000   -0.472   -0.472
##     NFP_SOC           -1.100    0.069  -15.874    0.000   -0.715   -0.715
##     NFP_COM            0.003    0.029    0.104    0.917    0.004    0.004
##     NFP_GOV           -0.046    0.045   -1.027    0.305   -0.034   -0.034
##     NFP_ANO           -0.174    0.046   -3.759    0.000   -0.158   -0.158
##     NFP_INF           -0.097    0.024   -4.009    0.000   -0.145   -0.145
##     NFP_GEN           -0.052    0.036   -1.438    0.150   -0.047   -0.047
##   HEX_EXT_SOC ~~                                                         
##     HEX_EXT_LIV        0.873    0.059   14.764    0.000    0.608    0.608
##     HEX_AGR_FOR        0.724    0.059   12.199    0.000    0.419    0.419
##     HEX_AGR_GEN        0.370    0.041    9.086    0.000    0.331    0.331
##     HEX_AGR_FLX        0.305    0.037    8.262    0.000    0.336    0.336
##     HEX_AGR_PAT        0.198    0.039    5.114    0.000    0.161    0.161
##     HEX_CNS_ORG        0.162    0.036    4.458    0.000    0.140    0.140
##     HEX_CNS_DIL        0.242    0.031    7.767    0.000    0.275    0.275
##     HEX_CNS_PER        0.024    0.023    1.051    0.293    0.035    0.035
##     HEX_CNS_PRU       -0.037    0.035   -1.044    0.296   -0.035   -0.035
##     HEX_OPN_AES        0.210    0.050    4.199    0.000    0.139    0.139
##     HEX_OPN_INQ        0.205    0.045    4.514    0.000    0.144    0.144
##     HEX_OPN_CRE        0.233    0.035    6.698    0.000    0.225    0.225
##     HEX_OPN_UNC        0.061    0.030    2.039    0.041    0.074    0.074
##     HEX_ALT            0.234    0.032    7.393    0.000    0.286    0.286
##     NFP_PHY           -0.879    0.056  -15.592    0.000   -0.650   -0.650
##     NFP_PSY           -0.520    0.042  -12.320    0.000   -0.503   -0.503
##     NFP_SOC           -1.382    0.077  -18.023    0.000   -0.927   -0.927
##     NFP_COM            0.008    0.026    0.316    0.752    0.010    0.010
##     NFP_GOV           -0.050    0.040   -1.242    0.214   -0.038   -0.038
##     NFP_ANO           -0.136    0.041   -3.290    0.001   -0.127   -0.127
##     NFP_INF           -0.106    0.022   -4.797    0.000   -0.164   -0.164
##     NFP_GEN           -0.093    0.033   -2.818    0.005   -0.086   -0.086
##   HEX_EXT_LIV ~~                                                         
##     HEX_AGR_FOR        0.752    0.061   12.323    0.000    0.408    0.408
##     HEX_AGR_GEN        0.445    0.044   10.160    0.000    0.373    0.373
##     HEX_AGR_FLX        0.399    0.041    9.618    0.000    0.412    0.412
##     HEX_AGR_PAT        0.447    0.045   10.005    0.000    0.340    0.340
##     HEX_CNS_ORG        0.573    0.047   12.124    0.000    0.464    0.464
##     HEX_CNS_DIL        0.558    0.042   13.186    0.000    0.593    0.593
##     HEX_CNS_PER        0.160    0.027    6.016    0.000    0.218    0.218
##     HEX_CNS_PRU        0.421    0.042   10.055    0.000    0.370    0.370
##     HEX_OPN_AES        0.181    0.052    3.481    0.001    0.113    0.113
##     HEX_OPN_INQ        0.254    0.048    5.309    0.000    0.167    0.167
##     HEX_OPN_CRE        0.191    0.035    5.395    0.000    0.172    0.172
##     HEX_OPN_UNC       -0.002    0.031   -0.074    0.941   -0.003   -0.003
##     HEX_ALT            0.289    0.034    8.572    0.000    0.331    0.331
##     NFP_PHY           -0.713    0.053  -13.585    0.000   -0.494   -0.494
##     NFP_PSY           -0.476    0.041  -11.473    0.000   -0.430   -0.430
##     NFP_SOC           -1.177    0.069  -17.048    0.000   -0.738   -0.738
##     NFP_COM           -0.034    0.028   -1.241    0.215   -0.039   -0.039
##     NFP_GOV           -0.114    0.043   -2.661    0.008   -0.080   -0.080
##     NFP_ANO           -0.301    0.046   -6.573    0.000   -0.264   -0.264
##     NFP_INF           -0.064    0.022   -2.863    0.004   -0.093   -0.093
##     NFP_GEN           -0.020    0.034   -0.602    0.547   -0.018   -0.018
##   HEX_AGR_FOR ~~                                                         
##     HEX_AGR_GEN        0.907    0.062   14.719    0.000    0.630    0.630
##     HEX_AGR_FLX        0.619    0.054   11.398    0.000    0.531    0.531
##     HEX_AGR_PAT        0.727    0.057   12.813    0.000    0.459    0.459
##     HEX_CNS_ORG        0.130    0.045    2.908    0.004    0.087    0.087
##     HEX_CNS_DIL        0.186    0.036    5.111    0.000    0.164    0.164
##     HEX_CNS_PER        0.029    0.029    1.004    0.315    0.033    0.033
##     HEX_CNS_PRU        0.169    0.045    3.755    0.000    0.123    0.123
##     HEX_OPN_AES        0.290    0.063    4.647    0.000    0.150    0.150
##     HEX_OPN_INQ        0.316    0.057    5.541    0.000    0.173    0.173
##     HEX_OPN_CRE        0.189    0.042    4.549    0.000    0.142    0.142
##     HEX_OPN_UNC        0.090    0.038    2.384    0.017    0.085    0.085
##     HEX_ALT            0.406    0.041   10.004    0.000    0.386    0.386
##     NFP_PHY           -0.716    0.058  -12.338    0.000   -0.412   -0.412
##     NFP_PSY           -0.280    0.043   -6.547    0.000   -0.211   -0.211
##     NFP_SOC           -0.757    0.065  -11.646    0.000   -0.394   -0.394
##     NFP_COM            0.031    0.033    0.940    0.347    0.029    0.029
##     NFP_GOV            0.026    0.051    0.513    0.608    0.015    0.015
##     NFP_ANO           -0.102    0.051   -1.989    0.047   -0.074   -0.074
##     NFP_INF           -0.061    0.026   -2.326    0.020   -0.074   -0.074
##     NFP_GEN            0.000    0.041    0.008    0.994    0.000    0.000
##   HEX_AGR_GEN ~~                                                         
##     HEX_AGR_FLX        0.539    0.051   10.563    0.000    0.713    0.713
##     HEX_AGR_PAT        0.592    0.046   12.879    0.000    0.578    0.578
##     HEX_CNS_ORG        0.120    0.031    3.806    0.000    0.124    0.124
##     HEX_CNS_DIL        0.159    0.026    6.065    0.000    0.217    0.217
##     HEX_CNS_PER        0.079    0.021    3.766    0.000    0.138    0.138
##     HEX_CNS_PRU        0.167    0.032    5.231    0.000    0.189    0.189
##     HEX_OPN_AES        0.273    0.045    6.103    0.000    0.218    0.218
##     HEX_OPN_INQ        0.222    0.040    5.521    0.000    0.188    0.188
##     HEX_OPN_CRE        0.157    0.030    5.311    0.000    0.182    0.182
##     HEX_OPN_UNC        0.127    0.027    4.611    0.000    0.183    0.183
##     HEX_ALT            0.385    0.033   11.747    0.000    0.566    0.566
##     NFP_PHY           -0.334    0.040   -8.327    0.000   -0.296   -0.296
##     NFP_PSY           -0.133    0.029   -4.521    0.000   -0.154   -0.154
##     NFP_SOC           -0.400    0.046   -8.770    0.000   -0.322   -0.322
##     NFP_COM            0.024    0.023    1.060    0.289    0.035    0.035
##     NFP_GOV            0.050    0.035    1.424    0.154    0.045    0.045
##     NFP_ANO           -0.080    0.036   -2.243    0.025   -0.090   -0.090
##     NFP_INF            0.001    0.018    0.066    0.947    0.002    0.002
##     NFP_GEN            0.058    0.028    2.062    0.039    0.065    0.065
##   HEX_AGR_FLX ~~                                                         
##     HEX_AGR_PAT        0.525    0.045   11.575    0.000    0.631    0.631
##     HEX_CNS_ORG        0.233    0.031    7.483    0.000    0.299    0.299
##     HEX_CNS_DIL        0.204    0.026    7.911    0.000    0.343    0.343
##     HEX_CNS_PER        0.086    0.019    4.591    0.000    0.186    0.186
##     HEX_CNS_PRU        0.260    0.032    8.188    0.000    0.361    0.361
##     HEX_OPN_AES        0.268    0.041    6.583    0.000    0.263    0.263
##     HEX_OPN_INQ        0.198    0.036    5.526    0.000    0.206    0.206
##     HEX_OPN_CRE        0.147    0.027    5.540    0.000    0.209    0.209
##     HEX_OPN_UNC        0.106    0.024    4.416    0.000    0.189    0.189
##     HEX_ALT            0.252    0.028    9.046    0.000    0.457    0.457
##     NFP_PHY           -0.399    0.040   -9.886    0.000   -0.436   -0.436
##     NFP_PSY           -0.206    0.028   -7.275    0.000   -0.295   -0.295
##     NFP_SOC           -0.439    0.045   -9.726    0.000   -0.436   -0.436
##     NFP_COM           -0.024    0.020   -1.187    0.235   -0.042   -0.042
##     NFP_GOV           -0.094    0.031   -3.041    0.002   -0.105   -0.105
##     NFP_ANO           -0.182    0.033   -5.448    0.000   -0.252   -0.252
##     NFP_INF           -0.030    0.016   -1.868    0.062   -0.068   -0.068
##     NFP_GEN            0.031    0.024    1.294    0.196    0.043    0.043
##   HEX_AGR_PAT ~~                                                         
##     HEX_CNS_ORG        0.172    0.034    5.120    0.000    0.162    0.162
##     HEX_CNS_DIL        0.187    0.028    6.727    0.000    0.232    0.232
##     HEX_CNS_PER        0.117    0.023    5.147    0.000    0.186    0.186
##     HEX_CNS_PRU        0.414    0.038   10.822    0.000    0.424    0.424
##     HEX_OPN_AES        0.263    0.047    5.660    0.000    0.191    0.191
##     HEX_OPN_INQ        0.258    0.042    6.072    0.000    0.198    0.198
##     HEX_OPN_CRE        0.142    0.031    4.624    0.000    0.149    0.149
##     HEX_OPN_UNC        0.113    0.028    3.991    0.000    0.149    0.149
##     HEX_ALT            0.296    0.031    9.630    0.000    0.395    0.395
##     NFP_PHY           -0.313    0.041   -7.617    0.000   -0.252   -0.252
##     NFP_PSY           -0.084    0.030   -2.786    0.005   -0.089   -0.089
##     NFP_SOC           -0.367    0.046   -7.898    0.000   -0.268   -0.268
##     NFP_COM            0.009    0.024    0.391    0.696    0.012    0.012
##     NFP_GOV            0.014    0.037    0.369    0.712    0.011    0.011
##     NFP_ANO           -0.116    0.038   -3.066    0.002   -0.118   -0.118
##     NFP_INF            0.012    0.019    0.635    0.525    0.020    0.020
##     NFP_GEN            0.060    0.030    2.023    0.043    0.061    0.061
##   HEX_CNS_ORG ~~                                                         
##     HEX_CNS_DIL        0.532    0.040   13.182    0.000    0.702    0.702
##     HEX_CNS_PER        0.339    0.032   10.622    0.000    0.574    0.574
##     HEX_CNS_PRU        0.676    0.047   14.301    0.000    0.738    0.738
##     HEX_OPN_AES        0.136    0.043    3.178    0.001    0.105    0.105
##     HEX_OPN_INQ        0.153    0.039    3.927    0.000    0.125    0.125
##     HEX_OPN_CRE        0.032    0.028    1.135    0.256    0.035    0.035
##     HEX_OPN_UNC       -0.046    0.026   -1.778    0.075   -0.065   -0.065
##     HEX_ALT            0.199    0.028    7.210    0.000    0.283    0.283
##     NFP_PHY           -0.150    0.037   -4.034    0.000   -0.128   -0.128
##     NFP_PSY           -0.163    0.030   -5.507    0.000   -0.183   -0.183
##     NFP_SOC           -0.414    0.046   -9.099    0.000   -0.323   -0.323
##     NFP_COM            0.054    0.023    2.348    0.019    0.075    0.075
##     NFP_GOV           -0.030    0.035   -0.852    0.394   -0.026   -0.026
##     NFP_ANO           -0.178    0.037   -4.850    0.000   -0.193   -0.193
##     NFP_INF            0.067    0.018    3.632    0.000    0.120    0.120
##     NFP_GEN            0.122    0.029    4.276    0.000    0.131    0.131
##   HEX_CNS_DIL ~~                                                         
##     HEX_CNS_PER        0.315    0.029   10.987    0.000    0.698    0.698
##     HEX_CNS_PRU        0.531    0.039   13.770    0.000    0.760    0.760
##     HEX_OPN_AES        0.234    0.036    6.530    0.000    0.237    0.237
##     HEX_OPN_INQ        0.278    0.034    8.175    0.000    0.298    0.298
##     HEX_OPN_CRE        0.143    0.024    5.973    0.000    0.209    0.209
##     HEX_OPN_UNC        0.058    0.021    2.774    0.006    0.106    0.106
##     HEX_ALT            0.238    0.024    9.821    0.000    0.444    0.444
##     NFP_PHY           -0.210    0.031   -6.809    0.000   -0.237   -0.237
##     NFP_PSY           -0.205    0.025   -8.059    0.000   -0.302   -0.302
##     NFP_SOC           -0.457    0.040  -11.351    0.000   -0.467   -0.467
##     NFP_COM            0.073    0.019    3.897    0.000    0.133    0.133
##     NFP_GOV            0.007    0.028    0.260    0.795    0.008    0.008
##     NFP_ANO           -0.170    0.030   -5.687    0.000   -0.243   -0.243
##     NFP_INF            0.055    0.015    3.753    0.000    0.130    0.130
##     NFP_GEN            0.103    0.023    4.500    0.000    0.145    0.145
##   HEX_CNS_PER ~~                                                         
##     HEX_CNS_PRU        0.360    0.032   11.193    0.000    0.662    0.662
##     HEX_OPN_AES        0.237    0.032    7.423    0.000    0.308    0.308
##     HEX_OPN_INQ        0.196    0.028    6.881    0.000    0.269    0.269
##     HEX_OPN_CRE        0.155    0.022    7.130    0.000    0.291    0.291
##     HEX_OPN_UNC        0.103    0.019    5.432    0.000    0.242    0.242
##     HEX_ALT            0.198    0.022    9.139    0.000    0.474    0.474
##     NFP_PHY            0.047    0.024    1.947    0.052    0.068    0.068
##     NFP_PSY           -0.045    0.019   -2.385    0.017   -0.084   -0.084
##     NFP_SOC           -0.101    0.028   -3.652    0.000   -0.132   -0.132
##     NFP_COM            0.084    0.016    5.152    0.000    0.197    0.197
##     NFP_GOV            0.069    0.023    2.956    0.003    0.101    0.101
##     NFP_ANO           -0.055    0.023   -2.359    0.018   -0.101   -0.101
##     NFP_INF            0.109    0.015    7.356    0.000    0.329    0.329
##     NFP_GEN            0.174    0.022    7.929    0.000    0.314    0.314
##   HEX_CNS_PRU ~~                                                         
##     HEX_OPN_AES        0.232    0.044    5.319    0.000    0.194    0.194
##     HEX_OPN_INQ        0.263    0.040    6.550    0.000    0.234    0.234
##     HEX_OPN_CRE        0.074    0.028    2.625    0.009    0.090    0.090
##     HEX_OPN_UNC        0.038    0.026    1.467    0.142    0.058    0.058
##     HEX_ALT            0.250    0.028    8.860    0.000    0.386    0.386
##     NFP_PHY           -0.092    0.037   -2.516    0.012   -0.086   -0.086
##     NFP_PSY           -0.116    0.029   -4.040    0.000   -0.142   -0.142
##     NFP_SOC           -0.304    0.043   -7.063    0.000   -0.257   -0.257
##     NFP_COM            0.071    0.023    3.057    0.002    0.107    0.107
##     NFP_GOV           -0.015    0.035   -0.417    0.677   -0.014   -0.014
##     NFP_ANO           -0.198    0.037   -5.369    0.000   -0.234   -0.234
##     NFP_INF            0.101    0.019    5.302    0.000    0.198    0.198
##     NFP_GEN            0.125    0.028    4.384    0.000    0.146    0.146
##   HEX_OPN_AES ~~                                                         
##     HEX_OPN_INQ        1.051    0.069   15.323    0.000    0.658    0.658
##     HEX_OPN_CRE        0.906    0.062   14.715    0.000    0.778    0.778
##     HEX_OPN_UNC        0.727    0.058   12.559    0.000    0.781    0.781
##     HEX_ALT            0.393    0.039    9.997    0.000    0.429    0.429
##     NFP_PHY           -0.160    0.051   -3.136    0.002   -0.106   -0.106
##     NFP_PSY           -0.139    0.040   -3.500    0.000   -0.120   -0.120
##     NFP_SOC           -0.192    0.057   -3.344    0.001   -0.115   -0.115
##     NFP_COM            0.120    0.032    3.684    0.000    0.127    0.127
##     NFP_GOV            0.055    0.049    1.132    0.258    0.037    0.037
##     NFP_ANO           -0.023    0.049   -0.475    0.635   -0.019   -0.019
##     NFP_INF            0.079    0.025    3.092    0.002    0.108    0.108
##     NFP_GEN            0.190    0.039    4.808    0.000    0.157    0.157
##   HEX_OPN_INQ ~~                                                         
##     HEX_OPN_CRE        0.520    0.045   11.483    0.000    0.473    0.473
##     HEX_OPN_UNC        0.588    0.050   11.772    0.000    0.668    0.668
##     HEX_ALT            0.200    0.033    5.980    0.000    0.231    0.231
##     NFP_PHY           -0.272    0.047   -5.777    0.000   -0.190   -0.190
##     NFP_PSY           -0.100    0.036   -2.794    0.005   -0.091   -0.091
##     NFP_SOC           -0.234    0.052   -4.465    0.000   -0.148   -0.148
##     NFP_COM            0.149    0.030    4.957    0.000    0.168    0.168
##     NFP_GOV            0.108    0.044    2.457    0.014    0.077    0.077
##     NFP_ANO            0.109    0.045    2.455    0.014    0.097    0.097
##     NFP_INF            0.037    0.023    1.617    0.106    0.053    0.053
##     NFP_GEN            0.143    0.036    4.028    0.000    0.125    0.125
##   HEX_OPN_CRE ~~                                                         
##     HEX_OPN_UNC        0.435    0.039   11.036    0.000    0.678    0.678
##     HEX_ALT            0.239    0.027    8.858    0.000    0.378    0.378
##     NFP_PHY           -0.109    0.034   -3.216    0.001   -0.104   -0.104
##     NFP_PSY           -0.134    0.027   -4.975    0.000   -0.167   -0.167
##     NFP_SOC           -0.203    0.039   -5.222    0.000   -0.176   -0.176
##     NFP_COM            0.085    0.022    3.929    0.000    0.131    0.131
##     NFP_GOV            0.096    0.032    2.967    0.003    0.093    0.093
##     NFP_ANO            0.049    0.032    1.529    0.126    0.060    0.060
##     NFP_INF            0.056    0.017    3.326    0.001    0.112    0.112
##     NFP_GEN            0.144    0.027    5.397    0.000    0.172    0.172
##   HEX_OPN_UNC ~~                                                         
##     HEX_ALT            0.135    0.023    5.770    0.000    0.267    0.267
##     NFP_PHY           -0.031    0.031   -1.013    0.311   -0.037   -0.037
##     NFP_PSY           -0.090    0.025   -3.670    0.000   -0.141   -0.141
##     NFP_SOC            0.003    0.035    0.096    0.923    0.004    0.004
##     NFP_COM            0.045    0.020    2.296    0.022    0.087    0.087
##     NFP_GOV            0.071    0.030    2.379    0.017    0.086    0.086
##     NFP_ANO            0.058    0.030    1.941    0.052    0.088    0.088
##     NFP_INF            0.031    0.015    2.016    0.044    0.077    0.077
##     NFP_GEN            0.074    0.024    3.077    0.002    0.111    0.111
##   HEX_ALT ~~                                                             
##     NFP_PHY           -0.139    0.031   -4.474    0.000   -0.169   -0.169
##     NFP_PSY           -0.269    0.027   -9.879    0.000   -0.427   -0.427
##     NFP_SOC           -0.389    0.038  -10.225    0.000   -0.429   -0.429
##     NFP_COM            0.016    0.019    0.819    0.413    0.031    0.031
##     NFP_GOV           -0.101    0.030   -3.422    0.001   -0.125   -0.125
##     NFP_ANO           -0.251    0.033   -7.695    0.000   -0.387   -0.387
##     NFP_INF            0.069    0.016    4.368    0.000    0.174    0.174
##     NFP_GEN            0.051    0.024    2.187    0.029    0.078    0.078
##   NFP_PHY ~~                                                             
##     NFP_PSY            0.558    0.042   13.267    0.000    0.536    0.536
##     NFP_SOC            1.124    0.064   17.691    0.000    0.748    0.748
##     NFP_COM            0.185    0.029    6.332    0.000    0.219    0.219
##     NFP_GOV            0.392    0.044    8.824    0.000    0.291    0.291
##     NFP_ANO            0.393    0.047    8.430    0.000    0.365    0.365
##     NFP_INF            0.284    0.028   10.142    0.000    0.435    0.435
##     NFP_GEN            0.334    0.037    9.037    0.000    0.307    0.307
##   NFP_PSY ~~                                                             
##     NFP_SOC            0.817    0.053   15.285    0.000    0.711    0.711
##     NFP_COM            0.159    0.024    6.780    0.000    0.247    0.247
##     NFP_GOV            0.311    0.036    8.735    0.000    0.303    0.303
##     NFP_ANO            0.412    0.041   10.169    0.000    0.501    0.501
##     NFP_INF            0.170    0.020    8.524    0.000    0.341    0.341
##     NFP_GEN            0.293    0.030    9.605    0.000    0.352    0.352
##   NFP_SOC ~~                                                             
##     NFP_COM            0.096    0.031    3.089    0.002    0.103    0.103
##     NFP_GOV            0.241    0.048    5.036    0.000    0.163    0.163
##     NFP_ANO            0.484    0.054    9.042    0.000    0.408    0.408
##     NFP_INF            0.152    0.026    5.809    0.000    0.211    0.211
##     NFP_GEN            0.247    0.039    6.337    0.000    0.206    0.206
##   NFP_COM ~~                                                             
##     NFP_GOV            0.717    0.050   14.306    0.000    0.861    0.861
##     NFP_ANO            0.563    0.047   12.060    0.000    0.844    0.844
##     NFP_INF            0.346    0.030   11.629    0.000    0.855    0.855
##     NFP_GEN            0.537    0.039   13.682    0.000    0.798    0.798
##   NFP_GOV ~~                                                             
##     NFP_ANO            0.856    0.061   13.972    0.000    0.806    0.806
##     NFP_INF            0.444    0.035   12.616    0.000    0.689    0.689
##     NFP_GEN            0.722    0.046   15.736    0.000    0.673    0.673
##   NFP_ANO ~~                                                             
##     NFP_INF            0.335    0.032   10.451    0.000    0.650    0.650
##     NFP_GEN            0.561    0.045   12.396    0.000    0.654    0.654
##   NFP_INF ~~                                                             
##     NFP_GEN            0.433    0.033   12.963    0.000    0.832    0.832
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .HEX_HOH_SIN_01    1.334    0.084   15.892    0.000    1.334    0.465
##    .HEX_HOH_SIN_02    1.864    0.090   20.790    0.000    1.864    0.575
##    .HEX_HOH_SIN_03    1.055    0.075   14.117    0.000    1.055    0.408
##    .HEX_HOH_SIN_04    2.080    0.092   22.548    0.000    2.080    0.650
##    .HEX_HOH_FAI_01    1.167    0.065   18.063    0.000    1.167    0.266
##    .HEX_HOH_FAI_02    1.276    0.054   23.546    0.000    1.276    0.448
##    .HEX_HOH_FAI_03    1.491    0.061   24.251    0.000    1.491    0.492
##    .HEX_HOH_FAI_04    1.062    0.055   19.314    0.000    1.062    0.295
##    .HEX_HOH_GRE_01    2.593    0.099   26.201    0.000    2.593    0.827
##    .HEX_HOH_GRE_02    1.707    0.088   19.402    0.000    1.707    0.497
##    .HEX_HOH_GRE_03    1.107    0.093   11.850    0.000    1.107    0.346
##    .HEX_HOH_GRE_04    1.227    0.097   12.644    0.000    1.227    0.370
##    .HEX_HOH_MOD_01    1.258    0.051   24.440    0.000    1.258    0.636
##    .HEX_HOH_MOD_02    1.752    0.068   25.812    0.000    1.752    0.745
##    .HEX_HOH_MOD_03    1.076    0.050   21.643    0.000    1.076    0.493
##    .HEX_HOH_MOD_04    0.988    0.054   18.424    0.000    0.988    0.392
##    .HEX_EMO_FEA_01    1.578    0.077   20.539    0.000    1.578    0.545
##    .HEX_EMO_FEA_02    1.995    0.082   24.278    0.000    1.995    0.706
##    .HEX_EMO_FEA_03    1.586    0.079   20.031    0.000    1.586    0.529
##    .HEX_EMO_FEA_04    1.871    0.073   25.595    0.000    1.871    0.630
##    .HEX_EMO_ANX_01    1.128    0.054   20.929    0.000    1.128    0.383
##    .HEX_EMO_ANX_02    1.270    0.059   21.429    0.000    1.270    0.400
##    .HEX_EMO_ANX_03    2.286    0.090   25.438    0.000    2.286    0.637
##    .HEX_EMO_ANX_04    1.322    0.054   24.689    0.000    1.322    0.572
##    .HEX_EMO_DEP_01    1.294    0.061   21.185    0.000    1.294    0.498
##    .HEX_EMO_DEP_02    1.625    0.065   25.032    0.000    1.625    0.688
##    .HEX_EMO_DEP_03    1.179    0.054   21.741    0.000    1.179    0.481
##    .HEX_EMO_DEP_04    1.548    0.070   22.177    0.000    1.548    0.546
##    .HEX_EMO_SEN_01    1.527    0.069   22.024    0.000    1.527    0.524
##    .HEX_EMO_SEN_02    0.874    0.045   19.365    0.000    0.874    0.450
##    .HEX_EMO_SEN_03    1.209    0.051   23.661    0.000    1.209    0.616
##    .HEX_EMO_SEN_04    1.733    0.074   23.276    0.000    1.733    0.634
##    .HEX_EXT_SSE_01    1.104    0.054   20.403    0.000    1.104    0.429
##    .HEX_EXT_SSE_02    0.950    0.036   26.199    0.000    0.950    0.725
##    .HEX_EXT_SSE_03    1.644    0.068   24.340    0.000    1.644    0.551
##    .HEX_EXT_SSE_04    1.637    0.080   20.587    0.000    1.637    0.436
##    .HEX_EXT_BOL_01    1.611    0.078   20.727    0.000    1.611    0.531
##    .HEX_EXT_BOL_02    1.354    0.056   24.366    0.000    1.354    0.486
##    .HEX_EXT_BOL_03    1.465    0.070   21.025    0.000    1.465    0.497
##    .HEX_EXT_BOL_04    2.080    0.091   22.854    0.000    2.080    0.630
##    .HEX_EXT_SOC_01    1.925    0.074   25.905    0.000    1.925    0.589
##    .HEX_EXT_SOC_02    1.095    0.047   23.497    0.000    1.095    0.399
##    .HEX_EXT_SOC_03    1.293    0.054   23.857    0.000    1.293    0.418
##    .HEX_EXT_SOC_04    1.282    0.052   24.619    0.000    1.282    0.467
##    .HEX_EXT_LIV_01    1.488    0.062   24.127    0.000    1.488    0.493
##    .HEX_EXT_LIV_02    0.752    0.042   18.020    0.000    0.752    0.293
##    .HEX_EXT_LIV_03    1.678    0.065   25.730    0.000    1.678    0.640
##    .HEX_EXT_LIV_04    1.397    0.061   22.863    0.000    1.397    0.493
##    .HEX_AGR_FOR_01    0.749    0.044   16.912    0.000    0.749    0.252
##    .HEX_AGR_FOR_02    0.822    0.043   18.975    0.000    0.822    0.297
##    .HEX_AGR_FOR_03    1.142    0.042   27.140    0.000    1.142    0.840
##    .HEX_AGR_FOR_04    1.247    0.054   23.186    0.000    1.247    0.438
##    .HEX_AGR_PAT_02    1.463    0.058   25.152    0.000    1.463    0.557
##    .HEX_AGR_GEN_01    1.896    0.076   24.965    0.000    1.896    0.670
##    .HEX_AGR_GEN_02    0.921    0.042   21.693    0.000    0.921    0.492
##    .HEX_AGR_GEN_03    1.079    0.050   21.651    0.000    1.079    0.491
##    .HEX_AGR_GEN_04    1.245    0.052   23.810    0.000    1.245    0.594
##    .HEX_AGR_FLX_01    2.496    0.096   25.944    0.000    2.496    0.803
##    .HEX_AGR_FLX_02    1.390    0.056   24.917    0.000    1.390    0.728
##    .HEX_AGR_FLX_03    1.375    0.063   21.889    0.000    1.375    0.577
##    .HEX_AGR_FLX_04    1.357    0.061   22.252    0.000    1.357    0.591
##    .HEX_AGR_PAT_01    1.158    0.055   21.131    0.000    1.158    0.506
##    .HEX_AGR_PAT_03    0.895    0.058   15.505    0.000    0.895    0.400
##    .HEX_AGR_PAT_04    1.348    0.076   17.668    0.000    1.348    0.471
##    .HEX_CNS_ORG_01    1.763    0.075   23.534    0.000    1.763    0.639
##    .HEX_CNS_ORG_02    1.030    0.045   23.048    0.000    1.030    0.571
##    .HEX_CNS_ORG_03    1.398    0.067   20.926    0.000    1.398    0.468
##    .HEX_CNS_ORG_04    0.976    0.060   16.356    0.000    0.976    0.340
##    .HEX_CNS_DIL_01    1.384    0.054   25.791    0.000    1.384    0.706
##    .HEX_CNS_DIL_02    1.088    0.044   24.887    0.000    1.088    0.619
##    .HEX_CNS_DIL_03    1.093    0.058   18.848    0.000    1.093    0.446
##    .HEX_CNS_DIL_04    1.281    0.062   20.656    0.000    1.281    0.512
##    .HEX_CNS_PER_01    1.391    0.054   25.868    0.000    1.391    0.798
##    .HEX_CNS_PER_02    0.722    0.049   14.790    0.000    0.722    0.486
##    .HEX_CNS_PER_03    0.705    0.040   17.748    0.000    0.705    0.575
##    .HEX_CNS_PER_04    2.777    0.104   26.756    0.000    2.777    0.882
##    .HEX_CNS_PRU_01    1.219    0.052   23.639    0.000    1.219    0.591
##    .HEX_CNS_PRU_02    0.889    0.045   19.568    0.000    0.889    0.467
##    .HEX_CNS_PRU_03    1.433    0.058   24.739    0.000    1.433    0.710
##    .HEX_CNS_PRU_04    1.515    0.059   25.459    0.000    1.515    0.722
##    .HEX_OPN_AES_01    1.374    0.069   19.936    0.000    1.374    0.448
##    .HEX_OPN_AES_02    2.494    0.105   23.847    0.000    2.494    0.604
##    .HEX_OPN_AES_03    2.261    0.093   24.340    0.000    2.261    0.634
##    .HEX_OPN_AES_04    1.783    0.067   26.571    0.000    1.783    0.825
##    .HEX_OPN_INQ_01    1.351    0.074   18.339    0.000    1.351    0.473
##    .HEX_OPN_INQ_02    1.520    0.070   21.609    0.000    1.520    0.567
##    .HEX_OPN_INQ_03    1.810    0.084   21.633    0.000    1.810    0.568
##    .HEX_OPN_INQ_04    1.986    0.094   21.225    0.000    1.986    0.588
##    .HEX_OPN_CRE_01    1.971    0.077   25.662    0.000    1.971    0.711
##    .HEX_OPN_CRE_02    1.262    0.062   20.325    0.000    1.262    0.420
##    .HEX_OPN_CRE_03    1.322    0.056   23.729    0.000    1.322    0.566
##    .HEX_OPN_CRE_04    1.408    0.073   19.305    0.000    1.408    0.389
##    .HEX_OPN_UNC_01    1.975    0.081   24.509    0.000    1.975    0.794
##    .HEX_OPN_UNC_02    1.316    0.052   25.091    0.000    1.316    0.765
##    .HEX_OPN_UNC_03    2.482    0.094   26.504    0.000    2.482    0.871
##    .HEX_OPN_UNC_04    1.668    0.096   17.327    0.000    1.668    0.538
##    .HEX_ALT_01        0.880    0.037   23.810    0.000    0.880    0.639
##    .HEX_ALT_02        1.564    0.060   26.271    0.000    1.564    0.772
##    .HEX_ALT_03        1.781    0.069   25.857    0.000    1.781    0.744
##    .HEX_ALT_04        1.615    0.065   24.913    0.000    1.615    0.691
##    .NFP_PHY_01        0.782    0.042   18.747    0.000    0.782    0.365
##    .NFP_PHY_02        1.508    0.061   24.656    0.000    1.508    0.615
##    .NFP_PHY_03        1.825    0.076   23.967    0.000    1.825    0.569
##    .NFP_PHY_04        1.075    0.045   24.113    0.000    1.075    0.578
##    .NFP_GEN_01        0.750    0.032   23.546    0.000    0.750    0.387
##    .NFP_PSY_01        1.334    0.053   24.990    0.000    1.334    0.626
##    .NFP_PSY_02        1.467    0.059   24.818    0.000    1.467    0.612
##    .NFP_PSY_03        1.027    0.053   19.240    0.000    1.027    0.372
##    .NFP_PSY_04        1.783    0.068   26.168    0.000    1.783    0.740
##    .NFP_INF_01        1.002    0.040   24.792    0.000    1.002    0.514
##    .NFP_SOC_01        1.399    0.059   23.570    0.000    1.399    0.458
##    .NFP_SOC_02        1.560    0.060   25.953    0.000    1.560    0.579
##    .NFP_SOC_03        1.420    0.063   22.562    0.000    1.420    0.417
##    .NFP_SOC_04        1.209    0.045   26.925    0.000    1.209    0.705
##    .NFP_COM_01        1.847    0.069   26.923    0.000    1.847    0.779
##    .NFP_COM_02        1.688    0.063   26.734    0.000    1.688    0.746
##    .NFP_COM_03        1.018    0.043   23.655    0.000    1.018    0.463
##    .NFP_COM_04        0.710    0.034   20.789    0.000    0.710    0.361
##    .NFP_GOV_01        1.090    0.048   22.509    0.000    1.090    0.451
##    .NFP_GOV_02        0.835    0.048   17.510    0.000    0.835    0.347
##    .NFP_GOV_03        1.511    0.064   23.690    0.000    1.511    0.520
##    .NFP_GOV_04        0.956    0.051   18.665    0.000    0.956    0.385
##    .NFP_ANO_01        2.712    0.109   24.911    0.000    2.712    0.761
##    .NFP_ANO_02        1.570    0.064   24.667    0.000    1.570    0.732
##    .NFP_ANO_03        1.605    0.059   27.232    0.000    1.605    0.904
##    .NFP_ANO_04        1.698    0.078   21.841    0.000    1.698    0.650
##    .NFP_INF_02        0.769    0.035   22.016    0.000    0.769    0.516
##    .NFP_INF_03        0.674    0.033   20.319    0.000    0.674    0.447
##    .NFP_INF_04        1.038    0.043   24.232    0.000    1.038    0.564
##    .NFP_GEN_02        0.372    0.019   19.425    0.000    0.372    0.277
##    .NFP_GEN_03        1.524    0.059   25.725    0.000    1.524    0.598
##    .NFP_GEN_04        0.397    0.019   20.613    0.000    0.397    0.308
##     HEX_HOH_SIN       1.534    0.114   13.411    0.000    1.000    1.000
##     HEX_HOH_FAI       3.224    0.160   20.154    0.000    1.000    1.000
##     HEX_HOH_GRE       0.541    0.071    7.571    0.000    1.000    1.000
##     HEX_HOH_MOD       0.720    0.060   11.970    0.000    1.000    1.000
##     HEX_EMO_FEA       1.316    0.101   12.972    0.000    1.000    1.000
##     HEX_EMO_ANX       1.818    0.104   17.465    0.000    1.000    1.000
##     HEX_EMO_DEP       1.307    0.090   14.475    0.000    1.000    1.000
##     HEX_EMO_SEN       1.387    0.099   14.041    0.000    1.000    1.000
##     HEX_EXT_SSE       1.469    0.091   16.086    0.000    1.000    1.000
##     HEX_EXT_BOL       1.426    0.106   13.438    0.000    1.000    1.000
##     HEX_EXT_SOC       1.342    0.099   13.600    0.000    1.000    1.000
##     HEX_EXT_LIV       1.533    0.099   15.420    0.000    1.000    1.000
##     HEX_AGR_FOR       2.220    0.109   20.341    0.000    1.000    1.000
##     HEX_AGR_GEN       0.932    0.082   11.432    0.000    1.000    1.000
##     HEX_AGR_FLX       0.613    0.074    8.269    0.000    1.000    1.000
##     HEX_AGR_PAT       1.129    0.079   14.221    0.000    1.000    1.000
##     HEX_CNS_ORG       0.995    0.086   11.561    0.000    1.000    1.000
##     HEX_CNS_DIL       0.577    0.054   10.720    0.000    1.000    1.000
##     HEX_CNS_PER       0.352    0.043    8.257    0.000    1.000    1.000
##     HEX_CNS_PRU       0.843    0.066   12.838    0.000    1.000    1.000
##     HEX_OPN_AES       1.690    0.110   15.422    0.000    1.000    1.000
##     HEX_OPN_INQ       1.507    0.106   14.192    0.000    1.000    1.000
##     HEX_OPN_CRE       0.803    0.076   10.541    0.000    1.000    1.000
##     HEX_OPN_UNC       0.513    0.066    7.731    0.000    1.000    1.000
##     HEX_ALT           0.497    0.043   11.668    0.000    1.000    1.000
##     NFP_PHY           1.362    0.078   17.431    0.000    1.000    1.000
##     NFP_PSY           0.797    0.064   12.417    0.000    1.000    1.000
##     NFP_SOC           1.658    0.103   16.141    0.000    1.000    1.000
##     NFP_COM           0.523    0.056    9.325    0.000    1.000    1.000
##     NFP_GOV           1.326    0.083   16.054    0.000    1.000    1.000
##     NFP_ANO           0.851    0.096    8.847    0.000    1.000    1.000
##     NFP_INF           0.313    0.037    8.504    0.000    1.000    1.000
##     NFP_GEN           0.867    0.062   14.040    0.000    1.000    1.000
# get standardized data
d_fac <- standardizedsolution(fit_fac)

As expected, throws the same warning. Let’s hence again use correlations of observed mean values.

tab_cor_fac_m <- d %>%
    select(paste0(vars_pers_fac, "_M"), paste0(vars_pri, "_M")) %>%
    cor(use = "pairwise") %>%
    round(2) %>%
    as.data.frame() %>%
    select(starts_with("NFP")) %>%
    head(25) %>%
    relocate(paste0(vars_pri, "_M")) %>%
    rownames_to_column("Facets") %>%
    mutate(Facets = factor(x = Facets, levels = paste0(vars_pers_fac, "_M"), labels = vars_pers_fac_txt)) %>%
    arrange(Facets) %>%
    set_names(c("Personality factors", vars_pri_txt_abr))
tab_cor_fac_m

SES

Let’s directly inspect results of correlations between means of observed scores.

# make table
tab_cor_ses_m <- d %>%
    select(all_of(vars_ses), all_of(paste0(vars_pri, "_M"))) %>%
    cor(use = "pairwise") %>%
    round(2) %>%
    as.data.frame() %>%
    select(starts_with("NFP")) %>%
    head(7) %>%
    cbind(Sociodemographics = factor(vars_ses, levels = vars_ses, labels = vars_ses_txt), .) %>%
    remove_rownames() %>%
    set_names(c("Sociodemographics", vars_pri_txt_abr))

tab_cor_ses_m

Regression

As preregistered, also look at multiple regression. Directly begin with means of observed values. Let’s analyze in one single path-model.

Let’s also look only at dimensions, as facets are strongly correlated with one another, leading to problems of multicollinearity.

model_reg <- "
NFP_INF_M + NFP_PSY_M + NFP_PHY_M + NFP_SOC_M + NFP_GOV_M + NFP_COM_M + NFP_ANO_M + NFP_GEN_M ~ HEX_HOH_M + HEX_EMO_M + HEX_EXT_M + HEX_AGR_M + HEX_CNS_M + HEX_OPN_M + age + male + white + relation + college + income + conserv
"
fit_reg <- sem(model_reg, d, estimator = "ML", fixed.x = TRUE)
summary(fit_reg, standardized = TRUE, fit = TRUE)
## lavaan 0.6.17 ended normally after 51 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                       140
## 
##                                                   Used       Total
##   Number of observations                          1544        1550
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                              7981.130
##   Degrees of freedom                               132
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -15201.112
##   Loglikelihood unrestricted model (H1)     -15201.112
##                                                       
##   Akaike (AIC)                               30682.224
##   Bayesian (BIC)                             31430.122
##   Sample-size adjusted Bayesian (SABIC)      30985.376
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value H_0: RMSEA <= 0.050                       NA
##   P-value H_0: RMSEA >= 0.080                       NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   NFP_INF_M ~                                                           
##     HEX_HOH_M         0.060    0.029    2.083    0.037    0.060    0.058
##     HEX_EMO_M        -0.017    0.030   -0.575    0.565   -0.017   -0.015
##     HEX_EXT_M        -0.274    0.028   -9.755    0.000   -0.274   -0.293
##     HEX_AGR_M        -0.091    0.031   -2.961    0.003   -0.091   -0.084
##     HEX_CNS_M         0.258    0.032    8.116    0.000    0.258    0.221
##     HEX_OPN_M         0.110    0.026    4.231    0.000    0.110    0.107
##     age               0.017    0.015    1.126    0.260    0.017    0.029
##     male              0.016    0.053    0.311    0.756    0.016    0.008
##     white            -0.260    0.058   -4.513    0.000   -0.260   -0.109
##     relation         -0.086    0.051   -1.676    0.094   -0.086   -0.041
##     college          -0.143    0.055   -2.596    0.009   -0.143   -0.067
##     income           -0.041    0.036   -1.152    0.250   -0.041   -0.031
##     conserv           0.061    0.014    4.314    0.000    0.061    0.108
##   NFP_PSY_M ~                                                           
##     HEX_HOH_M        -0.119    0.030   -4.014    0.000   -0.119   -0.100
##     HEX_EMO_M        -0.365    0.031  -11.843    0.000   -0.365   -0.283
##     HEX_EXT_M        -0.594    0.029  -20.584    0.000   -0.594   -0.550
##     HEX_AGR_M        -0.057    0.032   -1.790    0.073   -0.057   -0.045
##     HEX_CNS_M         0.086    0.033    2.639    0.008    0.086    0.064
##     HEX_OPN_M         0.020    0.027    0.740    0.459    0.020    0.017
##     age               0.007    0.016    0.472    0.637    0.007    0.011
##     male             -0.008    0.054   -0.143    0.886   -0.008   -0.003
##     white            -0.187    0.059   -3.148    0.002   -0.187   -0.067
##     relation          0.005    0.052    0.096    0.924    0.005    0.002
##     college           0.049    0.057    0.864    0.388    0.049    0.020
##     income            0.049    0.037    1.347    0.178    0.049    0.032
##     conserv           0.070    0.015    4.829    0.000    0.070    0.108
##   NFP_PHY_M ~                                                           
##     HEX_HOH_M        -0.053    0.030   -1.789    0.074   -0.053   -0.043
##     HEX_EMO_M         0.064    0.031    2.083    0.037    0.064    0.048
##     HEX_EXT_M        -0.594    0.029  -20.713    0.000   -0.594   -0.533
##     HEX_AGR_M        -0.220    0.032   -6.976    0.000   -0.220   -0.169
##     HEX_CNS_M         0.237    0.033    7.295    0.000    0.237    0.170
##     HEX_OPN_M         0.028    0.027    1.037    0.300    0.028    0.023
##     age              -0.045    0.016   -2.870    0.004   -0.045   -0.062
##     male             -0.106    0.054   -1.979    0.048   -0.106   -0.045
##     white             0.162    0.059    2.755    0.006    0.162    0.057
##     relation         -0.005    0.052   -0.094    0.925   -0.005   -0.002
##     college          -0.018    0.056   -0.328    0.743   -0.018   -0.007
##     income           -0.038    0.036   -1.044    0.296   -0.038   -0.024
##     conserv           0.038    0.015    2.594    0.009    0.038    0.056
##   NFP_SOC_M ~                                                           
##     HEX_HOH_M        -0.037    0.025   -1.527    0.127   -0.037   -0.028
##     HEX_EMO_M        -0.226    0.025   -8.908    0.000   -0.226   -0.158
##     HEX_EXT_M        -0.960    0.024  -40.297    0.000   -0.960   -0.798
##     HEX_AGR_M        -0.144    0.026   -5.519    0.000   -0.144   -0.103
##     HEX_CNS_M         0.109    0.027    4.040    0.000    0.109    0.072
##     HEX_OPN_M         0.117    0.022    5.277    0.000    0.117    0.088
##     age               0.003    0.013    0.258    0.797    0.003    0.004
##     male             -0.187    0.045   -4.196    0.000   -0.187   -0.073
##     white            -0.014    0.049   -0.281    0.779   -0.014   -0.004
##     relation         -0.097    0.043   -2.243    0.025   -0.097   -0.037
##     college          -0.004    0.047   -0.094    0.925   -0.004   -0.002
##     income            0.016    0.030    0.530    0.596    0.016    0.009
##     conserv           0.019    0.012    1.551    0.121    0.019    0.026
##   NFP_GOV_M ~                                                           
##     HEX_HOH_M         0.009    0.040    0.219    0.826    0.009    0.006
##     HEX_EMO_M        -0.156    0.041   -3.798    0.000   -0.156   -0.105
##     HEX_EXT_M        -0.178    0.038   -4.622    0.000   -0.178   -0.143
##     HEX_AGR_M        -0.084    0.042   -1.984    0.047   -0.084   -0.058
##     HEX_CNS_M         0.050    0.044    1.154    0.248    0.050    0.032
##     HEX_OPN_M         0.233    0.036    6.514    0.000    0.233    0.170
##     age              -0.015    0.021   -0.738    0.461   -0.015   -0.019
##     male              0.227    0.072    3.144    0.002    0.227    0.085
##     white            -0.102    0.079   -1.286    0.198   -0.102   -0.032
##     relation          0.005    0.070    0.071    0.943    0.005    0.002
##     college          -0.157    0.076   -2.080    0.038   -0.157   -0.055
##     income           -0.039    0.049   -0.797    0.426   -0.039   -0.022
##     conserv           0.165    0.019    8.482    0.000    0.165    0.219
##   NFP_COM_M ~                                                           
##     HEX_HOH_M         0.148    0.033    4.550    0.000    0.148    0.131
##     HEX_EMO_M        -0.046    0.034   -1.355    0.175   -0.046   -0.038
##     HEX_EXT_M        -0.060    0.032   -1.911    0.056   -0.060   -0.059
##     HEX_AGR_M        -0.099    0.035   -2.837    0.005   -0.099   -0.083
##     HEX_CNS_M         0.137    0.036    3.826    0.000    0.137    0.108
##     HEX_OPN_M         0.188    0.029    6.376    0.000    0.188    0.167
##     age              -0.019    0.017   -1.103    0.270   -0.019   -0.029
##     male              0.184    0.059    3.096    0.002    0.184    0.084
##     white            -0.189    0.065   -2.915    0.004   -0.189   -0.073
##     relation         -0.076    0.058   -1.319    0.187   -0.076   -0.034
##     college          -0.044    0.062   -0.703    0.482   -0.044   -0.019
##     income           -0.017    0.040   -0.416    0.677   -0.017   -0.012
##     conserv           0.092    0.016    5.758    0.000    0.092    0.150
##   NFP_ANO_M ~                                                           
##     HEX_HOH_M        -0.118    0.031   -3.814    0.000   -0.118   -0.106
##     HEX_EMO_M        -0.164    0.032   -5.105    0.000   -0.164   -0.137
##     HEX_EXT_M        -0.206    0.030   -6.842    0.000   -0.206   -0.205
##     HEX_AGR_M        -0.090    0.033   -2.729    0.006   -0.090   -0.077
##     HEX_CNS_M        -0.102    0.034   -3.000    0.003   -0.102   -0.081
##     HEX_OPN_M         0.143    0.028    5.106    0.000    0.143    0.129
##     age              -0.003    0.016   -0.208    0.835   -0.003   -0.005
##     male              0.171    0.056    3.027    0.002    0.171    0.079
##     white            -0.317    0.062   -5.131    0.000   -0.317   -0.123
##     relation         -0.101    0.055   -1.839    0.066   -0.101   -0.045
##     college           0.048    0.059    0.814    0.416    0.048    0.021
##     income           -0.006    0.038   -0.156    0.876   -0.006   -0.004
##     conserv           0.092    0.015    6.030    0.000    0.092    0.151
##   NFP_GEN_M ~                                                           
##     HEX_HOH_M         0.015    0.031    0.484    0.628    0.015    0.013
##     HEX_EMO_M        -0.000    0.032   -0.015    0.988   -0.000   -0.000
##     HEX_EXT_M        -0.227    0.030   -7.467    0.000   -0.227   -0.224
##     HEX_AGR_M        -0.043    0.033   -1.281    0.200   -0.043   -0.036
##     HEX_CNS_M         0.278    0.034    8.075    0.000    0.278    0.219
##     HEX_OPN_M         0.208    0.028    7.350    0.000    0.208    0.186
##     age               0.026    0.017    1.566    0.117    0.026    0.040
##     male              0.144    0.057    2.527    0.012    0.144    0.067
##     white            -0.363    0.062   -5.815    0.000   -0.363   -0.140
##     relation         -0.195    0.055   -3.531    0.000   -0.195   -0.087
##     college          -0.101    0.060   -1.686    0.092   -0.101   -0.043
##     income           -0.024    0.039   -0.628    0.530   -0.024   -0.017
##     conserv           0.107    0.015    6.982    0.000    0.107    0.175
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##  .NFP_INF_M ~~                                                          
##    .NFP_PSY_M         0.307    0.024   13.068    0.000    0.307    0.353
##    .NFP_PHY_M         0.292    0.023   12.549    0.000    0.292    0.337
##    .NFP_SOC_M         0.130    0.019    6.997    0.000    0.130    0.181
##    .NFP_GOV_M         0.634    0.034   18.812    0.000    0.634    0.545
##    .NFP_COM_M         0.555    0.028   19.714    0.000    0.555    0.580
##    .NFP_ANO_M         0.377    0.025   15.029    0.000    0.377    0.414
##    .NFP_GEN_M         0.581    0.028   21.021    0.000    0.581    0.633
##  .NFP_PSY_M ~~                                                          
##    .NFP_PHY_M         0.241    0.023   10.258    0.000    0.241    0.270
##    .NFP_SOC_M         0.200    0.020   10.270    0.000    0.200    0.271
##    .NFP_GOV_M         0.225    0.031    7.281    0.000    0.225    0.189
##    .NFP_COM_M         0.176    0.025    6.942    0.000    0.176    0.179
##    .NFP_ANO_M         0.188    0.024    7.763    0.000    0.188    0.202
##    .NFP_GEN_M         0.310    0.025   12.245    0.000    0.310    0.328
##  .NFP_PHY_M ~~                                                          
##    .NFP_SOC_M         0.236    0.020   11.991    0.000    0.236    0.320
##    .NFP_GOV_M         0.287    0.031    9.236    0.000    0.287    0.242
##    .NFP_COM_M         0.153    0.025    6.087    0.000    0.153    0.157
##    .NFP_ANO_M         0.158    0.024    6.576    0.000    0.158    0.170
##    .NFP_GEN_M         0.262    0.025   10.576    0.000    0.262    0.279
##  .NFP_SOC_M ~~                                                          
##    .NFP_GOV_M         0.088    0.025    3.474    0.001    0.088    0.089
##    .NFP_COM_M         0.064    0.021    3.067    0.002    0.064    0.078
##    .NFP_ANO_M         0.110    0.020    5.557    0.000    0.110    0.143
##    .NFP_GEN_M         0.178    0.020    8.725    0.000    0.178    0.228
##  .NFP_GOV_M ~~                                                          
##    .NFP_COM_M         0.846    0.040   21.304    0.000    0.846    0.645
##    .NFP_ANO_M         0.589    0.035   16.777    0.000    0.589    0.472
##    .NFP_GEN_M         0.701    0.037   19.107    0.000    0.701    0.556
##  .NFP_COM_M ~~                                                          
##    .NFP_ANO_M         0.531    0.029   18.077    0.000    0.531    0.518
##    .NFP_GEN_M         0.639    0.031   20.649    0.000    0.639    0.618
##  .NFP_ANO_M ~~                                                          
##    .NFP_GEN_M         0.441    0.027   16.042    0.000    0.441    0.447
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .NFP_INF_M         0.848    0.031   27.785    0.000    0.848    0.855
##    .NFP_PSY_M         0.896    0.032   27.785    0.000    0.896    0.675
##    .NFP_PHY_M         0.885    0.032   27.785    0.000    0.885    0.625
##    .NFP_SOC_M         0.611    0.022   27.785    0.000    0.611    0.370
##    .NFP_GOV_M         1.594    0.057   27.785    0.000    1.594    0.900
##    .NFP_COM_M         1.078    0.039   27.785    0.000    1.078    0.913
##    .NFP_ANO_M         0.976    0.035   27.785    0.000    0.976    0.847
##    .NFP_GEN_M         0.994    0.036   27.785    0.000    0.994    0.852

Tables

Descriptives

Let’s first make a descriptive table with means and model fit.

# Extract model fit indices: CFI, TLI, RMSEA, SRMR
c_cfi <- c(HEX_ALT_cfi = fitmeasures(fit_HEX_ALT)["cfi.scaled"], HEX_AGR_FLX_cfi = fitmeasures(fit_HEX_AGR_FLX)["cfi.scaled"], HEX_AGR_FOR_cfi = fitmeasures(fit_HEX_AGR_FOR)["cfi.scaled"],
    HEX_AGR_GEN_cfi = fitmeasures(fit_HEX_AGR_GEN)["cfi.scaled"], HEX_AGR_PAT_cfi = fitmeasures(fit_HEX_AGR_PAT)["cfi.scaled"], HEX_CNS_DIL_cfi = fitmeasures(fit_HEX_CNS_DIL)["cfi.scaled"],
    HEX_CNS_ORG_cfi = fitmeasures(fit_HEX_CNS_ORG)["cfi.scaled"], HEX_CNS_PER_cfi = fitmeasures(fit_HEX_CNS_PER)["cfi.scaled"], HEX_CNS_PRU_cfi = fitmeasures(fit_HEX_CNS_PRU)["cfi.scaled"],
    HEX_EMO_ANX_cfi = fitmeasures(fit_HEX_EMO_ANX)["cfi.scaled"], HEX_EMO_DEP_cfi = fitmeasures(fit_HEX_EMO_DEP)["cfi.scaled"], HEX_EMO_FEA_cfi = fitmeasures(fit_HEX_EMO_FEA)["cfi.scaled"],
    HEX_EMO_SEN_cfi = fitmeasures(fit_HEX_EMO_SEN)["cfi.scaled"], HEX_EXT_BOL_cfi = fitmeasures(fit_HEX_EXT_BOL)["cfi.scaled"], HEX_EXT_LIV_cfi = fitmeasures(fit_HEX_EXT_LIV)["cfi.scaled"],
    HEX_EXT_SOC_cfi = fitmeasures(fit_HEX_EXT_SOC)["cfi.scaled"], HEX_EXT_SSE_cfi = fitmeasures(fit_HEX_EXT_SSE)["cfi.scaled"], HEX_HOH_FAI_cfi = fitmeasures(fit_HEX_HOH_FAI)["cfi.scaled"],
    HEX_HOH_GRE_cfi = fitmeasures(fit_HEX_HOH_GRE)["cfi.scaled"], HEX_HOH_MOD_cfi = fitmeasures(fit_HEX_HOH_MOD)["cfi.scaled"], HEX_HOH_SIN_cfi = fitmeasures(fit_HEX_HOH_SIN)["cfi.scaled"],
    HEX_OPN_AES_cfi = fitmeasures(fit_HEX_OPN_AES)["cfi.scaled"], HEX_OPN_CRE_cfi = fitmeasures(fit_HEX_OPN_CRE)["cfi.scaled"], HEX_OPN_INQ_cfi = fitmeasures(fit_HEX_OPN_INQ)["cfi.scaled"],
    HEX_OPN_UNC_cfi = fitmeasures(fit_HEX_OPN_UNC)["cfi.scaled"], NFP_ANO_cfi = fitmeasures(fit_NFP_ANO)["cfi.scaled"], NFP_COM_cfi = fitmeasures(fit_NFP_COM)["cfi.scaled"],
    NFP_GEN_cfi = fitmeasures(fit_NFP_GEN)["cfi.scaled"], NFP_GOV_cfi = fitmeasures(fit_NFP_GOV)["cfi.scaled"], NFP_INF_cfi = fitmeasures(fit_NFP_INF)["cfi.scaled"],
    NFP_PHY_cfi = fitmeasures(fit_NFP_PHY)["cfi.scaled"], NFP_PSY_cfi = fitmeasures(fit_NFP_PSY)["cfi.scaled"], NFP_SOC_cfi = fitmeasures(fit_NFP_SOC)["cfi.scaled"],
    HEX_HOH_srmr = fitmeasures(fit_hex_hoh)["cfi.scaled"], HEX_EMO_srmr = fitmeasures(fit_hex_emo)["cfi.scaled"], HEX_EXT_srmr = fitmeasures(fit_hex_ext)["cfi.scaled"],
    HEX_AGR_srmr = fitmeasures(fit_hex_agr)["cfi.scaled"], HEX_CNS_srmr = fitmeasures(fit_hex_cns)["cfi.scaled"], HEX_OPN_srmr = fitmeasures(fit_hex_opn)["cfi.scaled"])

c_tli <- c(HEX_ALT_tli = fitmeasures(fit_HEX_ALT)["tli.scaled"], HEX_AGR_FLX_tli = fitmeasures(fit_HEX_AGR_FLX)["tli.scaled"], HEX_AGR_FOR_tli = fitmeasures(fit_HEX_AGR_FOR)["tli.scaled"],
    HEX_AGR_GEN_tli = fitmeasures(fit_HEX_AGR_GEN)["tli.scaled"], HEX_AGR_PAT_tli = fitmeasures(fit_HEX_AGR_PAT)["tli.scaled"], HEX_CNS_DIL_tli = fitmeasures(fit_HEX_CNS_DIL)["tli.scaled"],
    HEX_CNS_ORG_tli = fitmeasures(fit_HEX_CNS_ORG)["tli.scaled"], HEX_CNS_PER_tli = fitmeasures(fit_HEX_CNS_PER)["tli.scaled"], HEX_CNS_PRU_tli = fitmeasures(fit_HEX_CNS_PRU)["tli.scaled"],
    HEX_EMO_ANX_tli = fitmeasures(fit_HEX_EMO_ANX)["tli.scaled"], HEX_EMO_DEP_tli = fitmeasures(fit_HEX_EMO_DEP)["tli.scaled"], HEX_EMO_FEA_tli = fitmeasures(fit_HEX_EMO_FEA)["tli.scaled"],
    HEX_EMO_SEN_tli = fitmeasures(fit_HEX_EMO_SEN)["tli.scaled"], HEX_EXT_BOL_tli = fitmeasures(fit_HEX_EXT_BOL)["tli.scaled"], HEX_EXT_LIV_tli = fitmeasures(fit_HEX_EXT_LIV)["tli.scaled"],
    HEX_EXT_SOC_tli = fitmeasures(fit_HEX_EXT_SOC)["tli.scaled"], HEX_EXT_SSE_tli = fitmeasures(fit_HEX_EXT_SSE)["tli.scaled"], HEX_HOH_FAI_tli = fitmeasures(fit_HEX_HOH_FAI)["tli.scaled"],
    HEX_HOH_GRE_tli = fitmeasures(fit_HEX_HOH_GRE)["tli.scaled"], HEX_HOH_MOD_tli = fitmeasures(fit_HEX_HOH_MOD)["tli.scaled"], HEX_HOH_SIN_tli = fitmeasures(fit_HEX_HOH_SIN)["tli.scaled"],
    HEX_OPN_AES_tli = fitmeasures(fit_HEX_OPN_AES)["tli.scaled"], HEX_OPN_CRE_tli = fitmeasures(fit_HEX_OPN_CRE)["tli.scaled"], HEX_OPN_INQ_tli = fitmeasures(fit_HEX_OPN_INQ)["tli.scaled"],
    HEX_OPN_UNC_tli = fitmeasures(fit_HEX_OPN_UNC)["tli.scaled"], NFP_ANO_tli = fitmeasures(fit_NFP_ANO)["tli.scaled"], NFP_COM_tli = fitmeasures(fit_NFP_COM)["tli.scaled"],
    NFP_GEN_tli = fitmeasures(fit_NFP_GEN)["tli.scaled"], NFP_GOV_tli = fitmeasures(fit_NFP_GOV)["tli.scaled"], NFP_INF_tli = fitmeasures(fit_NFP_INF)["tli.scaled"],
    NFP_PHY_tli = fitmeasures(fit_NFP_PHY)["tli.scaled"], NFP_PSY_tli = fitmeasures(fit_NFP_PSY)["tli.scaled"], NFP_SOC_tli = fitmeasures(fit_NFP_SOC)["tli.scaled"],
    HEX_HOH_srmr = fitmeasures(fit_hex_hoh)["tli.scaled"], HEX_EMO_srmr = fitmeasures(fit_hex_emo)["tli.scaled"], HEX_EXT_srmr = fitmeasures(fit_hex_ext)["tli.scaled"],
    HEX_AGR_srmr = fitmeasures(fit_hex_agr)["tli.scaled"], HEX_CNS_srmr = fitmeasures(fit_hex_cns)["tli.scaled"], HEX_OPN_srmr = fitmeasures(fit_hex_opn)["tli.scaled"])

c_rmsea <- c(HEX_ALT_rmsea = fitmeasures(fit_HEX_ALT)["rmsea.scaled"], HEX_AGR_FLX_rmsea = fitmeasures(fit_HEX_AGR_FLX)["rmsea.scaled"], HEX_AGR_FOR_rmsea = fitmeasures(fit_HEX_AGR_FOR)["rmsea.scaled"],
    HEX_AGR_GEN_rmsea = fitmeasures(fit_HEX_AGR_GEN)["rmsea.scaled"], HEX_AGR_PAT_rmsea = fitmeasures(fit_HEX_AGR_PAT)["rmsea.scaled"], HEX_CNS_DIL_rmsea = fitmeasures(fit_HEX_CNS_DIL)["rmsea.scaled"],
    HEX_CNS_ORG_rmsea = fitmeasures(fit_HEX_CNS_ORG)["rmsea.scaled"], HEX_CNS_PER_rmsea = fitmeasures(fit_HEX_CNS_PER)["rmsea.scaled"], HEX_CNS_PRU_rmsea = fitmeasures(fit_HEX_CNS_PRU)["rmsea.scaled"],
    HEX_EMO_ANX_rmsea = fitmeasures(fit_HEX_EMO_ANX)["rmsea.scaled"], HEX_EMO_DEP_rmsea = fitmeasures(fit_HEX_EMO_DEP)["rmsea.scaled"], HEX_EMO_FEA_rmsea = fitmeasures(fit_HEX_EMO_FEA)["rmsea.scaled"],
    HEX_EMO_SEN_rmsea = fitmeasures(fit_HEX_EMO_SEN)["rmsea.scaled"], HEX_EXT_BOL_rmsea = fitmeasures(fit_HEX_EXT_BOL)["rmsea.scaled"], HEX_EXT_LIV_rmsea = fitmeasures(fit_HEX_EXT_LIV)["rmsea.scaled"],
    HEX_EXT_SOC_rmsea = fitmeasures(fit_HEX_EXT_SOC)["rmsea.scaled"], HEX_EXT_SSE_rmsea = fitmeasures(fit_HEX_EXT_SSE)["rmsea.scaled"], HEX_HOH_FAI_rmsea = fitmeasures(fit_HEX_HOH_FAI)["rmsea.scaled"],
    HEX_HOH_GRE_rmsea = fitmeasures(fit_HEX_HOH_GRE)["rmsea.scaled"], HEX_HOH_MOD_rmsea = fitmeasures(fit_HEX_HOH_MOD)["rmsea.scaled"], HEX_HOH_SIN_rmsea = fitmeasures(fit_HEX_HOH_SIN)["rmsea.scaled"],
    HEX_OPN_AES_rmsea = fitmeasures(fit_HEX_OPN_AES)["rmsea.scaled"], HEX_OPN_CRE_rmsea = fitmeasures(fit_HEX_OPN_CRE)["rmsea.scaled"], HEX_OPN_INQ_rmsea = fitmeasures(fit_HEX_OPN_INQ)["rmsea.scaled"],
    HEX_OPN_UNC_rmsea = fitmeasures(fit_HEX_OPN_UNC)["rmsea.scaled"], NFP_ANO_rmsea = fitmeasures(fit_NFP_ANO)["rmsea.scaled"], NFP_COM_rmsea = fitmeasures(fit_NFP_COM)["rmsea.scaled"],
    NFP_GEN_rmsea = fitmeasures(fit_NFP_GEN)["rmsea.scaled"], NFP_GOV_rmsea = fitmeasures(fit_NFP_GOV)["rmsea.scaled"], NFP_INF_rmsea = fitmeasures(fit_NFP_INF)["rmsea.scaled"],
    NFP_PHY_rmsea = fitmeasures(fit_NFP_PHY)["rmsea.scaled"], NFP_PSY_rmsea = fitmeasures(fit_NFP_PSY)["rmsea.scaled"], NFP_SOC_rmsea = fitmeasures(fit_NFP_SOC)["rmsea.scaled"],
    HEX_HOH_srmr = fitmeasures(fit_hex_hoh)["rmsea.scaled"], HEX_EMO_srmr = fitmeasures(fit_hex_emo)["rmsea.scaled"], HEX_EXT_srmr = fitmeasures(fit_hex_ext)["rmsea.scaled"],
    HEX_AGR_srmr = fitmeasures(fit_hex_agr)["rmsea.scaled"], HEX_CNS_srmr = fitmeasures(fit_hex_cns)["rmsea.scaled"], HEX_OPN_srmr = fitmeasures(fit_hex_opn)["rmsea.scaled"])

c_srmr <- c(HEX_ALT_srmr = fitmeasures(fit_HEX_ALT)["srmr"], HEX_AGR_FLX_srmr = fitmeasures(fit_HEX_AGR_FLX)["srmr"], HEX_AGR_FOR_srmr = fitmeasures(fit_HEX_AGR_FOR)["srmr"],
    HEX_AGR_GEN_srmr = fitmeasures(fit_HEX_AGR_GEN)["srmr"], HEX_AGR_PAT_srmr = fitmeasures(fit_HEX_AGR_PAT)["srmr"], HEX_CNS_DIL_srmr = fitmeasures(fit_HEX_CNS_DIL)["srmr"],
    HEX_CNS_ORG_srmr = fitmeasures(fit_HEX_CNS_ORG)["srmr"], HEX_CNS_PER_srmr = fitmeasures(fit_HEX_CNS_PER)["srmr"], HEX_CNS_PRU_srmr = fitmeasures(fit_HEX_CNS_PRU)["srmr"],
    HEX_EMO_ANX_srmr = fitmeasures(fit_HEX_EMO_ANX)["srmr"], HEX_EMO_DEP_srmr = fitmeasures(fit_HEX_EMO_DEP)["srmr"], HEX_EMO_FEA_srmr = fitmeasures(fit_HEX_EMO_FEA)["srmr"],
    HEX_EMO_SEN_srmr = fitmeasures(fit_HEX_EMO_SEN)["srmr"], HEX_EXT_BOL_srmr = fitmeasures(fit_HEX_EXT_BOL)["srmr"], HEX_EXT_LIV_srmr = fitmeasures(fit_HEX_EXT_LIV)["srmr"],
    HEX_EXT_SOC_srmr = fitmeasures(fit_HEX_EXT_SOC)["srmr"], HEX_EXT_SSE_srmr = fitmeasures(fit_HEX_EXT_SSE)["srmr"], HEX_HOH_FAI_srmr = fitmeasures(fit_HEX_HOH_FAI)["srmr"],
    HEX_HOH_GRE_srmr = fitmeasures(fit_HEX_HOH_GRE)["srmr"], HEX_HOH_MOD_srmr = fitmeasures(fit_HEX_HOH_MOD)["srmr"], HEX_HOH_SIN_srmr = fitmeasures(fit_HEX_HOH_SIN)["srmr"],
    HEX_OPN_AES_srmr = fitmeasures(fit_HEX_OPN_AES)["srmr"], HEX_OPN_CRE_srmr = fitmeasures(fit_HEX_OPN_CRE)["srmr"], HEX_OPN_INQ_srmr = fitmeasures(fit_HEX_OPN_INQ)["srmr"],
    HEX_OPN_UNC_srmr = fitmeasures(fit_HEX_OPN_UNC)["srmr"], NFP_ANO_srmr = fitmeasures(fit_NFP_ANO)["srmr"], NFP_COM_srmr = fitmeasures(fit_NFP_COM)["srmr"],
    NFP_GEN_srmr = fitmeasures(fit_NFP_GEN)["srmr"], NFP_GOV_srmr = fitmeasures(fit_NFP_GOV)["srmr"], NFP_INF_srmr = fitmeasures(fit_NFP_INF)["srmr"],
    NFP_PHY_srmr = fitmeasures(fit_NFP_PHY)["srmr"], NFP_PSY_srmr = fitmeasures(fit_NFP_PSY)["srmr"], NFP_SOC_srmr = fitmeasures(fit_NFP_SOC)["srmr"],
    HEX_HOH_srmr = fitmeasures(fit_hex_hoh)["srmr"], HEX_EMO_srmr = fitmeasures(fit_hex_emo)["srmr"], HEX_EXT_srmr = fitmeasures(fit_hex_ext)["srmr"],
    HEX_AGR_srmr = fitmeasures(fit_hex_agr)["srmr"], HEX_CNS_srmr = fitmeasures(fit_hex_cns)["srmr"], HEX_OPN_srmr = fitmeasures(fit_hex_opn)["srmr"])

tab_des <- data.frame(Variable = factor(gsub(".{2}$", "", names(c_m)), levels = c(vars_pers_all, vars_pri), labels = c(vars_pers_all_txt, vars_pri_txt)),
    M = c_m, SD = c_sd, REL = c_rel, CFI = c_cfi, TLI = c_tli, SRMS = c_srmr, RMSEA = c_rmsea) %>%
    arrange(Variable) %>%
    mutate(across(-Variable, ~round(.x, 2))) %>%
    remove_rownames()
tab_des

Figures

Correlation

# First extract data
tab_cor <- d %>%
    correlation(select = c(vars_ses, paste0(c(vars_pers_dim, vars_pers_fac), "_M")), select2 = paste0(vars_pri, "_M"), ci = 0.9) %>%
    as.data.frame() %>%
    mutate(across(c(r, CI_low, CI_high), ~round(.x, 2))) %>%
    rename(`Need for privacy` = Parameter2, Predictor = Parameter1, Estimate = r) %>%
    mutate(category = case_when(Predictor %in% vars_ses ~ "Sociodemographics", Predictor %in% paste0(vars_pers_hoh, "_M") ~ "Honesty humility", Predictor %in%
        paste0(vars_pers_emo, "_M") ~ "Emotionality", Predictor %in% paste0(vars_pers_ext, "_M") ~ "Extraversion", Predictor %in% paste0(vars_pers_agr,
        "_M") ~ "Agreeableness", Predictor %in% paste0(vars_pers_cns, "_M") ~ "Conscientiousness", Predictor %in% paste0(vars_pers_opn, "_M") ~ "Openness",
        .default = "missing"), `Need for privacy` = factor(`Need for privacy`, levels = paste0(vars_pri, "_M"), labels = vars_pri_txt), category = factor(category,
        levels = c(vars_pers_dim_txt, "Sociodemographics")), relevant = case_when(CI_low <= -0.1 & CI_high <= -0.1 | CI_low >= 0.1 & CI_high >= 0.1 ~ "yes",
        .default = "no"), Predictor = factor(x = Predictor, levels = c(paste0(vars_pers_all, "_M"), vars_ses), labels = vars_pred_all_txt)) %>%
    select(-Method, -p, -df_error, -t, -CI)

fig_cor <- ggplot(tab_cor, aes(x = Estimate, y = Predictor, color = relevant)) + coord_cartesian(xlim = c(-0.7, 0.3)) + geom_vline(xintercept = 0, lwd = 0.5,
    colour = "darkgrey") + geom_vline(xintercept = -0.1, lwd = 0.5, colour = "darkgrey", linetype = "dashed") + geom_vline(xintercept = 0.1, lwd = 0.5,
    colour = "darkgrey", linetype = "dashed") + geom_errorbarh(aes(xmin = CI_low, xmax = CI_high), lwd = 0.5, height = 0.4, position = position_dodge(-0.7)) +
    geom_point(size = 1, position = position_dodge(-0.7)) + #   geom_pointrange(aes(xmin = CI_low, xmax = CI_high), size = .2) +  geom_point(size =
    geom_point(size = 1, position = position_dodge(-0.7)) + #   geom_pointrange(aes(xmin = CI_low, xmax = CI_high), size = .2) +  1, position =
    geom_point(size = 1, position = position_dodge(-0.7)) + #   geom_pointrange(aes(xmin = CI_low, xmax = CI_high), size = .2) +  position_dodge(-0.7))
    geom_point(size = 1, position = position_dodge(-0.7)) + #   geom_pointrange(aes(xmin = CI_low, xmax = CI_high), size = .2) +  + #
    geom_point(size = 1, position = position_dodge(-0.7)) + #   geom_pointrange(aes(xmin = CI_low, xmax = CI_high), size = .2) +  geom_pointrange(aes(xmin
    geom_point(size = 1, position = position_dodge(-0.7)) + #   geom_pointrange(aes(xmin = CI_low, xmax = CI_high), size = .2) +  = CI_low, xmax =
    geom_point(size = 1, position = position_dodge(-0.7)) + #   geom_pointrange(aes(xmin = CI_low, xmax = CI_high), size = .2) +  CI_high), size =
    geom_point(size = 1, position = position_dodge(-0.7)) + #   geom_pointrange(aes(xmin = CI_low, xmax = CI_high), size = .2) +  .2) +
scale_x_continuous(breaks = c(-0.6, -0.4, -0.2, 0, 0.2, 0.4), labels = c("-.6", "-.4", "-.2", "0", ".2", ".4")) + scale_y_discrete(limits = rev) + labs(title = "Predicting the need for privacy",
    x = "Correlation coefficient") + # theme_minimal() + x = "Correlation coefficient") + # theme_minimal() +
theme(axis.title.y = element_blank(), plot.title = element_text(hjust = 0.5), text = element_text(size = 14), axis.text.y = element_text(hjust = 1), axis.text.x = element_text(size = 10),
    legend.position = "none") + scale_color_manual(values = c("grey", "black")) + facet_grid(category ~ `Need for privacy`, scales = "free_y")

suppressWarnings(print(fig_cor, warning = F))

ggsave("figures/fig_cor.png", width = 10, height = 12)

Regression

tab_reg <- standardizedsolution(fit_reg, ci = TRUE) %>%
    as.data.frame() %>%
    filter(op == "~", lhs %in% paste0(vars_pri, "_M")) %>%
    select(`Need for privacy` = lhs, Predictor = rhs, Estimate = est.std, CI_low = ci.lower, CI_high = ci.upper) %>%
    mutate(Predictor = factor(Predictor, levels = c(paste0(vars_pers_dim, "_M"), vars_ses), labels = c(vars_pers_dim_txt, vars_ses_txt)), `Need for privacy` = factor(`Need for privacy`,
        levels = paste0(vars_pri, "_M"), labels = c(vars_pri_txt)), category = c(rep("Personality", 6), "Sociodemographics" %>%
        rep(7)) %>%
        rep(length(vars_pri_txt)), relevant = case_when(CI_low <= -0.1 & CI_high <= -0.1 | CI_low >= 0.1 & CI_high >= 0.1 ~ "yes", .default = "no"))

fig_reg <- ggplot(tab_reg, aes(x = Estimate, y = Predictor, color = relevant)) + coord_cartesian(xlim = c(-0.8, 0.3)) + geom_vline(xintercept = 0, lwd = 0.5,
    colour = "darkgrey") + geom_vline(xintercept = -0.1, lwd = 0.5, colour = "darkgrey", linetype = "dashed") + geom_vline(xintercept = 0.1, lwd = 0.5,
    colour = "darkgrey", linetype = "dashed") + geom_errorbarh(aes(xmin = CI_low, xmax = CI_high), lwd = 0.5, height = 0.4, position = position_dodge(-0.7)) +
    geom_point(size = 1, position = position_dodge(-0.7)) + scale_x_continuous(breaks = c(-0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4), labels = c("-.8", "-.6",
    "-.4", "-.2", "0", ".2", ".4")) + scale_y_discrete(limits = rev) + scale_color_manual(values = c("grey", "black")) + labs(title = "Explaining the need for privacy",
    x = "Regression coefficient") + # theme_minimal() + x = "Regression coefficient") + # theme_minimal() +
theme(axis.title.y = element_blank(), plot.title = element_text(hjust = 0.5), text = element_text(size = 14), axis.text.y = element_text(hjust = 1), axis.text.x = element_text(size = 10),
    legend.position = "none") + facet_grid(category ~ `Need for privacy`, scales = "free_y")

suppressWarnings(print(fig_reg, warning = F))

ggsave("figures/fig_reg.png", width = 10, height = 5)

Save Workspace

save.image("data/workspace_3.RData")