In what follows, please find the results of additional analyses. These include models, results without covariates, results with all participants (hence, including those removed due to speeding).

Set-up

Load packages.

# define packages
packages <- c("cowplot", "devtools", "faoutlier", "GGally", "kableExtra", "knitr", "lavaan", "magrittr", "MVN", "psych", 
    "pwr", "quanteda", "semTools", "tidyverse")

# load packages
lapply(packages, library, character.only = TRUE, quietly = TRUE)

Load data.

# load workspace
load("data/workspace.rdata")

VIF

In what follows, you can find estimations of variance inflation factors, which help gauge multicollinearity. Generally, values above 5 or even 10 are considered problematic. However, these are only rules of thumb, and multcollinearity can occour with lower values. Indeed, although the values reported below are not above 5, they are increased, suggesting that multicollinearity might be at play here, which the regular analyses also confirm.

# Self-Efficacy
model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 
grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
SE01_01 ~~ a*SE01_02
SE01_03 ~~ a*SE01_04
trust_community =~ TR01_02 + TR01_03 + TR01_04
trust_provider =~ TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12
trust_spec =~ trust_community + trust_provider

self_eff ~ pri_con + grats_gen + pri_delib + trust_spec

# Covariates
GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR01_02 + TR01_03 + TR01_04 + TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu
"
fit <- sem(model, data = d, estimator = "MLR", missing = "ML")
r_self_eff <- inspect(fit, what = "rsquare")["self_eff"]  # extract rsquare
vif_self_eff <- 1/(1 - r_self_eff)  # compute vif

# Privacy Deliberation
model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 
grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
SE01_01 ~~ a*SE01_02
SE01_03 ~~ a*SE01_04
trust_community =~ TR01_02 + TR01_03 + TR01_04
trust_provider =~ TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12
trust_spec =~ trust_community + trust_provider

pri_delib ~ self_eff + pri_con + grats_gen + trust_spec

# Covariates
GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR01_02 + TR01_03 + TR01_04 + TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu
"
fit <- sem(model, data = d, estimator = "MLR", missing = "ML")
r_pri_delib <- inspect(fit, what = "rsquare")["pri_delib"]
vif_pri_delib <- 1/(1 - r_pri_delib)

## Privacy Concerns
model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 
grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
SE01_01 ~~ a*SE01_02
SE01_03 ~~ a*SE01_04
trust_community =~ TR01_02 + TR01_03 + TR01_04
trust_provider =~ TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12
trust_spec =~ trust_community + trust_provider

pri_con ~ self_eff + pri_delib + grats_gen + trust_spec

# Covariates
GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR01_02 + TR01_03 + TR01_04 + TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu
"
fit <- sem(model, data = d, estimator = "MLR", missing = "ML")
r_pri_con <- inspect(fit, what = "rsquare")["pri_con"]
vif_pri_con <- 1/(1 - r_pri_con)

# Gratifications
model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 
grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
SE01_01 ~~ a*SE01_02
SE01_03 ~~ a*SE01_04
trust_community =~ TR01_02 + TR01_03 + TR01_04
trust_provider =~ TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12
trust_spec =~ trust_community + trust_provider

grats_gen ~ self_eff + pri_con + pri_delib + trust_spec

# Covariates
GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR01_02 + TR01_03 + TR01_04 + TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu
"
fit <- sem(model, data = d, estimator = "MLR", missing = "ML")
r_grats_gen <- inspect(fit, what = "rsquare")["grats_gen"]
vif_grats_gen <- 1/(1 - r_grats_gen)

# Trust
model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 
grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
SE01_01 ~~ a*SE01_02
SE01_03 ~~ a*SE01_04
trust_community =~ TR01_02 + TR01_03 + TR01_04
trust_provider =~ TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12
trust_spec =~ trust_community + trust_provider

trust_spec ~ self_eff + pri_con + grats_gen + pri_delib

# Covariates
GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR01_02 + TR01_03 + TR01_04 + TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu
"
fit <- sem(model, data = d, estimator = "MLR", missing = "ML")
r_trust_spec <- inspect(fit, what = "rsquare")["trust_spec"]
vif_trust_spec <- 1/(1 - r_trust_spec)
# Table
tibble(Gratifications = vif_grats_gen, `Trust Specific` = vif_trust_spec, `Privacy Concerns` = vif_pri_con, `Privacy Deliberation` = vif_pri_delib, 
    `Self-Efficacy` = vif_self_eff) %>% kable() %>% kable_styling("striped")
Gratifications Trust Specific Privacy Concerns Privacy Deliberation Self-Efficacy
2.73 3.58 1.61 1.51 1.51

Communication

In what follows, we report the results for the not-logged, that is the regular measure of communication.

Model “Peregistered”

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 
grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
  SE01_01 ~~ x*SE01_02
  SE01_03 ~~ x*SE01_04
trust_community =~ TR01_02 + TR01_03 + TR01_04
trust_provider =~ TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12
trust_spec =~ trust_community + trust_provider

COMM ~ a1*pri_con + b1*grats_gen + c1*pri_delib + d1*self_eff + e1*trust_spec

# Covariates
COMM + GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR01_02 + TR01_03 + TR01_04 + TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu
"
fit_prereg <- sem(model, data = d, estimator = "MLR", missing = "ML")
summary(fit_prereg, fit = TRUE, std = TRUE)
lavaan 0.6-8 ended normally after 487 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       198
  Number of equality constraints                     1
                                                      
                                                  Used       Total
  Number of observations                           558         559
  Number of missing patterns                         3            
                                                                  
Model Test User Model:
                                               Standard      Robust
  Test Statistic                               1234.274     876.173
  Degrees of freedom                                388         388
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.409
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                             13267.702    9991.515
  Degrees of freedom                               525         525
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.328

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.934       0.948
  Tucker-Lewis Index (TLI)                       0.910       0.930
                                                                  
  Robust Comparative Fit Index (CFI)                         0.945
  Robust Tucker-Lewis Index (TLI)                            0.926

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -26494.519  -26494.519
  Scaling correction factor                                  1.260
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -25877.382  -25877.382
  Scaling correction factor                                  1.361
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               53383.039   53383.039
  Bayesian (BIC)                             54234.937   54234.937
  Sample-size adjusted Bayesian (BIC)        53609.566   53609.566

Root Mean Square Error of Approximation:

  RMSEA                                          0.063       0.047
  90 Percent confidence interval - lower         0.059       0.044
  90 Percent confidence interval - upper         0.066       0.051
  P-value RMSEA <= 0.05                          0.000       0.878
                                                                  
  Robust RMSEA                                               0.056
  90 Percent confidence interval - lower                     0.051
  90 Percent confidence interval - upper                     0.061

Standardized Root Mean Square Residual:

  SRMR                                           0.048       0.048

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                     Estimate   Std.Err  z-value     P(>|z|)   Std.lv   Std.all
  pri_con =~                                                                   
    PC01_01              1.000                                   1.595    0.926
    PC01_02              0.990    0.027      36.230    0.000     1.579    0.894
    PC01_04              0.972    0.027      35.705    0.000     1.551    0.884
    PC01_05              1.002    0.024      42.447    0.000     1.599    0.907
    PC01_06              0.855    0.038      22.675    0.000     1.363    0.795
    PC01_07              0.994    0.023      43.788    0.000     1.586    0.920
  grats_gen =~                                                                 
    GR02_01              1.000                                   1.134    0.844
    GR02_02              1.118    0.033      33.699    0.000     1.267    0.894
    GR02_03              1.019    0.047      21.533    0.000     1.155    0.863
    GR02_04              0.983    0.048      20.455    0.000     1.115    0.848
    GR02_05              1.071    0.040      27.024    0.000     1.214    0.847
  pri_delib =~                                                                 
    PD01_01              1.000                                   1.478    0.856
    PD01_02              0.666    0.048      13.926    0.000     0.984    0.641
    PD01_03              0.703    0.055      12.878    0.000     1.039    0.667
    PD01_04              0.840    0.047      17.729    0.000     1.242    0.728
    PD01_05              0.714    0.050      14.338    0.000     1.055    0.637
  self_eff =~                                                                  
    SE01_01              1.000                                   1.113    0.807
    SE01_02              0.811    0.057      14.170    0.000     0.903    0.669
    SE01_03              0.934    0.046      20.276    0.000     1.039    0.775
    SE01_04              0.959    0.044      21.863    0.000     1.066    0.791
  trust_community =~                                                           
    TR01_02              1.000                                   1.024    0.807
    TR01_03              0.820    0.052      15.873    0.000     0.839    0.764
    TR01_04              0.918    0.046      19.760    0.000     0.939    0.814
  trust_provider =~                                                            
    TR01_06              1.000                                   1.046    0.871
    TR01_07              0.855    0.039      21.944    0.000     0.894    0.773
    TR01_08              0.834    0.040      21.100    0.000     0.872    0.788
    TR01_10              0.788    0.038      20.821    0.000     0.824    0.700
    TR01_11              0.821    0.052      15.891    0.000     0.859    0.662
    TR01_12              1.098    0.038      28.600    0.000     1.148    0.854
  trust_spec =~                                                                
    trust_communty       1.000                                   0.877    0.877
    trust_provider       1.111    0.077      14.375    0.000     0.953    0.953

Regressions:
                   Estimate   Std.Err  z-value     P(>|z|)   Std.lv   Std.all
  COMM ~                                                                     
    pri_con   (a1)    -0.297    7.082      -0.042    0.967    -0.474   -0.002
    grats_gen (b1)    24.215   18.848       1.285    0.199    27.451    0.110
    pri_delib (c1)   -15.936    7.721      -2.064    0.039   -23.555   -0.094
    self_eff  (d1)    60.877   18.774       3.243    0.001    67.732    0.271
    trust_spc (e1)   -37.144   25.075      -1.481    0.139   -33.332   -0.133
    male              -7.984   23.598      -0.338    0.735    -7.984   -0.016
    age                0.343    0.551       0.623    0.533     0.343    0.021
    edu               12.177   15.167       0.803    0.422    12.177    0.041
  GR02_01 ~                                                                  
    male              -0.127    0.116      -1.096    0.273    -0.127   -0.047
    age                0.000    0.004       0.091    0.927     0.000    0.004
    edu                0.005    0.068       0.073    0.942     0.005    0.003
  GR02_02 ~                                                                  
    male              -0.067    0.120      -0.559    0.576    -0.067   -0.024
    age                0.006    0.004       1.542    0.123     0.006    0.068
    edu               -0.080    0.071      -1.127    0.260    -0.080   -0.047
  GR02_03 ~                                                                  
    male              -0.025    0.116      -0.220    0.826    -0.025   -0.009
    age                0.001    0.004       0.310    0.756     0.001    0.014
    edu               -0.083    0.067      -1.237    0.216    -0.083   -0.052
  GR02_04 ~                                                                  
    male               0.028    0.113       0.250    0.802     0.028    0.011
    age                0.005    0.004       1.304    0.192     0.005    0.057
    edu               -0.072    0.067      -1.072    0.284    -0.072   -0.046
  GR02_05 ~                                                                  
    male              -0.140    0.124      -1.136    0.256    -0.140   -0.049
    age               -0.004    0.004      -0.874    0.382    -0.004   -0.039
    edu                0.013    0.073       0.173    0.862     0.013    0.007
  PC01_01 ~                                                                  
    male              -0.182    0.151      -1.206    0.228    -0.182   -0.053
    age               -0.004    0.005      -0.820    0.412    -0.004   -0.036
    edu                0.110    0.087       1.255    0.210     0.110    0.054
  PC01_02 ~                                                                  
    male              -0.302    0.154      -1.966    0.049    -0.302   -0.085
    age               -0.008    0.005      -1.663    0.096    -0.008   -0.072
    edu                0.047    0.089       0.522    0.601     0.047    0.022
  PC01_04 ~                                                                  
    male              -0.225    0.152      -1.475    0.140    -0.225   -0.064
    age               -0.010    0.005      -1.980    0.048    -0.010   -0.085
    edu                0.113    0.089       1.269    0.204     0.113    0.054
  PC01_05 ~                                                                  
    male              -0.098    0.154      -0.636    0.525    -0.098   -0.028
    age               -0.006    0.005      -1.164    0.244    -0.006   -0.051
    edu                0.090    0.090       0.996    0.319     0.090    0.043
  PC01_06 ~                                                                  
    male              -0.108    0.150      -0.722    0.470    -0.108   -0.032
    age               -0.005    0.005      -1.055    0.291    -0.005   -0.046
    edu                0.043    0.087       0.491    0.623     0.043    0.021
  PC01_07 ~                                                                  
    male              -0.174    0.150      -1.160    0.246    -0.174   -0.050
    age               -0.006    0.005      -1.337    0.181    -0.006   -0.058
    edu                0.081    0.087       0.934    0.351     0.081    0.040
  TR01_02 ~                                                                  
    male              -0.297    0.108      -2.744    0.006    -0.297   -0.117
    age               -0.004    0.004      -1.103    0.270    -0.004   -0.049
    edu                0.005    0.062       0.086    0.931     0.005    0.004
  TR01_03 ~                                                                  
    male              -0.140    0.095      -1.480    0.139    -0.140   -0.064
    age               -0.002    0.003      -0.566    0.571    -0.002   -0.025
    edu                0.023    0.053       0.434    0.664     0.023    0.018
  TR01_04 ~                                                                  
    male              -0.134    0.099      -1.361    0.173    -0.134   -0.058
    age               -0.004    0.003      -1.211    0.226    -0.004   -0.055
    edu               -0.003    0.060      -0.046    0.964    -0.003   -0.002
  TR01_06 ~                                                                  
    male              -0.086    0.104      -0.831    0.406    -0.086   -0.036
    age                0.000    0.003       0.110    0.912     0.000    0.005
    edu               -0.051    0.058      -0.881    0.379    -0.051   -0.036
  TR01_07 ~                                                                  
    male              -0.045    0.099      -0.450    0.653    -0.045   -0.019
    age                0.001    0.003       0.344    0.731     0.001    0.015
    edu                0.018    0.058       0.309    0.757     0.018    0.013
  TR01_08 ~                                                                  
    male               0.046    0.095       0.480    0.631     0.046    0.021
    age               -0.004    0.003      -1.250    0.211    -0.004   -0.053
    edu                0.025    0.056       0.445    0.656     0.025    0.019
  TR01_10 ~                                                                  
    male               0.091    0.100       0.914    0.361     0.091    0.039
    age               -0.004    0.003      -1.176    0.239    -0.004   -0.050
    edu               -0.055    0.058      -0.946    0.344    -0.055   -0.039
  TR01_11 ~                                                                  
    male               0.027    0.112       0.245    0.806     0.027    0.011
    age                0.003    0.004       0.824    0.410     0.003    0.035
    edu               -0.093    0.065      -1.435    0.151    -0.093   -0.061
  TR01_12 ~                                                                  
    male              -0.121    0.115      -1.044    0.296    -0.121   -0.045
    age               -0.002    0.004      -0.406    0.685    -0.002   -0.018
    edu               -0.146    0.068      -2.156    0.031    -0.146   -0.091
  PD01_01 ~                                                                  
    male              -0.177    0.148      -1.197    0.231    -0.177   -0.051
    age               -0.015    0.005      -3.275    0.001    -0.015   -0.137
    edu               -0.026    0.085      -0.310    0.756    -0.026   -0.013
  PD01_02 ~                                                                  
    male              -0.119    0.131      -0.906    0.365    -0.119   -0.039
    age               -0.014    0.004      -3.443    0.001    -0.014   -0.142
    edu                0.031    0.077       0.405    0.686     0.031    0.017
  PD01_03 ~                                                                  
    male              -0.321    0.132      -2.425    0.015    -0.321   -0.103
    age               -0.004    0.004      -1.024    0.306    -0.004   -0.044
    edu                0.065    0.080       0.807    0.420     0.065    0.035
  PD01_04 ~                                                                  
    male              -0.412    0.145      -2.847    0.004    -0.412   -0.121
    age               -0.009    0.005      -1.904    0.057    -0.009   -0.082
    edu                0.103    0.085       1.207    0.227     0.103    0.051
  PD01_05 ~                                                                  
    male              -0.205    0.142      -1.439    0.150    -0.205   -0.062
    age               -0.012    0.004      -2.696    0.007    -0.012   -0.111
    edu               -0.002    0.084      -0.025    0.980    -0.002   -0.001
  SE01_01 ~                                                                  
    male               0.120    0.118       1.016    0.310     0.120    0.043
    age                0.000    0.004       0.011    0.991     0.000    0.000
    edu                0.212    0.068       3.122    0.002     0.212    0.129
  SE01_02 ~                                                                  
    male               0.059    0.112       0.531    0.595     0.059    0.022
    age               -0.013    0.004      -3.595    0.000    -0.013   -0.151
    edu                0.198    0.066       3.006    0.003     0.198    0.124
  SE01_03 ~                                                                  
    male               0.195    0.114       1.702    0.089     0.195    0.073
    age                0.001    0.004       0.249    0.803     0.001    0.011
    edu                0.143    0.067       2.141    0.032     0.143    0.090
  SE01_04 ~                                                                  
    male               0.053    0.115       0.466    0.641     0.053    0.020
    age                0.007    0.004       2.051    0.040     0.007    0.086
    edu                0.127    0.066       1.915    0.055     0.127    0.079

Covariances:
                   Estimate   Std.Err  z-value     P(>|z|)   Std.lv   Std.all
 .SE01_01 ~~                                                                 
   .SE01_02    (x)     0.106    0.044       2.439    0.015     0.106    0.140
 .SE01_03 ~~                                                                 
   .SE01_04    (x)     0.106    0.044       2.439    0.015     0.106    0.158
  pri_con ~~                                                                 
    grats_gen         -0.283    0.096      -2.949    0.003    -0.156   -0.156
    pri_delib          1.328    0.131      10.153    0.000     0.563    0.563
    self_eff          -0.375    0.091      -4.124    0.000    -0.211   -0.211
    trust_spec        -0.416    0.074      -5.587    0.000    -0.290   -0.290
  grats_gen ~~                                                               
    pri_delib         -0.069    0.103      -0.673    0.501    -0.041   -0.041
    self_eff           0.469    0.067       7.036    0.000     0.372    0.372
    trust_spec         0.803    0.085       9.411    0.000     0.790    0.790
  pri_delib ~~                                                               
    self_eff          -0.326    0.094      -3.454    0.001    -0.198   -0.198
    trust_spec        -0.142    0.086      -1.650    0.099    -0.107   -0.107
  self_eff ~~                                                                
    trust_spec         0.553    0.060       9.228    0.000     0.554    0.554

Intercepts:
                   Estimate   Std.Err  z-value     P(>|z|)   Std.lv   Std.all
   .PC01_01            3.369    0.292      11.557    0.000     3.369    1.955
   .PC01_02            3.769    0.304      12.398    0.000     3.769    2.135
   .PC01_04            3.571    0.297      12.020    0.000     3.571    2.035
   .PC01_05            3.414    0.304      11.229    0.000     3.414    1.937
   .PC01_06            3.215    0.288      11.155    0.000     3.215    1.875
   .PC01_07            3.461    0.294      11.780    0.000     3.461    2.008
   .GR02_01            4.319    0.224      19.252    0.000     4.319    3.215
   .GR02_02            4.492    0.244      18.372    0.000     4.492    3.170
   .GR02_03            5.244    0.222      23.667    0.000     5.244    3.917
   .GR02_04            4.988    0.221      22.522    0.000     4.988    3.795
   .GR02_05            4.905    0.254      19.323    0.000     4.905    3.422
   .PD01_01            4.493    0.290      15.507    0.000     4.493    2.602
   .PD01_02            3.997    0.248      16.102    0.000     3.997    2.601
   .PD01_03            4.432    0.270      16.438    0.000     4.432    2.845
   .PD01_04            4.506    0.295      15.283    0.000     4.506    2.640
   .PD01_05            5.000    0.276      18.089    0.000     5.000    3.018
   .SE01_01            4.822    0.249      19.353    0.000     4.822    3.496
   .SE01_02            5.729    0.234      24.455    0.000     5.729    4.249
   .SE01_03            4.817    0.226      21.322    0.000     4.817    3.595
   .SE01_04            4.531    0.234      19.373    0.000     4.531    3.359
   .TR01_02            5.083    0.219      23.224    0.000     5.083    4.010
   .TR01_03            4.951    0.189      26.178    0.000     4.951    4.505
   .TR01_04            4.871    0.200      24.361    0.000     4.871    4.223
   .TR01_06            5.521    0.205      26.991    0.000     5.521    4.600
   .TR01_07            5.135    0.197      26.024    0.000     5.135    4.440
   .TR01_08            5.232    0.188      27.764    0.000     5.232    4.728
   .TR01_10            5.955    0.193      30.911    0.000     5.955    5.060
   .TR01_11            4.855    0.218      22.270    0.000     4.855    3.745
   .TR01_12            5.581    0.231      24.175    0.000     5.581    4.149
   .COMM              42.157   29.818       1.414    0.157    42.157    0.168
    pri_con            0.000                                   0.000    0.000
    grats_gen          0.000                                   0.000    0.000
    pri_delib          0.000                                   0.000    0.000
    self_eff           0.000                                   0.000    0.000
   .trust_communty     0.000                                   0.000    0.000
   .trust_provider     0.000                                   0.000    0.000
    trust_spec         0.000                                   0.000    0.000

Variances:
                   Estimate   Std.Err  z-value     P(>|z|)   Std.lv   Std.all
   .PC01_01            0.403    0.050       8.081    0.000     0.403    0.136
   .PC01_02            0.580    0.102       5.662    0.000     0.580    0.186
   .PC01_04            0.627    0.077       8.140    0.000     0.627    0.204
   .PC01_05            0.533    0.064       8.359    0.000     0.533    0.172
   .PC01_06            1.069    0.116       9.252    0.000     1.069    0.364
   .PC01_07            0.431    0.065       6.592    0.000     0.431    0.145
   .GR02_01            0.515    0.053       9.675    0.000     0.515    0.286
   .GR02_02            0.387    0.039       9.902    0.000     0.387    0.193
   .GR02_03            0.453    0.073       6.190    0.000     0.453    0.253
   .GR02_04            0.475    0.048       9.908    0.000     0.475    0.275
   .GR02_05            0.571    0.062       9.199    0.000     0.571    0.278
   .PD01_01            0.729    0.111       6.593    0.000     0.729    0.244
   .PD01_02            1.337    0.127      10.515    0.000     1.337    0.566
   .PD01_03            1.313    0.129      10.211    0.000     1.313    0.541
   .PD01_04            1.298    0.147       8.847    0.000     1.298    0.446
   .PD01_05            1.584    0.128      12.396    0.000     1.584    0.577
   .SE01_01            0.626    0.089       7.071    0.000     0.626    0.329
   .SE01_02            0.928    0.120       7.725    0.000     0.928    0.510
   .SE01_03            0.689    0.097       7.112    0.000     0.689    0.384
   .SE01_04            0.657    0.077       8.536    0.000     0.657    0.361
   .TR01_02            0.532    0.067       7.884    0.000     0.532    0.331
   .TR01_03            0.498    0.055       9.056    0.000     0.498    0.412
   .TR01_04            0.439    0.045       9.669    0.000     0.439    0.330
   .TR01_06            0.343    0.035       9.884    0.000     0.343    0.238
   .TR01_07            0.537    0.052      10.304    0.000     0.537    0.402
   .TR01_08            0.459    0.041      11.146    0.000     0.459    0.375
   .TR01_10            0.699    0.056      12.549    0.000     0.699    0.505
   .TR01_11            0.935    0.079      11.776    0.000     0.935    0.556
   .TR01_12            0.469    0.052       8.955    0.000     0.469    0.259
   .COMM           57563.169    0.027 2117441.807    0.000 57563.169    0.918
    pri_con            2.545    0.144      17.627    0.000     1.000    1.000
    grats_gen          1.285    0.114      11.236    0.000     1.000    1.000
    pri_delib          2.185    0.157      13.927    0.000     1.000    1.000
    self_eff           1.238    0.114      10.879    0.000     1.000    1.000
   .trust_communty     0.242    0.044       5.474    0.000     0.231    0.231
   .trust_provider     0.101    0.043       2.363    0.018     0.092    0.092
    trust_spec         0.805    0.099       8.148    0.000     1.000    1.000
rsquare_fit_prereg <- inspect(fit_prereg, what = "rsquare")["comm"]

Model “Adapted”

Building on the preregistered model, instead of general gratifications and specific trust, we now use specific gratifications and general trust.

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07
grats_inf =~ GR01_01 + GR01_02 + GR01_03 
grats_rel =~ GR01_04 + GR01_05 + GR01_06 
grats_par =~ GR01_07 + GR01_08 + GR01_09
grats_ide =~ GR01_10 + GR01_11 + GR01_12 
grats_ext =~ GR01_13 + GR01_14 + GR01_15
grats_spec =~ grats_inf + grats_rel + grats_par + grats_ide + grats_ext
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
  SE01_01 ~~ x*SE01_02
  SE01_03 ~~ x*SE01_04
trust_gen =~ TR01_01 + TR01_05 + TR01_09

COMM ~ a1*pri_con + b1*grats_spec + c1*pri_delib + d1*self_eff + e1*trust_gen

# Covariates
COMM + GR01_01 + GR01_02 + GR01_03 + GR01_04 + GR01_05 + GR01_06 + GR01_07 + GR01_08 + GR01_09 + GR01_10 + GR01_11 + GR01_12 + GR01_13 + GR01_14 + GR01_15 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR01_01 + TR01_05 + TR01_09 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu
"
fit_adapted <- sem(model, data = d, estimator = "MLR", missing = "ML", missing = "ML")
summary(fit_adapted, fit = TRUE, std = TRUE)
lavaan 0.6-8 ended normally after 530 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       225
  Number of equality constraints                     1
                                                      
                                                  Used       Total
  Number of observations                           558         559
  Number of missing patterns                         2            
                                                                  
Model Test User Model:
                                               Standard      Robust
  Test Statistic                               1503.066    1076.148
  Degrees of freedom                                507         507
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.397
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                             14290.539   10703.369
  Degrees of freedom                               663         663
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.335

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.927       0.943
  Tucker-Lewis Index (TLI)                       0.904       0.926
                                                                  
  Robust Comparative Fit Index (CFI)                         0.941
  Robust Tucker-Lewis Index (TLI)                            0.922

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -30640.163  -30640.163
  Scaling correction factor                                  1.267
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -29888.630  -29888.630
  Scaling correction factor                                  1.359
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               61728.326   61728.326
  Bayesian (BIC)                             62696.983   62696.983
  Sample-size adjusted Bayesian (BIC)        61985.900   61985.900

Root Mean Square Error of Approximation:

  RMSEA                                          0.059       0.045
  90 Percent confidence interval - lower         0.056       0.042
  90 Percent confidence interval - upper         0.063       0.048
  P-value RMSEA <= 0.05                          0.000       0.997
                                                                  
  Robust RMSEA                                               0.053
  90 Percent confidence interval - lower                     0.049
  90 Percent confidence interval - upper                     0.057

Standardized Root Mean Square Residual:

  SRMR                                           0.058       0.058

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate   Std.Err  z-value     P(>|z|)   Std.lv   Std.all
  pri_con =~                                                                 
    PC01_01            1.000                                   1.595    0.926
    PC01_02            0.990    0.027      36.429    0.000     1.579    0.894
    PC01_04            0.972    0.027      35.955    0.000     1.550    0.884
    PC01_05            1.003    0.024      42.521    0.000     1.599    0.907
    PC01_06            0.855    0.038      22.771    0.000     1.364    0.796
    PC01_07            0.995    0.023      43.981    0.000     1.587    0.920
  grats_inf =~                                                               
    GR01_01            1.000                                   0.953    0.677
    GR01_02            1.041    0.076      13.678    0.000     0.992    0.813
    GR01_03            1.142    0.078      14.576    0.000     1.088    0.846
  grats_rel =~                                                               
    GR01_04            1.000                                   1.178    0.892
    GR01_05            0.939    0.038      24.895    0.000     1.106    0.855
    GR01_06            0.876    0.046      18.886    0.000     1.032    0.698
  grats_par =~                                                               
    GR01_07            1.000                                   1.187    0.815
    GR01_08            0.940    0.039      23.868    0.000     1.116    0.814
    GR01_09            0.963    0.038      25.225    0.000     1.142    0.816
  grats_ide =~                                                               
    GR01_10            1.000                                   1.142    0.786
    GR01_11            1.008    0.042      24.020    0.000     1.151    0.887
    GR01_12            0.928    0.041      22.520    0.000     1.059    0.759
  grats_ext =~                                                               
    GR01_13            1.000                                   0.832    0.507
    GR01_14            1.019    0.103       9.916    0.000     0.848    0.506
    GR01_15            1.557    0.186       8.363    0.000     1.296    0.848
  grats_spec =~                                                              
    grats_inf          1.000                                   0.844    0.844
    grats_rel          1.352    0.108      12.519    0.000     0.923    0.923
    grats_par          1.428    0.119      11.964    0.000     0.968    0.968
    grats_ide          1.316    0.110      11.995    0.000     0.927    0.927
    grats_ext          0.801    0.107       7.522    0.000     0.775    0.775
  pri_delib =~                                                               
    PD01_01            1.000                                   1.488    0.862
    PD01_02            0.663    0.048      13.905    0.000     0.986    0.642
    PD01_03            0.692    0.054      12.765    0.000     1.030    0.661
    PD01_04            0.835    0.047      17.695    0.000     1.242    0.728
    PD01_05            0.703    0.050      14.167    0.000     1.045    0.631
  self_eff =~                                                                
    SE01_01            1.000                                   1.116    0.808
    SE01_02            0.808    0.058      14.005    0.000     0.902    0.669
    SE01_03            0.928    0.045      20.498    0.000     1.035    0.772
    SE01_04            0.959    0.044      21.832    0.000     1.070    0.793
  trust_gen =~                                                               
    TR01_01            1.000                                   0.769    0.667
    TR01_05            1.326    0.070      18.940    0.000     1.019    0.887
    TR01_09            1.453    0.081      18.040    0.000     1.117    0.926

Regressions:
                   Estimate   Std.Err  z-value     P(>|z|)   Std.lv   Std.all
  COMM ~                                                                     
    pri_con   (a1)    -5.841    6.084      -0.960    0.337    -9.315   -0.037
    grats_spc (b1)    51.215   22.046       2.323    0.020    41.194    0.165
    pri_delib (c1)   -20.690    8.949      -2.312    0.021   -30.776   -0.123
    self_eff  (d1)    52.391   15.990       3.276    0.001    58.450    0.233
    trust_gen (e1)   -61.623   27.583      -2.234    0.025   -47.379   -0.189
    male              -8.869   23.596      -0.376    0.707    -8.869   -0.018
    age                0.347    0.551       0.629    0.529     0.347    0.022
    edu               12.318   15.167       0.812    0.417    12.318    0.041
  GR01_01 ~                                                                  
    male              -0.343    0.121      -2.837    0.005    -0.343   -0.122
    age               -0.005    0.004      -1.333    0.183    -0.005   -0.059
    edu                0.001    0.072       0.007    0.994     0.001    0.000
  GR01_02 ~                                                                  
    male              -0.142    0.103      -1.383    0.167    -0.142   -0.058
    age               -0.007    0.003      -2.106    0.035    -0.007   -0.088
    edu               -0.037    0.060      -0.616    0.538    -0.037   -0.026
  GR01_03 ~                                                                  
    male              -0.187    0.109      -1.718    0.086    -0.187   -0.073
    age               -0.006    0.004      -1.703    0.089    -0.006   -0.075
    edu               -0.076    0.063      -1.203    0.229    -0.076   -0.050
  GR01_04 ~                                                                  
    male              -0.005    0.113      -0.043    0.966    -0.005   -0.002
    age                0.001    0.004       0.263    0.793     0.001    0.011
    edu               -0.021    0.066      -0.318    0.751    -0.021   -0.013
  GR01_05 ~                                                                  
    male              -0.069    0.112      -0.619    0.536    -0.069   -0.027
    age               -0.001    0.004      -0.197    0.843    -0.001   -0.009
    edu                0.025    0.064       0.389    0.697     0.025    0.016
  GR01_06 ~                                                                  
    male               0.029    0.125       0.237    0.813     0.029    0.010
    age               -0.011    0.004      -2.567    0.010    -0.011   -0.111
    edu               -0.087    0.074      -1.175    0.240    -0.087   -0.050
  GR01_07 ~                                                                  
    male               0.074    0.125       0.597    0.551     0.074    0.026
    age               -0.006    0.004      -1.391    0.164    -0.006   -0.060
    edu                0.004    0.072       0.058    0.954     0.004    0.002
  GR01_08 ~                                                                  
    male               0.005    0.116       0.046    0.963     0.005    0.002
    age               -0.004    0.004      -1.121    0.262    -0.004   -0.051
    edu                0.113    0.068       1.676    0.094     0.113    0.070
  GR01_09 ~                                                                  
    male               0.089    0.119       0.752    0.452     0.089    0.032
    age               -0.004    0.004      -0.951    0.342    -0.004   -0.041
    edu                0.115    0.069       1.668    0.095     0.115    0.069
  GR01_10 ~                                                                  
    male              -0.020    0.125      -0.161    0.872    -0.020   -0.007
    age               -0.008    0.004      -1.992    0.046    -0.008   -0.089
    edu               -0.020    0.074      -0.276    0.783    -0.020   -0.012
  GR01_11 ~                                                                  
    male              -0.084    0.111      -0.754    0.451    -0.084   -0.032
    age               -0.001    0.004      -0.312    0.755    -0.001   -0.014
    edu               -0.053    0.065      -0.820    0.412    -0.053   -0.034
  GR01_12 ~                                                                  
    male              -0.219    0.120      -1.825    0.068    -0.219   -0.078
    age               -0.004    0.004      -1.009    0.313    -0.004   -0.043
    edu               -0.049    0.071      -0.684    0.494    -0.049   -0.029
  GR01_13 ~                                                                  
    male              -0.181    0.138      -1.313    0.189    -0.181   -0.055
    age               -0.023    0.004      -5.515    0.000    -0.023   -0.219
    edu                0.078    0.081       0.960    0.337     0.078    0.040
  GR01_14 ~                                                                  
    male              -0.304    0.145      -2.094    0.036    -0.304   -0.091
    age               -0.007    0.005      -1.540    0.124    -0.007   -0.065
    edu                0.030    0.084       0.362    0.718     0.030    0.015
  GR01_15 ~                                                                  
    male               0.047    0.132       0.355    0.722     0.047    0.015
    age               -0.005    0.004      -1.213    0.225    -0.005   -0.053
    edu                0.024    0.078       0.302    0.763     0.024    0.013
  PC01_01 ~                                                                  
    male              -0.181    0.151      -1.202    0.229    -0.181   -0.053
    age               -0.004    0.005      -0.820    0.412    -0.004   -0.036
    edu                0.110    0.087       1.254    0.210     0.110    0.054
  PC01_02 ~                                                                  
    male              -0.301    0.154      -1.963    0.050    -0.301   -0.085
    age               -0.008    0.005      -1.664    0.096    -0.008   -0.072
    edu                0.047    0.089       0.521    0.602     0.047    0.022
  PC01_04 ~                                                                  
    male              -0.224    0.152      -1.472    0.141    -0.224   -0.064
    age               -0.010    0.005      -1.980    0.048    -0.010   -0.085
    edu                0.113    0.089       1.268    0.205     0.113    0.054
  PC01_05 ~                                                                  
    male              -0.097    0.154      -0.633    0.527    -0.097   -0.028
    age               -0.006    0.005      -1.165    0.244    -0.006   -0.051
    edu                0.090    0.090       0.995    0.320     0.090    0.043
  PC01_06 ~                                                                  
    male              -0.108    0.150      -0.719    0.472    -0.108   -0.031
    age               -0.005    0.005      -1.055    0.291    -0.005   -0.046
    edu                0.043    0.087       0.490    0.624     0.043    0.021
  PC01_07 ~                                                                  
    male              -0.173    0.150      -1.157    0.247    -0.173   -0.050
    age               -0.006    0.005      -1.338    0.181    -0.006   -0.058
    edu                0.081    0.087       0.933    0.351     0.081    0.040
  TR01_01 ~                                                                  
    male              -0.156    0.099      -1.573    0.116    -0.156   -0.068
    age               -0.003    0.003      -0.812    0.417    -0.003   -0.038
    edu                0.026    0.060       0.434    0.664     0.026    0.019
  TR01_05 ~                                                                  
    male               0.076    0.100       0.758    0.448     0.076    0.033
    age               -0.004    0.003      -1.215    0.224    -0.004   -0.053
    edu                0.088    0.059       1.491    0.136     0.088    0.064
  TR01_09 ~                                                                  
    male               0.064    0.104       0.615    0.538     0.064    0.026
    age               -0.007    0.004      -1.938    0.053    -0.007   -0.088
    edu               -0.018    0.060      -0.294    0.769    -0.018   -0.012
  PD01_01 ~                                                                  
    male              -0.176    0.148      -1.192    0.233    -0.176   -0.051
    age               -0.015    0.005      -3.276    0.001    -0.015   -0.137
    edu               -0.026    0.085      -0.312    0.755    -0.026   -0.013
  PD01_02 ~                                                                  
    male              -0.119    0.131      -0.902    0.367    -0.119   -0.039
    age               -0.014    0.004      -3.443    0.001    -0.014   -0.142
    edu                0.031    0.077       0.404    0.686     0.031    0.017
  PD01_03 ~                                                                  
    male              -0.321    0.132      -2.421    0.015    -0.321   -0.103
    age               -0.004    0.004      -1.024    0.306    -0.004   -0.044
    edu                0.065    0.080       0.806    0.420     0.065    0.035
  PD01_04 ~                                                                  
    male              -0.411    0.145      -2.842    0.004    -0.411   -0.120
    age               -0.009    0.005      -1.905    0.057    -0.009   -0.082
    edu                0.103    0.085       1.206    0.228     0.103    0.051
  PD01_05 ~                                                                  
    male              -0.204    0.142      -1.435    0.151    -0.204   -0.062
    age               -0.012    0.004      -2.697    0.007    -0.012   -0.111
    edu               -0.002    0.084      -0.026    0.979    -0.002   -0.001
  SE01_01 ~                                                                  
    male               0.117    0.118       0.994    0.320     0.117    0.043
    age                0.000    0.004       0.000    1.000     0.000    0.000
    edu                0.210    0.068       3.099    0.002     0.210    0.128
  SE01_02 ~                                                                  
    male               0.057    0.112       0.513    0.608     0.057    0.021
    age               -0.013    0.004      -3.604    0.000    -0.013   -0.152
    edu                0.197    0.066       2.989    0.003     0.197    0.123
  SE01_03 ~                                                                  
    male               0.192    0.114       1.681    0.093     0.192    0.072
    age                0.001    0.004       0.239    0.811     0.001    0.010
    edu                0.142    0.067       2.121    0.034     0.142    0.089
  SE01_04 ~                                                                  
    male               0.051    0.115       0.445    0.656     0.051    0.019
    age                0.007    0.004       2.039    0.041     0.007    0.085
    edu                0.126    0.066       1.894    0.058     0.126    0.079

Covariances:
                   Estimate   Std.Err  z-value     P(>|z|)   Std.lv   Std.all
 .SE01_01 ~~                                                                 
   .SE01_02    (x)     0.108    0.044       2.463    0.014     0.108    0.142
 .SE01_03 ~~                                                                 
   .SE01_04    (x)     0.108    0.044       2.463    0.014     0.108    0.160
  pri_con ~~                                                                 
    grats_spec        -0.118    0.068      -1.721    0.085    -0.092   -0.092
    pri_delib          1.339    0.130      10.283    0.000     0.564    0.564
    self_eff          -0.379    0.091      -4.161    0.000    -0.213   -0.213
    trust_gen         -0.524    0.066      -7.956    0.000    -0.427   -0.427
  grats_spec ~~                                                              
    pri_delib         -0.007    0.074      -0.089    0.929    -0.005   -0.005
    self_eff           0.489    0.060       8.116    0.000     0.545    0.545
    trust_gen          0.403    0.058       6.889    0.000     0.652    0.652
  pri_delib ~~                                                               
    self_eff          -0.330    0.095      -3.472    0.001    -0.199   -0.199
    trust_gen         -0.317    0.073      -4.362    0.000    -0.278   -0.278
  self_eff ~~                                                                
    trust_gen          0.449    0.056       8.051    0.000     0.523    0.523

Intercepts:
                   Estimate   Std.Err  z-value     P(>|z|)   Std.lv   Std.all
   .PC01_01            3.369    0.292      11.557    0.000     3.369    1.955
   .PC01_02            3.769    0.304      12.398    0.000     3.769    2.135
   .PC01_04            3.571    0.297      12.020    0.000     3.571    2.035
   .PC01_05            3.414    0.304      11.229    0.000     3.414    1.937
   .PC01_06            3.215    0.288      11.155    0.000     3.215    1.875
   .PC01_07            3.461    0.294      11.780    0.000     3.461    2.008
   .GR01_01            5.296    0.247      21.424    0.000     5.296    3.763
   .GR01_02            5.895    0.205      28.693    0.000     5.895    4.835
   .GR01_03            5.800    0.221      26.271    0.000     5.800    4.511
   .GR01_04            4.923    0.211      23.377    0.000     4.923    3.730
   .GR01_05            5.109    0.217      23.539    0.000     5.109    3.952
   .GR01_06            5.297    0.252      21.013    0.000     5.297    3.581
   .GR01_07            4.896    0.236      20.768    0.000     4.896    3.363
   .GR01_08            5.062    0.238      21.232    0.000     5.062    3.691
   .GR01_09            4.755    0.237      20.070    0.000     4.755    3.395
   .GR01_10            4.977    0.255      19.492    0.000     4.977    3.425
   .GR01_11            5.158    0.227      22.705    0.000     5.158    3.973
   .GR01_12            5.136    0.233      22.001    0.000     5.136    3.679
   .GR01_13            5.091    0.259      19.644    0.000     5.091    3.101
   .GR01_14            3.454    0.281      12.310    0.000     3.454    2.061
   .GR01_15            4.582    0.266      17.224    0.000     4.582    2.998
   .PD01_01            4.493    0.290      15.507    0.000     4.493    2.602
   .PD01_02            3.997    0.248      16.102    0.000     3.997    2.601
   .PD01_03            4.432    0.270      16.437    0.000     4.432    2.845
   .PD01_04            4.506    0.295      15.283    0.000     4.506    2.640
   .PD01_05            5.000    0.276      18.089    0.000     5.000    3.019
   .SE01_01            4.827    0.249      19.358    0.000     4.827    3.498
   .SE01_02            5.733    0.234      24.465    0.000     5.733    4.250
   .SE01_03            4.822    0.226      21.324    0.000     4.822    3.597
   .SE01_04            4.536    0.234      19.379    0.000     4.536    3.362
   .TR01_01            5.001    0.210      23.817    0.000     5.001    4.339
   .TR01_05            5.361    0.200      26.772    0.000     5.361    4.664
   .TR01_09            5.704    0.213      26.794    0.000     5.704    4.727
   .COMM              42.176   29.819       1.414    0.157    42.176    0.168
    pri_con            0.000                                   0.000    0.000
   .grats_inf          0.000                                   0.000    0.000
   .grats_rel          0.000                                   0.000    0.000
   .grats_par          0.000                                   0.000    0.000
   .grats_ide          0.000                                   0.000    0.000
   .grats_ext          0.000                                   0.000    0.000
    grats_spec         0.000                                   0.000    0.000
    pri_delib          0.000                                   0.000    0.000
    self_eff           0.000                                   0.000    0.000
    trust_gen          0.000                                   0.000    0.000

Variances:
                   Estimate   Std.Err  z-value     P(>|z|)   Std.lv   Std.all
   .PC01_01            0.405    0.050       8.128    0.000     0.405    0.136
   .PC01_02            0.582    0.102       5.692    0.000     0.582    0.187
   .PC01_04            0.628    0.077       8.151    0.000     0.628    0.204
   .PC01_05            0.531    0.064       8.332    0.000     0.531    0.171
   .PC01_06            1.067    0.115       9.254    0.000     1.067    0.363
   .PC01_07            0.431    0.066       6.560    0.000     0.431    0.145
   .GR01_01            1.034    0.107       9.647    0.000     1.034    0.522
   .GR01_02            0.484    0.066       7.345    0.000     0.484    0.325
   .GR01_03            0.445    0.067       6.648    0.000     0.445    0.269
   .GR01_04            0.354    0.043       8.159    0.000     0.354    0.203
   .GR01_05            0.447    0.056       7.952    0.000     0.447    0.267
   .GR01_06            1.093    0.108      10.074    0.000     1.093    0.499
   .GR01_07            0.703    0.072       9.827    0.000     0.703    0.332
   .GR01_08            0.620    0.068       9.060    0.000     0.620    0.330
   .GR01_09            0.640    0.071       9.050    0.000     0.640    0.326
   .GR01_10            0.791    0.071      11.059    0.000     0.791    0.374
   .GR01_11            0.356    0.054       6.536    0.000     0.356    0.211
   .GR01_12            0.807    0.076      10.555    0.000     0.807    0.414
   .GR01_13            1.853    0.149      12.432    0.000     1.853    0.687
   .GR01_14            2.049    0.124      16.494    0.000     2.049    0.730
   .GR01_15            0.649    0.115       5.620    0.000     0.649    0.278
   .PD01_01            0.701    0.108       6.506    0.000     0.701    0.235
   .PD01_02            1.334    0.127      10.480    0.000     1.334    0.565
   .PD01_03            1.334    0.130      10.283    0.000     1.334    0.549
   .PD01_04            1.299    0.146       8.875    0.000     1.299    0.446
   .PD01_05            1.604    0.129      12.396    0.000     1.604    0.584
   .SE01_01            0.622    0.088       7.083    0.000     0.622    0.327
   .SE01_02            0.930    0.120       7.772    0.000     0.930    0.511
   .SE01_03            0.699    0.095       7.336    0.000     0.699    0.389
   .SE01_04            0.652    0.077       8.470    0.000     0.652    0.358
   .TR01_01            0.729    0.060      12.110    0.000     0.729    0.549
   .TR01_05            0.271    0.032       8.577    0.000     0.271    0.205
   .TR01_09            0.196    0.037       5.345    0.000     0.196    0.134
   .COMM           56796.242    0.019 2985141.230    0.000 56796.242    0.906
    pri_con            2.544    0.144      17.644    0.000     1.000    1.000
   .grats_inf          0.260    0.041       6.287    0.000     0.287    0.287
   .grats_rel          0.204    0.048       4.288    0.000     0.147    0.147
   .grats_par          0.090    0.050       1.814    0.070     0.064    0.064
   .grats_ide          0.184    0.046       3.976    0.000     0.141    0.141
   .grats_ext          0.277    0.070       3.966    0.000     0.400    0.400
    grats_spec         0.647    0.117       5.518    0.000     1.000    1.000
    pri_delib          2.213    0.156      14.184    0.000     1.000    1.000
    self_eff           1.245    0.113      10.973    0.000     1.000    1.000
    trust_gen          0.591    0.072       8.259    0.000     1.000    1.000
rsquare_fit_adapted <- inspect(fit_adapted, what = "rsquare")["comm"]

Model “Simple”

We now use only variables, that is specific gratifications and privacy concerns.

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07  
grats_inf =~ GR01_01 + GR01_02 + GR01_03 
grats_rel =~ GR01_04 + GR01_05 + GR01_06 
grats_par =~ GR01_07 + GR01_08 + GR01_09
grats_ide =~ GR01_10 + GR01_11 + GR01_12 
grats_ext =~ GR01_13 + GR01_14 + GR01_15
grats_spec =~ grats_inf + grats_rel + grats_par + grats_ide + grats_ext

COMM ~ a1*pri_con + b1*grats_spec

# Covariates
COMM + GR01_01 + GR01_02 + GR01_03 + GR01_04 + GR01_05 + GR01_06 + GR01_07 + GR01_08 + GR01_09 + GR01_10 + GR01_11 + GR01_12 + GR01_13 + GR01_14 + GR01_15 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 ~ male + age + edu
"
fit_simple <- sem(model, data = d, estimator = "MLR", missing = "ML")
summary(fit_simple, fit = TRUE, std = TRUE)
lavaan 0.6-8 ended normally after 365 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       139
                                                      
                                                  Used       Total
  Number of observations                           558         559
  Number of missing patterns                         1            
                                                                  
Model Test User Model:
                                               Standard      Robust
  Test Statistic                                708.157     486.954
  Degrees of freedom                                202         202
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.454
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                              9611.689    6684.867
  Degrees of freedom                               297         297
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.438

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.946       0.955
  Tucker-Lewis Index (TLI)                       0.920       0.934
                                                                  
  Robust Comparative Fit Index (CFI)                         0.955
  Robust Tucker-Lewis Index (TLI)                            0.934

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -20777.548  -20777.548
  Scaling correction factor                                  1.570
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -20423.470  -20423.470
  Scaling correction factor                                  1.501
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               41833.097   41833.097
  Bayesian (BIC)                             42434.183   42434.183
  Sample-size adjusted Bayesian (BIC)        41992.931   41992.931

Root Mean Square Error of Approximation:

  RMSEA                                          0.067       0.050
  90 Percent confidence interval - lower         0.062       0.046
  90 Percent confidence interval - upper         0.072       0.055
  P-value RMSEA <= 0.05                          0.000       0.454
                                                                  
  Robust RMSEA                                               0.061
  90 Percent confidence interval - lower                     0.054
  90 Percent confidence interval - upper                     0.068

Standardized Root Mean Square Residual:

  SRMR                                           0.051       0.051

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
  pri_con =~                                                               
    PC01_01            1.000                                 1.598    0.927
    PC01_02            0.988     0.027   36.084    0.000     1.579    0.894
    PC01_04            0.969     0.027   35.588    0.000     1.548    0.882
    PC01_05            0.999     0.024   42.481    0.000     1.597    0.906
    PC01_06            0.851     0.038   22.585    0.000     1.360    0.793
    PC01_07            0.994     0.023   43.512    0.000     1.589    0.922
  grats_inf =~                                                             
    GR01_01            1.000                                 0.951    0.676
    GR01_02            1.041     0.078   13.366    0.000     0.990    0.812
    GR01_03            1.146     0.081   14.150    0.000     1.090    0.848
  grats_rel =~                                                             
    GR01_04            1.000                                 1.180    0.894
    GR01_05            0.933     0.038   24.854    0.000     1.101    0.852
    GR01_06            0.878     0.047   18.811    0.000     1.036    0.701
  grats_par =~                                                             
    GR01_07            1.000                                 1.197    0.822
    GR01_08            0.926     0.040   23.180    0.000     1.108    0.808
    GR01_09            0.952     0.039   24.499    0.000     1.139    0.814
  grats_ide =~                                                             
    GR01_10            1.000                                 1.150    0.791
    GR01_11            0.998     0.043   23.449    0.000     1.148    0.884
    GR01_12            0.919     0.042   22.057    0.000     1.056    0.757
  grats_ext =~                                                             
    GR01_13            1.000                                 0.823    0.501
    GR01_14            1.030     0.104    9.865    0.000     0.847    0.506
    GR01_15            1.583     0.187    8.476    0.000     1.302    0.852
  grats_spec =~                                                            
    grats_inf          1.000                                 0.827    0.827
    grats_rel          1.384     0.116   11.969    0.000     0.923    0.923
    grats_par          1.479     0.133   11.147    0.000     0.971    0.971
    grats_ide          1.358     0.121   11.205    0.000     0.929    0.929
    grats_ext          0.825     0.112    7.370    0.000     0.789    0.789

Regressions:
                   Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
  COMM ~                                                                   
    pri_con   (a1)   -11.794     5.895   -2.001    0.045   -18.845   -0.075
    grats_spc (b1)    52.406    16.759    3.127    0.002    41.218    0.165
    male              -7.983    23.598   -0.338    0.735    -7.983   -0.016
    age                0.343     0.551    0.623    0.533     0.343    0.021
    edu               12.176    15.167    0.803    0.422    12.176    0.041
  GR01_01 ~                                                                
    male              -0.342     0.121   -2.833    0.005    -0.342   -0.122
    age               -0.005     0.004   -1.333    0.183    -0.005   -0.059
    edu                0.000     0.072    0.006    0.995     0.000    0.000
  GR01_02 ~                                                                
    male              -0.142     0.103   -1.378    0.168    -0.142   -0.058
    age               -0.007     0.003   -2.106    0.035    -0.007   -0.088
    edu               -0.037     0.060   -0.617    0.537    -0.037   -0.026
  GR01_03 ~                                                                
    male              -0.186     0.109   -1.713    0.087    -0.186   -0.073
    age               -0.006     0.004   -1.704    0.088    -0.006   -0.075
    edu               -0.076     0.063   -1.204    0.228    -0.076   -0.050
  GR01_04 ~                                                                
    male              -0.004     0.113   -0.037    0.971    -0.004   -0.002
    age                0.001     0.004    0.262    0.793     0.001    0.011
    edu               -0.021     0.066   -0.319    0.749    -0.021   -0.013
  GR01_05 ~                                                                
    male              -0.069     0.112   -0.614    0.540    -0.069   -0.027
    age               -0.001     0.004   -0.198    0.843    -0.001   -0.009
    edu                0.025     0.064    0.387    0.699     0.025    0.016
  GR01_06 ~                                                                
    male               0.030     0.125    0.241    0.809     0.030    0.010
    age               -0.011     0.004   -2.567    0.010    -0.011   -0.111
    edu               -0.087     0.074   -1.176    0.240    -0.087   -0.050
  GR01_07 ~                                                                
    male               0.075     0.125    0.602    0.547     0.075    0.026
    age               -0.006     0.004   -1.391    0.164    -0.006   -0.060
    edu                0.004     0.072    0.057    0.955     0.004    0.002
  GR01_08 ~                                                                
    male               0.006     0.116    0.052    0.959     0.006    0.002
    age               -0.004     0.004   -1.121    0.262    -0.004   -0.051
    edu                0.113     0.068    1.675    0.094     0.113    0.070
  GR01_09 ~                                                                
    male               0.090     0.119    0.757    0.449     0.090    0.032
    age               -0.004     0.004   -0.952    0.341    -0.004   -0.041
    edu                0.115     0.069    1.667    0.096     0.115    0.069
  GR01_10 ~                                                                
    male              -0.019     0.125   -0.156    0.876    -0.019   -0.007
    age               -0.008     0.004   -1.993    0.046    -0.008   -0.089
    edu               -0.021     0.074   -0.277    0.781    -0.021   -0.012
  GR01_11 ~                                                                
    male              -0.083     0.111   -0.749    0.454    -0.083   -0.032
    age               -0.001     0.004   -0.313    0.755    -0.001   -0.014
    edu               -0.053     0.065   -0.822    0.411    -0.053   -0.034
  GR01_12 ~                                                                
    male              -0.218     0.120   -1.820    0.069    -0.218   -0.078
    age               -0.004     0.004   -1.009    0.313    -0.004   -0.043
    edu               -0.049     0.071   -0.685    0.493    -0.049   -0.029
  GR01_13 ~                                                                
    male              -0.181     0.138   -1.311    0.190    -0.181   -0.055
    age               -0.023     0.004   -5.515    0.000    -0.023   -0.219
    edu                0.078     0.081    0.959    0.338     0.078    0.040
  GR01_14 ~                                                                
    male              -0.303     0.145   -2.091    0.036    -0.303   -0.090
    age               -0.007     0.005   -1.540    0.124    -0.007   -0.065
    edu                0.030     0.084    0.361    0.718     0.030    0.015
  GR01_15 ~                                                                
    male               0.048     0.132    0.360    0.719     0.048    0.016
    age               -0.005     0.004   -1.213    0.225    -0.005   -0.053
    edu                0.024     0.078    0.300    0.764     0.024    0.013
  PC01_01 ~                                                                
    male              -0.182     0.151   -1.206    0.228    -0.182   -0.053
    age               -0.004     0.005   -0.820    0.412    -0.004   -0.036
    edu                0.110     0.087    1.255    0.210     0.110    0.054
  PC01_02 ~                                                                
    male              -0.302     0.154   -1.966    0.049    -0.302   -0.085
    age               -0.008     0.005   -1.663    0.096    -0.008   -0.072
    edu                0.047     0.089    0.522    0.601     0.047    0.022
  PC01_04 ~                                                                
    male              -0.225     0.152   -1.475    0.140    -0.225   -0.064
    age               -0.010     0.005   -1.980    0.048    -0.010   -0.085
    edu                0.113     0.089    1.269    0.204     0.113    0.054
  PC01_05 ~                                                                
    male              -0.098     0.154   -0.636    0.525    -0.098   -0.028
    age               -0.006     0.005   -1.164    0.244    -0.006   -0.051
    edu                0.090     0.090    0.996    0.319     0.090    0.043
  PC01_06 ~                                                                
    male              -0.108     0.150   -0.722    0.470    -0.108   -0.032
    age               -0.005     0.005   -1.055    0.291    -0.005   -0.046
    edu                0.043     0.087    0.491    0.623     0.043    0.021
  PC01_07 ~                                                                
    male              -0.174     0.150   -1.160    0.246    -0.174   -0.050
    age               -0.006     0.005   -1.337    0.181    -0.006   -0.058
    edu                0.081     0.087    0.934    0.351     0.081    0.040

Covariances:
                   Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
  pri_con ~~                                                               
    grats_spec        -0.115     0.067   -1.712    0.087    -0.091   -0.091

Intercepts:
                   Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
   .PC01_01            3.369     0.292   11.557    0.000     3.369    1.955
   .PC01_02            3.769     0.304   12.398    0.000     3.769    2.135
   .PC01_04            3.571     0.297   12.020    0.000     3.571    2.035
   .PC01_05            3.414     0.304   11.229    0.000     3.414    1.937
   .PC01_06            3.215     0.288   11.155    0.000     3.215    1.875
   .PC01_07            3.461     0.294   11.780    0.000     3.461    2.008
   .GR01_01            5.296     0.247   21.424    0.000     5.296    3.763
   .GR01_02            5.895     0.205   28.694    0.000     5.895    4.835
   .GR01_03            5.800     0.221   26.272    0.000     5.800    4.511
   .GR01_04            4.923     0.211   23.378    0.000     4.923    3.730
   .GR01_05            5.109     0.217   23.539    0.000     5.109    3.952
   .GR01_06            5.297     0.252   21.013    0.000     5.297    3.581
   .GR01_07            4.896     0.236   20.768    0.000     4.896    3.363
   .GR01_08            5.062     0.238   21.233    0.000     5.062    3.691
   .GR01_09            4.754     0.237   20.070    0.000     4.754    3.395
   .GR01_10            4.977     0.255   19.492    0.000     4.977    3.425
   .GR01_11            5.158     0.227   22.705    0.000     5.158    3.974
   .GR01_12            5.136     0.233   22.001    0.000     5.136    3.679
   .GR01_13            5.091     0.259   19.644    0.000     5.091    3.101
   .GR01_14            3.454     0.281   12.310    0.000     3.454    2.061
   .GR01_15            4.582     0.266   17.224    0.000     4.582    2.998
   .COMM              42.157    29.818    1.414    0.157    42.157    0.168
    pri_con            0.000                                 0.000    0.000
   .grats_inf          0.000                                 0.000    0.000
   .grats_rel          0.000                                 0.000    0.000
   .grats_par          0.000                                 0.000    0.000
   .grats_ide          0.000                                 0.000    0.000
   .grats_ext          0.000                                 0.000    0.000
    grats_spec         0.000                                 0.000    0.000

Variances:
                   Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
   .PC01_01            0.395     0.050    7.926    0.000     0.395    0.133
   .PC01_02            0.580     0.104    5.598    0.000     0.580    0.186
   .PC01_04            0.634     0.078    8.082    0.000     0.634    0.206
   .PC01_05            0.540     0.065    8.276    0.000     0.540    0.174
   .PC01_06            1.079     0.117    9.221    0.000     1.079    0.367
   .PC01_07            0.425     0.064    6.633    0.000     0.425    0.143
   .GR01_01            1.036     0.109    9.524    0.000     1.036    0.523
   .GR01_02            0.487     0.066    7.410    0.000     0.487    0.327
   .GR01_03            0.440     0.068    6.489    0.000     0.440    0.266
   .GR01_04            0.349     0.043    8.132    0.000     0.349    0.201
   .GR01_05            0.458     0.057    8.078    0.000     0.458    0.274
   .GR01_06            1.084     0.108   10.005    0.000     1.084    0.495
   .GR01_07            0.677     0.069    9.775    0.000     0.677    0.320
   .GR01_08            0.637     0.069    9.282    0.000     0.637    0.339
   .GR01_09            0.646     0.072    9.008    0.000     0.646    0.330
   .GR01_10            0.773     0.070   11.079    0.000     0.773    0.366
   .GR01_11            0.364     0.055    6.562    0.000     0.364    0.216
   .GR01_12            0.814     0.077   10.579    0.000     0.814    0.418
   .GR01_13            1.869     0.147   12.731    0.000     1.869    0.693
   .GR01_14            2.051     0.123   16.728    0.000     2.051    0.731
   .GR01_15            0.632     0.112    5.622    0.000     0.632    0.271
   .COMM           60348.228 23641.021    2.553    0.011 60348.228    0.963
    pri_con            2.553     0.144   17.705    0.000     1.000    1.000
   .grats_inf          0.286     0.045    6.402    0.000     0.316    0.316
   .grats_rel          0.207     0.049    4.184    0.000     0.149    0.149
   .grats_par          0.081     0.053    1.541    0.123     0.056    0.056
   .grats_ide          0.180     0.047    3.811    0.000     0.137    0.137
   .grats_ext          0.255     0.065    3.910    0.000     0.377    0.377
    grats_spec         0.619     0.119    5.219    0.000     1.000    1.000
rsquare_fit_simple <- inspect(fit_simple, what = "rsquare")["comm"]

Preregistered Model

We first analyze the same models as before, but analyzing self-disclosure instead of communication. This was how we initially preregistered the study.

Model “Peregistered”

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 
grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
  SE01_01 ~~ x*SE01_02
  SE01_03 ~~ x*SE01_04
trust_community =~ TR01_02 + TR01_03 + TR01_04
trust_provider =~ TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12
trust_spec =~ trust_community + trust_provider

self_dis_log ~ a1*pri_con + b1*grats_gen + c1*pri_delib + d1*self_eff + e1*trust_spec

# Covariates
self_dis_log + GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR01_02 + TR01_03 + TR01_04 + TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu
"
fit_prereg <- sem(model, data = d, estimator = "MLR", missing = "ML")
summary(fit_prereg, fit = TRUE, std = TRUE)
lavaan 0.6-8 ended normally after 324 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       198
  Number of equality constraints                     1
                                                      
                                                  Used       Total
  Number of observations                           558         559
  Number of missing patterns                         3            
                                                                  
Model Test User Model:
                                               Standard      Robust
  Test Statistic                               1244.969     953.447
  Degrees of freedom                                388         388
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.306
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                             13322.891    9995.405
  Degrees of freedom                               525         525
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.333

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.933       0.940
  Tucker-Lewis Index (TLI)                       0.909       0.919
                                                                  
  Robust Comparative Fit Index (CFI)                         0.942
  Robust Tucker-Lewis Index (TLI)                            0.921

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -23851.439  -23851.439
  Scaling correction factor                                  1.260
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -23228.954  -23228.954
  Scaling correction factor                                  1.293
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               48096.877   48096.877
  Bayesian (BIC)                             48948.776   48948.776
  Sample-size adjusted Bayesian (BIC)        48323.404   48323.404

Root Mean Square Error of Approximation:

  RMSEA                                          0.063       0.051
  90 Percent confidence interval - lower         0.059       0.048
  90 Percent confidence interval - upper         0.067       0.055
  P-value RMSEA <= 0.05                          0.000       0.301
                                                                  
  Robust RMSEA                                               0.058
  90 Percent confidence interval - lower                     0.054
  90 Percent confidence interval - upper                     0.063

Standardized Root Mean Square Residual:

  SRMR                                           0.049       0.049

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con =~                                                              
    PC01_01             1.000                               1.595    0.926
    PC01_02             0.990    0.027   36.223    0.000    1.579    0.894
    PC01_04             0.972    0.027   35.677    0.000    1.550    0.884
    PC01_05             1.002    0.024   42.437    0.000    1.599    0.907
    PC01_06             0.854    0.038   22.681    0.000    1.363    0.795
    PC01_07             0.994    0.023   43.799    0.000    1.586    0.920
  grats_gen =~                                                            
    GR02_01             1.000                               1.133    0.844
    GR02_02             1.118    0.033   33.646    0.000    1.267    0.894
    GR02_03             1.019    0.047   21.479    0.000    1.155    0.863
    GR02_04             0.983    0.048   20.415    0.000    1.115    0.848
    GR02_05             1.072    0.040   27.031    0.000    1.215    0.847
  pri_delib =~                                                            
    PD01_01             1.000                               1.473    0.853
    PD01_02             0.670    0.048   13.874    0.000    0.987    0.643
    PD01_03             0.709    0.055   12.918    0.000    1.044    0.670
    PD01_04             0.842    0.047   17.852    0.000    1.241    0.727
    PD01_05             0.717    0.050   14.327    0.000    1.056    0.638
  self_eff =~                                                             
    SE01_01             1.000                               1.115    0.808
    SE01_02             0.811    0.057   14.207    0.000    0.904    0.670
    SE01_03             0.933    0.046   20.149    0.000    1.039    0.776
    SE01_04             0.954    0.043   22.155    0.000    1.063    0.789
  trust_community =~                                                      
    TR01_02             1.000                               1.024    0.808
    TR01_03             0.820    0.052   15.878    0.000    0.839    0.763
    TR01_04             0.917    0.046   19.760    0.000    0.939    0.814
  trust_provider =~                                                       
    TR01_06             1.000                               1.046    0.871
    TR01_07             0.855    0.039   21.941    0.000    0.894    0.773
    TR01_08             0.834    0.040   21.090    0.000    0.872    0.788
    TR01_10             0.788    0.038   20.840    0.000    0.824    0.700
    TR01_11             0.821    0.052   15.891    0.000    0.859    0.662
    TR01_12             1.098    0.038   28.624    0.000    1.149    0.854
  trust_spec =~                                                           
    trust_communty      1.000                               0.877    0.877
    trust_provider      1.109    0.077   14.318    0.000    0.952    0.952

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  self_dis_log ~                                                        
    pri_con   (a1)   -0.062    0.080   -0.781    0.435   -0.100   -0.044
    grats_gen (b1)    0.140    0.166    0.844    0.399    0.159    0.070
    pri_delib (c1)   -0.160    0.093   -1.724    0.085   -0.235   -0.103
    self_eff  (d1)    0.783    0.148    5.289    0.000    0.872    0.382
    trust_spc (e1)   -0.304    0.270   -1.129    0.259   -0.273   -0.120
    male             -0.021    0.197   -0.109    0.913   -0.021   -0.005
    age               0.003    0.006    0.570    0.569    0.003    0.024
    edu               0.212    0.116    1.836    0.066    0.212    0.078
  GR02_01 ~                                                             
    male             -0.127    0.116   -1.096    0.273   -0.127   -0.047
    age               0.000    0.004    0.091    0.927    0.000    0.004
    edu               0.005    0.068    0.074    0.941    0.005    0.003
  GR02_02 ~                                                             
    male             -0.067    0.120   -0.559    0.576   -0.067   -0.024
    age               0.006    0.004    1.542    0.123    0.006    0.068
    edu              -0.080    0.071   -1.127    0.260   -0.080   -0.047
  GR02_03 ~                                                             
    male             -0.025    0.116   -0.220    0.826   -0.025   -0.009
    age               0.001    0.004    0.310    0.756    0.001    0.014
    edu              -0.083    0.067   -1.237    0.216   -0.083   -0.052
  GR02_04 ~                                                             
    male              0.028    0.113    0.250    0.803    0.028    0.011
    age               0.005    0.004    1.304    0.192    0.005    0.057
    edu              -0.072    0.067   -1.072    0.284   -0.072   -0.046
  GR02_05 ~                                                             
    male             -0.140    0.124   -1.136    0.256   -0.140   -0.049
    age              -0.004    0.004   -0.874    0.382   -0.004   -0.039
    edu               0.013    0.073    0.173    0.862    0.013    0.007
  PC01_01 ~                                                             
    male             -0.182    0.151   -1.206    0.228   -0.182   -0.053
    age              -0.004    0.005   -0.820    0.412   -0.004   -0.036
    edu               0.110    0.087    1.255    0.209    0.110    0.054
  PC01_02 ~                                                             
    male             -0.302    0.154   -1.967    0.049   -0.302   -0.085
    age              -0.008    0.005   -1.663    0.096   -0.008   -0.072
    edu               0.047    0.089    0.522    0.601    0.047    0.022
  PC01_04 ~                                                             
    male             -0.225    0.152   -1.476    0.140   -0.225   -0.064
    age              -0.010    0.005   -1.980    0.048   -0.010   -0.085
    edu               0.113    0.089    1.269    0.204    0.113    0.054
  PC01_05 ~                                                             
    male             -0.098    0.154   -0.636    0.524   -0.098   -0.028
    age              -0.006    0.005   -1.164    0.244   -0.006   -0.051
    edu               0.090    0.090    0.996    0.319    0.090    0.043
  PC01_06 ~                                                             
    male             -0.108    0.150   -0.722    0.470   -0.108   -0.032
    age              -0.005    0.005   -1.055    0.291   -0.005   -0.046
    edu               0.043    0.087    0.491    0.623    0.043    0.021
  PC01_07 ~                                                             
    male             -0.174    0.150   -1.160    0.246   -0.174   -0.050
    age              -0.006    0.005   -1.337    0.181   -0.006   -0.058
    edu               0.081    0.087    0.934    0.350    0.081    0.040
  TR01_02 ~                                                             
    male             -0.297    0.108   -2.744    0.006   -0.297   -0.117
    age              -0.004    0.004   -1.102    0.270   -0.004   -0.049
    edu               0.005    0.062    0.086    0.931    0.005    0.004
  TR01_03 ~                                                             
    male             -0.140    0.095   -1.480    0.139   -0.140   -0.064
    age              -0.002    0.003   -0.566    0.571   -0.002   -0.025
    edu               0.023    0.053    0.434    0.664    0.023    0.018
  TR01_04 ~                                                             
    male             -0.134    0.099   -1.362    0.173   -0.134   -0.058
    age              -0.004    0.003   -1.211    0.226   -0.004   -0.055
    edu              -0.003    0.060   -0.045    0.964   -0.003   -0.002
  TR01_06 ~                                                             
    male             -0.086    0.104   -0.831    0.406   -0.086   -0.036
    age               0.000    0.003    0.110    0.912    0.000    0.005
    edu              -0.051    0.058   -0.880    0.379   -0.051   -0.036
  TR01_07 ~                                                             
    male             -0.045    0.099   -0.450    0.653   -0.045   -0.019
    age               0.001    0.003    0.344    0.731    0.001    0.015
    edu               0.018    0.058    0.309    0.757    0.018    0.013
  TR01_08 ~                                                             
    male              0.046    0.095    0.480    0.631    0.046    0.021
    age              -0.004    0.003   -1.250    0.211   -0.004   -0.053
    edu               0.025    0.056    0.445    0.656    0.025    0.019
  TR01_10 ~                                                             
    male              0.091    0.100    0.913    0.361    0.091    0.039
    age              -0.004    0.003   -1.176    0.239   -0.004   -0.050
    edu              -0.055    0.058   -0.946    0.344   -0.055   -0.039
  TR01_11 ~                                                             
    male              0.027    0.112    0.245    0.806    0.027    0.011
    age               0.003    0.004    0.824    0.410    0.003    0.035
    edu              -0.093    0.065   -1.435    0.151   -0.093   -0.061
  TR01_12 ~                                                             
    male             -0.121    0.115   -1.045    0.296   -0.121   -0.045
    age              -0.002    0.004   -0.405    0.685   -0.002   -0.018
    edu              -0.146    0.068   -2.156    0.031   -0.146   -0.091
  PD01_01 ~                                                             
    male             -0.177    0.148   -1.197    0.231   -0.177   -0.051
    age              -0.015    0.005   -3.275    0.001   -0.015   -0.137
    edu              -0.026    0.085   -0.310    0.756   -0.026   -0.013
  PD01_02 ~                                                             
    male             -0.119    0.131   -0.906    0.365   -0.119   -0.039
    age              -0.014    0.004   -3.443    0.001   -0.014   -0.142
    edu               0.031    0.077    0.405    0.686    0.031    0.017
  PD01_03 ~                                                             
    male             -0.321    0.132   -2.425    0.015   -0.321   -0.103
    age              -0.004    0.004   -1.024    0.306   -0.004   -0.044
    edu               0.065    0.080    0.807    0.419    0.065    0.035
  PD01_04 ~                                                             
    male             -0.412    0.145   -2.847    0.004   -0.412   -0.121
    age              -0.009    0.005   -1.904    0.057   -0.009   -0.082
    edu               0.103    0.085    1.207    0.227    0.103    0.051
  PD01_05 ~                                                             
    male             -0.205    0.142   -1.439    0.150   -0.205   -0.062
    age              -0.012    0.004   -2.696    0.007   -0.012   -0.111
    edu              -0.002    0.084   -0.025    0.980   -0.002   -0.001
  SE01_01 ~                                                             
    male              0.119    0.118    1.012    0.312    0.119    0.043
    age               0.000    0.004    0.008    0.994    0.000    0.000
    edu               0.211    0.068    3.115    0.002    0.211    0.129
  SE01_02 ~                                                             
    male              0.059    0.112    0.527    0.598    0.059    0.022
    age              -0.013    0.004   -3.598    0.000   -0.013   -0.151
    edu               0.198    0.066    3.000    0.003    0.198    0.124
  SE01_03 ~                                                             
    male              0.194    0.114    1.698    0.090    0.194    0.072
    age               0.001    0.004    0.246    0.806    0.001    0.011
    edu               0.143    0.067    2.134    0.033    0.143    0.090
  SE01_04 ~                                                             
    male              0.053    0.115    0.462    0.644    0.053    0.020
    age               0.007    0.004    2.047    0.041    0.007    0.086
    edu               0.127    0.066    1.908    0.056    0.127    0.079

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .SE01_01 ~~                                                            
   .SE01_02    (x)    0.107    0.044    2.426    0.015    0.107    0.141
 .SE01_03 ~~                                                            
   .SE01_04    (x)    0.107    0.044    2.426    0.015    0.107    0.158
  pri_con ~~                                                            
    grats_gen        -0.283    0.096   -2.949    0.003   -0.156   -0.156
    pri_delib         1.323    0.131   10.120    0.000    0.563    0.563
    self_eff         -0.376    0.091   -4.131    0.000   -0.212   -0.212
    trust_spec       -0.416    0.074   -5.584    0.000   -0.290   -0.290
  grats_gen ~~                                                          
    pri_delib        -0.068    0.103   -0.659    0.510   -0.041   -0.041
    self_eff          0.470    0.067    7.042    0.000    0.372    0.372
    trust_spec        0.804    0.086    9.396    0.000    0.790    0.790
  pri_delib ~~                                                          
    self_eff         -0.325    0.094   -3.447    0.001   -0.198   -0.198
    trust_spec       -0.139    0.086   -1.624    0.104   -0.105   -0.105
  self_eff ~~                                                           
    trust_spec        0.555    0.060    9.235    0.000    0.554    0.554

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           3.369    0.292   11.557    0.000    3.369    1.955
   .PC01_02           3.769    0.304   12.398    0.000    3.769    2.135
   .PC01_04           3.571    0.297   12.020    0.000    3.571    2.035
   .PC01_05           3.414    0.304   11.229    0.000    3.414    1.937
   .PC01_06           3.215    0.288   11.155    0.000    3.215    1.875
   .PC01_07           3.461    0.294   11.780    0.000    3.461    2.008
   .GR02_01           4.319    0.224   19.252    0.000    4.319    3.215
   .GR02_02           4.492    0.244   18.372    0.000    4.492    3.170
   .GR02_03           5.244    0.222   23.667    0.000    5.244    3.917
   .GR02_04           4.988    0.221   22.522    0.000    4.988    3.795
   .GR02_05           4.905    0.254   19.323    0.000    4.905    3.422
   .PD01_01           4.493    0.290   15.507    0.000    4.493    2.602
   .PD01_02           3.997    0.248   16.102    0.000    3.997    2.601
   .PD01_03           4.432    0.270   16.437    0.000    4.432    2.845
   .PD01_04           4.506    0.295   15.283    0.000    4.506    2.640
   .PD01_05           5.000    0.276   18.089    0.000    5.000    3.018
   .SE01_01           4.824    0.249   19.357    0.000    4.824    3.496
   .SE01_02           5.730    0.234   24.461    0.000    5.730    4.248
   .SE01_03           4.819    0.226   21.326    0.000    4.819    3.597
   .SE01_04           4.533    0.234   19.377    0.000    4.533    3.361
   .TR01_02           5.083    0.219   23.224    0.000    5.083    4.010
   .TR01_03           4.951    0.189   26.178    0.000    4.951    4.505
   .TR01_04           4.871    0.200   24.361    0.000    4.871    4.223
   .TR01_06           5.521    0.205   26.991    0.000    5.521    4.600
   .TR01_07           5.134    0.197   26.024    0.000    5.134    4.440
   .TR01_08           5.232    0.188   27.764    0.000    5.232    4.728
   .TR01_10           5.955    0.193   30.911    0.000    5.955    5.060
   .TR01_11           4.855    0.218   22.270    0.000    4.855    3.745
   .TR01_12           5.581    0.231   24.175    0.000    5.581    4.149
   .self_dis_log      1.376    0.375    3.673    0.000    1.376    0.602
    pri_con           0.000                               0.000    0.000
    grats_gen         0.000                               0.000    0.000
    pri_delib         0.000                               0.000    0.000
    self_eff          0.000                               0.000    0.000
   .trust_communty    0.000                               0.000    0.000
   .trust_provider    0.000                               0.000    0.000
    trust_spec        0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           0.403    0.050    8.073    0.000    0.403    0.136
   .PC01_02           0.580    0.103    5.654    0.000    0.580    0.186
   .PC01_04           0.628    0.077    8.138    0.000    0.628    0.204
   .PC01_05           0.534    0.064    8.354    0.000    0.534    0.172
   .PC01_06           1.069    0.116    9.252    0.000    1.069    0.364
   .PC01_07           0.431    0.065    6.589    0.000    0.431    0.145
   .GR02_01           0.516    0.053    9.674    0.000    0.516    0.286
   .GR02_02           0.386    0.039    9.891    0.000    0.386    0.192
   .GR02_03           0.452    0.073    6.174    0.000    0.452    0.252
   .GR02_04           0.476    0.048    9.905    0.000    0.476    0.275
   .GR02_05           0.571    0.062    9.185    0.000    0.571    0.278
   .PD01_01           0.743    0.111    6.688    0.000    0.743    0.249
   .PD01_02           1.331    0.128   10.434    0.000    1.331    0.564
   .PD01_03           1.304    0.128   10.195    0.000    1.304    0.537
   .PD01_04           1.300    0.147    8.860    0.000    1.300    0.446
   .PD01_05           1.580    0.128   12.374    0.000    1.580    0.576
   .SE01_01           0.623    0.087    7.131    0.000    0.623    0.327
   .SE01_02           0.926    0.119    7.787    0.000    0.926    0.509
   .SE01_03           0.688    0.096    7.169    0.000    0.688    0.383
   .SE01_04           0.663    0.077    8.579    0.000    0.663    0.365
   .TR01_02           0.531    0.067    7.881    0.000    0.531    0.331
   .TR01_03           0.498    0.055    9.064    0.000    0.498    0.412
   .TR01_04           0.439    0.045    9.677    0.000    0.439    0.330
   .TR01_06           0.343    0.035    9.880    0.000    0.343    0.238
   .TR01_07           0.537    0.052   10.304    0.000    0.537    0.402
   .TR01_08           0.459    0.041   11.152    0.000    0.459    0.375
   .TR01_10           0.699    0.056   12.551    0.000    0.699    0.505
   .TR01_11           0.935    0.079   11.779    0.000    0.935    0.556
   .TR01_12           0.468    0.052    8.951    0.000    0.468    0.259
   .self_dis_log      4.365    0.210   20.740    0.000    4.365    0.837
    pri_con           2.545    0.144   17.629    0.000    1.000    1.000
    grats_gen         1.285    0.114   11.231    0.000    1.000    1.000
    pri_delib         2.171    0.158   13.773    0.000    1.000    1.000
    self_eff          1.242    0.113   10.962    0.000    1.000    1.000
   .trust_communty    0.242    0.044    5.485    0.000    0.231    0.231
   .trust_provider    0.101    0.043    2.374    0.018    0.093    0.093
    trust_spec        0.806    0.099    8.135    0.000    1.000    1.000
rsquare_fit_prereg <- inspect(fit_prereg, what = "rsquare")["self_dis_log"]

Model “Adapted”

Building on the preregistered model, instead of general gratifications and specific trust, we now use specific gratifications and general trust.

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07
grats_inf =~ GR01_01 + GR01_02 + GR01_03 
grats_rel =~ GR01_04 + GR01_05 + GR01_06 
grats_par =~ GR01_07 + GR01_08 + GR01_09
grats_ide =~ GR01_10 + GR01_11 + GR01_12 
grats_ext =~ GR01_13 + GR01_14 + GR01_15
grats_spec =~ grats_inf + grats_rel + grats_par + grats_ide + grats_ext
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
  SE01_01 ~~ x*SE01_02
  SE01_03 ~~ x*SE01_04
trust_gen =~ TR01_01 + TR01_05 + TR01_09

self_dis_log ~ a1*pri_con + b1*grats_spec + c1*pri_delib + d1*self_eff + e1*trust_gen

# Covariates
self_dis_log + GR01_01 + GR01_02 + GR01_03 + GR01_04 + GR01_05 + GR01_06 + GR01_07 + GR01_08 + GR01_09 + GR01_10 + GR01_11 + GR01_12 + GR01_13 + GR01_14 + GR01_15 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR01_01 + TR01_05 + TR01_09 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu
"
fit_adapted <- sem(model, data = d, estimator = "MLR", missing = "ML", missing = "ML")
summary(fit_adapted, fit = TRUE, std = TRUE)
lavaan 0.6-8 ended normally after 352 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       225
  Number of equality constraints                     1
                                                      
                                                  Used       Total
  Number of observations                           558         559
  Number of missing patterns                         2            
                                                                  
Model Test User Model:
                                               Standard      Robust
  Test Statistic                               1501.143    1138.746
  Degrees of freedom                                507         507
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.318
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                             14334.705   10703.287
  Degrees of freedom                               663         663
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.339

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.927       0.937
  Tucker-Lewis Index (TLI)                       0.905       0.918
                                                                  
  Robust Comparative Fit Index (CFI)                         0.938
  Robust Tucker-Lewis Index (TLI)                            0.919

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -27996.285  -27996.285
  Scaling correction factor                                  1.267
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -27245.714  -27245.714
  Scaling correction factor                                  1.304
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               56440.570   56440.570
  Bayesian (BIC)                             57409.226   57409.226
  Sample-size adjusted Bayesian (BIC)        56698.144   56698.144

Root Mean Square Error of Approximation:

  RMSEA                                          0.059       0.047
  90 Percent confidence interval - lower         0.056       0.044
  90 Percent confidence interval - upper         0.063       0.050
  P-value RMSEA <= 0.05                          0.000       0.921
                                                                  
  Robust RMSEA                                               0.054
  90 Percent confidence interval - lower                     0.050
  90 Percent confidence interval - upper                     0.058

Standardized Root Mean Square Residual:

  SRMR                                           0.059       0.059

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con =~                                                            
    PC01_01           1.000                               1.595    0.926
    PC01_02           0.990    0.027   36.425    0.000    1.579    0.894
    PC01_04           0.972    0.027   35.939    0.000    1.550    0.883
    PC01_05           1.003    0.024   42.507    0.000    1.599    0.907
    PC01_06           0.855    0.038   22.775    0.000    1.364    0.796
    PC01_07           0.995    0.023   44.000    0.000    1.587    0.920
  grats_inf =~                                                          
    GR01_01           1.000                               0.952    0.677
    GR01_02           1.042    0.076   13.676    0.000    0.992    0.814
    GR01_03           1.142    0.078   14.572    0.000    1.088    0.846
  grats_rel =~                                                          
    GR01_04           1.000                               1.178    0.893
    GR01_05           0.939    0.038   24.902    0.000    1.106    0.855
    GR01_06           0.876    0.046   18.875    0.000    1.032    0.697
  grats_par =~                                                          
    GR01_07           1.000                               1.187    0.815
    GR01_08           0.941    0.039   23.835    0.000    1.117    0.814
    GR01_09           0.963    0.038   25.234    0.000    1.142    0.816
  grats_ide =~                                                          
    GR01_10           1.000                               1.142    0.786
    GR01_11           1.007    0.042   24.159    0.000    1.150    0.886
    GR01_12           0.928    0.041   22.498    0.000    1.060    0.759
  grats_ext =~                                                          
    GR01_13           1.000                               0.831    0.506
    GR01_14           1.020    0.103    9.924    0.000    0.848    0.506
    GR01_15           1.559    0.187    8.349    0.000    1.296    0.848
  grats_spec =~                                                         
    grats_inf         1.000                               0.844    0.844
    grats_rel         1.354    0.108   12.492    0.000    0.924    0.924
    grats_par         1.428    0.119   11.966    0.000    0.967    0.967
    grats_ide         1.317    0.109   12.034    0.000    0.927    0.927
    grats_ext         0.800    0.106    7.516    0.000    0.774    0.774
  pri_delib =~                                                          
    PD01_01           1.000                               1.482    0.858
    PD01_02           0.668    0.048   13.846    0.000    0.990    0.644
    PD01_03           0.699    0.054   12.839    0.000    1.035    0.664
    PD01_04           0.838    0.047   17.842    0.000    1.241    0.727
    PD01_05           0.707    0.050   14.189    0.000    1.047    0.632
  self_eff =~                                                           
    SE01_01           1.000                               1.118    0.810
    SE01_02           0.808    0.058   14.040    0.000    0.904    0.670
    SE01_03           0.926    0.045   20.413    0.000    1.035    0.773
    SE01_04           0.954    0.043   22.096    0.000    1.066    0.791
  trust_gen =~                                                          
    TR01_01           1.000                               0.769    0.667
    TR01_05           1.326    0.070   18.936    0.000    1.020    0.887
    TR01_09           1.453    0.081   18.032    0.000    1.117    0.926

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  self_dis_log ~                                                        
    pri_con   (a1)   -0.106    0.080   -1.320    0.187   -0.169   -0.074
    grats_spc (b1)    0.462    0.205    2.255    0.024    0.371    0.162
    pri_delib (c1)   -0.204    0.094   -2.174    0.030   -0.303   -0.133
    self_eff  (d1)    0.683    0.143    4.776    0.000    0.764    0.334
    trust_gen (e1)   -0.531    0.218   -2.439    0.015   -0.409   -0.179
    male             -0.022    0.197   -0.109    0.913   -0.022   -0.005
    age               0.003    0.006    0.569    0.569    0.003    0.024
    edu               0.212    0.116    1.836    0.066    0.212    0.078
  GR01_01 ~                                                             
    male             -0.342    0.121   -2.833    0.005   -0.342   -0.122
    age              -0.005    0.004   -1.333    0.182   -0.005   -0.059
    edu               0.000    0.072    0.006    0.995    0.000    0.000
  GR01_02 ~                                                             
    male             -0.142    0.103   -1.378    0.168   -0.142   -0.058
    age              -0.007    0.003   -2.107    0.035   -0.007   -0.088
    edu              -0.037    0.060   -0.617    0.537   -0.037   -0.026
  GR01_03 ~                                                             
    male             -0.186    0.109   -1.713    0.087   -0.186   -0.073
    age              -0.006    0.004   -1.704    0.088   -0.006   -0.075
    edu              -0.076    0.063   -1.204    0.228   -0.076   -0.050
  GR01_04 ~                                                             
    male             -0.004    0.113   -0.037    0.971   -0.004   -0.002
    age               0.001    0.004    0.262    0.793    0.001    0.011
    edu              -0.021    0.066   -0.320    0.749   -0.021   -0.013
  GR01_05 ~                                                             
    male             -0.069    0.112   -0.614    0.539   -0.069   -0.027
    age              -0.001    0.004   -0.198    0.843   -0.001   -0.009
    edu               0.025    0.064    0.387    0.699    0.025    0.016
  GR01_06 ~                                                             
    male              0.030    0.125    0.241    0.809    0.030    0.010
    age              -0.011    0.004   -2.567    0.010   -0.011   -0.111
    edu              -0.087    0.074   -1.176    0.240   -0.087   -0.050
  GR01_07 ~                                                             
    male              0.075    0.125    0.602    0.547    0.075    0.026
    age              -0.006    0.004   -1.391    0.164   -0.006   -0.060
    edu               0.004    0.072    0.057    0.955    0.004    0.002
  GR01_08 ~                                                             
    male              0.006    0.116    0.052    0.959    0.006    0.002
    age              -0.004    0.004   -1.121    0.262   -0.004   -0.051
    edu               0.113    0.068    1.675    0.094    0.113    0.070
  GR01_09 ~                                                             
    male              0.090    0.119    0.757    0.449    0.090    0.032
    age              -0.004    0.004   -0.952    0.341   -0.004   -0.041
    edu               0.115    0.069    1.666    0.096    0.115    0.069
  GR01_10 ~                                                             
    male             -0.019    0.125   -0.156    0.876   -0.019   -0.007
    age              -0.008    0.004   -1.993    0.046   -0.008   -0.089
    edu              -0.021    0.074   -0.278    0.781   -0.021   -0.012
  GR01_11 ~                                                             
    male             -0.083    0.111   -0.749    0.454   -0.083   -0.032
    age              -0.001    0.004   -0.313    0.755   -0.001   -0.014
    edu              -0.053    0.065   -0.822    0.411   -0.053   -0.034
  GR01_12 ~                                                             
    male             -0.218    0.120   -1.820    0.069   -0.218   -0.078
    age              -0.004    0.004   -1.010    0.313   -0.004   -0.043
    edu              -0.049    0.071   -0.686    0.493   -0.049   -0.029
  GR01_13 ~                                                             
    male             -0.181    0.138   -1.311    0.190   -0.181   -0.055
    age              -0.023    0.004   -5.515    0.000   -0.023   -0.219
    edu               0.078    0.081    0.959    0.338    0.078    0.040
  GR01_14 ~                                                             
    male             -0.303    0.145   -2.092    0.036   -0.303   -0.090
    age              -0.007    0.005   -1.540    0.124   -0.007   -0.065
    edu               0.030    0.084    0.361    0.718    0.030    0.015
  GR01_15 ~                                                             
    male              0.048    0.132    0.360    0.719    0.048    0.016
    age              -0.005    0.004   -1.214    0.225   -0.005   -0.053
    edu               0.024    0.078    0.300    0.764    0.024    0.013
  PC01_01 ~                                                             
    male             -0.182    0.151   -1.206    0.228   -0.182   -0.053
    age              -0.004    0.005   -0.819    0.413   -0.004   -0.036
    edu               0.110    0.087    1.255    0.209    0.110    0.054
  PC01_02 ~                                                             
    male             -0.302    0.154   -1.966    0.049   -0.302   -0.085
    age              -0.008    0.005   -1.663    0.096   -0.008   -0.072
    edu               0.047    0.089    0.523    0.601    0.047    0.022
  PC01_04 ~                                                             
    male             -0.225    0.152   -1.475    0.140   -0.225   -0.064
    age              -0.010    0.005   -1.980    0.048   -0.010   -0.085
    edu               0.113    0.089    1.269    0.204    0.113    0.054
  PC01_05 ~                                                             
    male             -0.098    0.154   -0.636    0.525   -0.098   -0.028
    age              -0.006    0.005   -1.164    0.244   -0.006   -0.051
    edu               0.090    0.090    0.997    0.319    0.090    0.043
  PC01_06 ~                                                             
    male             -0.108    0.150   -0.722    0.470   -0.108   -0.032
    age              -0.005    0.005   -1.055    0.291   -0.005   -0.046
    edu               0.043    0.087    0.491    0.623    0.043    0.021
  PC01_07 ~                                                             
    male             -0.174    0.150   -1.160    0.246   -0.174   -0.050
    age              -0.006    0.005   -1.337    0.181   -0.006   -0.058
    edu               0.081    0.087    0.934    0.350    0.081    0.040
  TR01_01 ~                                                             
    male             -0.156    0.099   -1.570    0.116   -0.156   -0.068
    age              -0.003    0.003   -0.813    0.416   -0.003   -0.038
    edu               0.026    0.060    0.433    0.665    0.026    0.019
  TR01_05 ~                                                             
    male              0.076    0.100    0.762    0.446    0.076    0.033
    age              -0.004    0.003   -1.216    0.224   -0.004   -0.053
    edu               0.088    0.059    1.490    0.136    0.088    0.064
  TR01_09 ~                                                             
    male              0.064    0.104    0.619    0.536    0.064    0.027
    age              -0.007    0.004   -1.939    0.053   -0.007   -0.088
    edu              -0.018    0.060   -0.295    0.768   -0.018   -0.012
  PD01_01 ~                                                             
    male             -0.177    0.148   -1.197    0.231   -0.177   -0.051
    age              -0.015    0.005   -3.275    0.001   -0.015   -0.137
    edu              -0.026    0.085   -0.310    0.757   -0.026   -0.013
  PD01_02 ~                                                             
    male             -0.119    0.131   -0.906    0.365   -0.119   -0.039
    age              -0.014    0.004   -3.442    0.001   -0.014   -0.142
    edu               0.031    0.077    0.405    0.685    0.031    0.017
  PD01_03 ~                                                             
    male             -0.321    0.132   -2.425    0.015   -0.321   -0.103
    age              -0.004    0.004   -1.023    0.306   -0.004   -0.044
    edu               0.065    0.080    0.808    0.419    0.065    0.035
  PD01_04 ~                                                             
    male             -0.412    0.145   -2.847    0.004   -0.412   -0.121
    age              -0.009    0.005   -1.904    0.057   -0.009   -0.082
    edu               0.103    0.085    1.208    0.227    0.103    0.051
  PD01_05 ~                                                             
    male             -0.205    0.142   -1.439    0.150   -0.205   -0.062
    age              -0.012    0.004   -2.696    0.007   -0.012   -0.111
    edu              -0.002    0.084   -0.025    0.980   -0.002   -0.001
  SE01_01 ~                                                             
    male              0.118    0.118    1.000    0.317    0.118    0.043
    age              -0.000    0.004   -0.003    0.998   -0.000   -0.000
    edu               0.210    0.068    3.092    0.002    0.210    0.128
  SE01_02 ~                                                             
    male              0.058    0.112    0.518    0.605    0.058    0.021
    age              -0.013    0.004   -3.607    0.000   -0.013   -0.152
    edu               0.197    0.066    2.983    0.003    0.197    0.123
  SE01_03 ~                                                             
    male              0.193    0.114    1.687    0.092    0.193    0.072
    age               0.001    0.004    0.236    0.813    0.001    0.010
    edu               0.142    0.067    2.114    0.035    0.142    0.089
  SE01_04 ~                                                             
    male              0.052    0.115    0.451    0.652    0.052    0.019
    age               0.007    0.004    2.036    0.042    0.007    0.085
    edu               0.125    0.066    1.887    0.059    0.125    0.078

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .SE01_01 ~~                                                            
   .SE01_02    (x)    0.108    0.044    2.451    0.014    0.108    0.143
 .SE01_03 ~~                                                            
   .SE01_04    (x)    0.108    0.044    2.451    0.014    0.108    0.160
  pri_con ~~                                                            
    grats_spec       -0.118    0.068   -1.722    0.085   -0.092   -0.092
    pri_delib         1.333    0.130   10.241    0.000    0.564    0.564
    self_eff         -0.380    0.091   -4.167    0.000   -0.213   -0.213
    trust_gen        -0.524    0.066   -7.966    0.000   -0.427   -0.427
  grats_spec ~~                                                         
    pri_delib        -0.005    0.073   -0.072    0.942   -0.004   -0.004
    self_eff          0.489    0.060    8.116    0.000    0.545    0.545
    trust_gen         0.403    0.058    6.891    0.000    0.652    0.652
  pri_delib ~~                                                          
    self_eff         -0.329    0.095   -3.462    0.001   -0.199   -0.199
    trust_gen        -0.315    0.073   -4.331    0.000   -0.276   -0.276
  self_eff ~~                                                           
    trust_gen         0.450    0.056    8.052    0.000    0.523    0.523

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           3.369    0.292   11.556    0.000    3.369    1.955
   .PC01_02           3.769    0.304   12.398    0.000    3.769    2.135
   .PC01_04           3.571    0.297   12.020    0.000    3.571    2.035
   .PC01_05           3.414    0.304   11.228    0.000    3.414    1.937
   .PC01_06           3.215    0.288   11.154    0.000    3.215    1.875
   .PC01_07           3.461    0.294   11.779    0.000    3.461    2.008
   .GR01_01           5.296    0.247   21.425    0.000    5.296    3.763
   .GR01_02           5.895    0.205   28.694    0.000    5.895    4.835
   .GR01_03           5.800    0.221   26.272    0.000    5.800    4.511
   .GR01_04           4.923    0.211   23.378    0.000    4.923    3.730
   .GR01_05           5.109    0.217   23.539    0.000    5.109    3.952
   .GR01_06           5.297    0.252   21.013    0.000    5.297    3.581
   .GR01_07           4.896    0.236   20.768    0.000    4.896    3.363
   .GR01_08           5.062    0.238   21.233    0.000    5.062    3.691
   .GR01_09           4.755    0.237   20.071    0.000    4.755    3.395
   .GR01_10           4.977    0.255   19.492    0.000    4.977    3.425
   .GR01_11           5.158    0.227   22.706    0.000    5.158    3.974
   .GR01_12           5.136    0.233   22.001    0.000    5.136    3.679
   .GR01_13           5.091    0.259   19.644    0.000    5.091    3.101
   .GR01_14           3.454    0.281   12.310    0.000    3.454    2.061
   .GR01_15           4.582    0.266   17.224    0.000    4.582    2.998
   .PD01_01           4.493    0.290   15.507    0.000    4.493    2.602
   .PD01_02           3.997    0.248   16.101    0.000    3.997    2.601
   .PD01_03           4.432    0.270   16.437    0.000    4.432    2.845
   .PD01_04           4.506    0.295   15.282    0.000    4.506    2.640
   .PD01_05           5.000    0.276   18.089    0.000    5.000    3.018
   .SE01_01           4.828    0.249   19.360    0.000    4.828    3.497
   .SE01_02           5.734    0.234   24.468    0.000    5.734    4.249
   .SE01_03           4.822    0.226   21.326    0.000    4.822    3.598
   .SE01_04           4.537    0.234   19.380    0.000    4.537    3.363
   .TR01_01           5.001    0.210   23.817    0.000    5.001    4.339
   .TR01_05           5.361    0.200   26.772    0.000    5.361    4.664
   .TR01_09           5.704    0.213   26.795    0.000    5.704    4.727
   .self_dis_log      1.376    0.375    3.673    0.000    1.376    0.602
    pri_con           0.000                               0.000    0.000
   .grats_inf         0.000                               0.000    0.000
   .grats_rel         0.000                               0.000    0.000
   .grats_par         0.000                               0.000    0.000
   .grats_ide         0.000                               0.000    0.000
   .grats_ext         0.000                               0.000    0.000
    grats_spec        0.000                               0.000    0.000
    pri_delib         0.000                               0.000    0.000
    self_eff          0.000                               0.000    0.000
    trust_gen         0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           0.404    0.050    8.120    0.000    0.404    0.136
   .PC01_02           0.582    0.102    5.685    0.000    0.582    0.187
   .PC01_04           0.629    0.077    8.154    0.000    0.629    0.204
   .PC01_05           0.532    0.064    8.325    0.000    0.532    0.171
   .PC01_06           1.067    0.115    9.253    0.000    1.067    0.363
   .PC01_07           0.430    0.066    6.558    0.000    0.430    0.145
   .GR01_01           1.034    0.107    9.647    0.000    1.034    0.522
   .GR01_02           0.484    0.066    7.348    0.000    0.484    0.325
   .GR01_03           0.445    0.067    6.650    0.000    0.445    0.269
   .GR01_04           0.353    0.043    8.165    0.000    0.353    0.203
   .GR01_05           0.447    0.056    7.965    0.000    0.447    0.268
   .GR01_06           1.094    0.109   10.078    0.000    1.094    0.500
   .GR01_07           0.703    0.072    9.829    0.000    0.703    0.332
   .GR01_08           0.619    0.068    9.053    0.000    0.619    0.329
   .GR01_09           0.640    0.071    9.069    0.000    0.640    0.327
   .GR01_10           0.790    0.071   11.102    0.000    0.790    0.374
   .GR01_11           0.357    0.054    6.566    0.000    0.357    0.212
   .GR01_12           0.806    0.076   10.574    0.000    0.806    0.414
   .GR01_13           1.854    0.149   12.435    0.000    1.854    0.688
   .GR01_14           2.050    0.124   16.509    0.000    2.050    0.730
   .GR01_15           0.647    0.116    5.604    0.000    0.647    0.277
   .PD01_01           0.718    0.108    6.633    0.000    0.718    0.241
   .PD01_02           1.327    0.128   10.374    0.000    1.327    0.562
   .PD01_03           1.322    0.129   10.277    0.000    1.322    0.544
   .PD01_04           1.300    0.146    8.891    0.000    1.300    0.446
   .PD01_05           1.600    0.129   12.378    0.000    1.600    0.583
   .SE01_01           0.619    0.087    7.133    0.000    0.619    0.325
   .SE01_02           0.929    0.119    7.821    0.000    0.929    0.510
   .SE01_03           0.697    0.094    7.381    0.000    0.697    0.388
   .SE01_04           0.658    0.077    8.513    0.000    0.658    0.362
   .TR01_01           0.729    0.060   12.107    0.000    0.729    0.548
   .TR01_05           0.271    0.032    8.574    0.000    0.271    0.205
   .TR01_09           0.196    0.037    5.342    0.000    0.196    0.135
   .self_dis_log      4.301    0.202   21.310    0.000    4.301    0.824
    pri_con           2.544    0.144   17.653    0.000    1.000    1.000
   .grats_inf         0.261    0.041    6.304    0.000    0.287    0.287
   .grats_rel         0.203    0.048    4.266    0.000    0.146    0.146
   .grats_par         0.090    0.049    1.829    0.067    0.064    0.064
   .grats_ide         0.184    0.046    3.979    0.000    0.141    0.141
   .grats_ext         0.277    0.070    3.967    0.000    0.401    0.401
    grats_spec        0.646    0.117    5.515    0.000    1.000    1.000
    pri_delib         2.195    0.157   14.006    0.000    1.000    1.000
    self_eff          1.249    0.113   11.070    0.000    1.000    1.000
    trust_gen         0.591    0.072    8.264    0.000    1.000    1.000
rsquare_fit_adapted <- inspect(fit_adapted, what = "rsquare")["self_dis_log"]

Model “Simple”

We now use only variables, that is specific gratifications and privacy concerns.

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07  
grats_inf =~ GR01_01 + GR01_02 + GR01_03 
grats_rel =~ GR01_04 + GR01_05 + GR01_06 
grats_par =~ GR01_07 + GR01_08 + GR01_09
grats_ide =~ GR01_10 + GR01_11 + GR01_12 
grats_ext =~ GR01_13 + GR01_14 + GR01_15
grats_spec =~ grats_inf + grats_rel + grats_par + grats_ide + grats_ext

self_dis_log ~ a1*pri_con + b1*grats_spec

# Covariates
self_dis_log + GR01_01 + GR01_02 + GR01_03 + GR01_04 + GR01_05 + GR01_06 + GR01_07 + GR01_08 + GR01_09 + GR01_10 + GR01_11 + GR01_12 + GR01_13 + GR01_14 + GR01_15 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 ~ male + age + edu
"
fit_simple <- sem(model, data = d, estimator = "MLR", missing = "ML")
summary(fit_simple, fit = TRUE, std = TRUE)
lavaan 0.6-8 ended normally after 259 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       139
                                                      
                                                  Used       Total
  Number of observations                           558         559
  Number of missing patterns                         1            
                                                                  
Model Test User Model:
                                               Standard      Robust
  Test Statistic                                712.530     491.293
  Degrees of freedom                                202         202
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.450
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                              9640.314    6718.543
  Degrees of freedom                               297         297
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.435

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.945       0.955
  Tucker-Lewis Index (TLI)                       0.920       0.934
                                                                  
  Robust Comparative Fit Index (CFI)                         0.954
  Robust Tucker-Lewis Index (TLI)                            0.933

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -18144.589  -18144.589
  Scaling correction factor                                  1.263
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -17788.324  -17788.324
  Scaling correction factor                                  1.374
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               36567.177   36567.177
  Bayesian (BIC)                             37168.263   37168.263
  Sample-size adjusted Bayesian (BIC)        36727.011   36727.011

Root Mean Square Error of Approximation:

  RMSEA                                          0.067       0.051
  90 Percent confidence interval - lower         0.062       0.046
  90 Percent confidence interval - upper         0.073       0.055
  P-value RMSEA <= 0.05                          0.000       0.402
                                                                  
  Robust RMSEA                                               0.061
  90 Percent confidence interval - lower                     0.054
  90 Percent confidence interval - upper                     0.068

Standardized Root Mean Square Residual:

  SRMR                                           0.052       0.052

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con =~                                                            
    PC01_01           1.000                               1.598    0.928
    PC01_02           0.988    0.027   36.091    0.000    1.579    0.894
    PC01_04           0.968    0.027   35.589    0.000    1.548    0.882
    PC01_05           0.999    0.024   42.444    0.000    1.597    0.906
    PC01_06           0.851    0.038   22.598    0.000    1.360    0.793
    PC01_07           0.994    0.023   43.552    0.000    1.589    0.922
  grats_inf =~                                                          
    GR01_01           1.000                               0.951    0.675
    GR01_02           1.042    0.078   13.380    0.000    0.991    0.813
    GR01_03           1.147    0.081   14.163    0.000    1.090    0.848
  grats_rel =~                                                          
    GR01_04           1.000                               1.180    0.894
    GR01_05           0.933    0.038   24.850    0.000    1.101    0.852
    GR01_06           0.878    0.047   18.792    0.000    1.036    0.700
  grats_par =~                                                          
    GR01_07           1.000                               1.197    0.822
    GR01_08           0.927    0.040   23.137    0.000    1.110    0.809
    GR01_09           0.952    0.039   24.510    0.000    1.139    0.814
  grats_ide =~                                                          
    GR01_10           1.000                               1.150    0.791
    GR01_11           0.998    0.042   23.513    0.000    1.147    0.884
    GR01_12           0.919    0.042   22.025    0.000    1.057    0.757
  grats_ext =~                                                          
    GR01_13           1.000                               0.822    0.500
    GR01_14           1.030    0.105    9.859    0.000    0.847    0.505
    GR01_15           1.586    0.188    8.443    0.000    1.303    0.853
  grats_spec =~                                                         
    grats_inf         1.000                               0.827    0.827
    grats_rel         1.387    0.116   11.953    0.000    0.923    0.923
    grats_par         1.480    0.132   11.178    0.000    0.972    0.972
    grats_ide         1.359    0.121   11.252    0.000    0.929    0.929
    grats_ext         0.823    0.112    7.363    0.000    0.787    0.787

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  self_dis_log ~                                                        
    pri_con   (a1)   -0.198    0.061   -3.258    0.001   -0.316   -0.138
    grats_spc (b1)    0.645    0.145    4.453    0.000    0.507    0.222
    male             -0.021    0.197   -0.109    0.913   -0.021   -0.005
    age               0.003    0.006    0.570    0.569    0.003    0.024
    edu               0.212    0.116    1.836    0.066    0.212    0.078
  GR01_01 ~                                                             
    male             -0.342    0.121   -2.833    0.005   -0.342   -0.122
    age              -0.005    0.004   -1.333    0.182   -0.005   -0.059
    edu               0.000    0.072    0.006    0.995    0.000    0.000
  GR01_02 ~                                                             
    male             -0.142    0.103   -1.378    0.168   -0.142   -0.058
    age              -0.007    0.003   -2.106    0.035   -0.007   -0.088
    edu              -0.037    0.060   -0.617    0.537   -0.037   -0.026
  GR01_03 ~                                                             
    male             -0.186    0.109   -1.713    0.087   -0.186   -0.073
    age              -0.006    0.004   -1.704    0.088   -0.006   -0.075
    edu              -0.076    0.063   -1.204    0.228   -0.076   -0.050
  GR01_04 ~                                                             
    male             -0.004    0.113   -0.037    0.971   -0.004   -0.002
    age               0.001    0.004    0.262    0.793    0.001    0.011
    edu              -0.021    0.066   -0.319    0.749   -0.021   -0.013
  GR01_05 ~                                                             
    male             -0.069    0.112   -0.613    0.540   -0.069   -0.027
    age              -0.001    0.004   -0.198    0.843   -0.001   -0.009
    edu               0.025    0.064    0.387    0.699    0.025    0.016
  GR01_06 ~                                                             
    male              0.030    0.125    0.242    0.809    0.030    0.010
    age              -0.011    0.004   -2.567    0.010   -0.011   -0.111
    edu              -0.087    0.074   -1.176    0.240   -0.087   -0.050
  GR01_07 ~                                                             
    male              0.075    0.125    0.603    0.547    0.075    0.026
    age              -0.006    0.004   -1.391    0.164   -0.006   -0.060
    edu               0.004    0.072    0.057    0.955    0.004    0.002
  GR01_08 ~                                                             
    male              0.006    0.116    0.052    0.959    0.006    0.002
    age              -0.004    0.004   -1.121    0.262   -0.004   -0.051
    edu               0.113    0.068    1.675    0.094    0.113    0.070
  GR01_09 ~                                                             
    male              0.090    0.119    0.758    0.449    0.090    0.032
    age              -0.004    0.004   -0.952    0.341   -0.004   -0.041
    edu               0.115    0.069    1.667    0.096    0.115    0.069
  GR01_10 ~                                                             
    male             -0.019    0.125   -0.155    0.877   -0.019   -0.007
    age              -0.008    0.004   -1.993    0.046   -0.008   -0.089
    edu              -0.021    0.074   -0.278    0.781   -0.021   -0.012
  GR01_11 ~                                                             
    male             -0.083    0.111   -0.748    0.454   -0.083   -0.032
    age              -0.001    0.004   -0.313    0.755   -0.001   -0.014
    edu              -0.053    0.065   -0.822    0.411   -0.053   -0.034
  GR01_12 ~                                                             
    male             -0.218    0.120   -1.820    0.069   -0.218   -0.078
    age              -0.004    0.004   -1.009    0.313   -0.004   -0.043
    edu              -0.049    0.071   -0.685    0.493   -0.049   -0.029
  GR01_13 ~                                                             
    male             -0.181    0.138   -1.311    0.190   -0.181   -0.055
    age              -0.023    0.004   -5.515    0.000   -0.023   -0.219
    edu               0.078    0.081    0.959    0.338    0.078    0.040
  GR01_14 ~                                                             
    male             -0.303    0.145   -2.091    0.036   -0.303   -0.090
    age              -0.007    0.005   -1.540    0.124   -0.007   -0.065
    edu               0.030    0.084    0.361    0.718    0.030    0.015
  GR01_15 ~                                                             
    male              0.048    0.132    0.360    0.719    0.048    0.016
    age              -0.005    0.004   -1.214    0.225   -0.005   -0.053
    edu               0.024    0.078    0.300    0.764    0.024    0.013
  PC01_01 ~                                                             
    male             -0.182    0.151   -1.206    0.228   -0.182   -0.053
    age              -0.004    0.005   -0.820    0.412   -0.004   -0.036
    edu               0.110    0.087    1.255    0.210    0.110    0.054
  PC01_02 ~                                                             
    male             -0.302    0.154   -1.967    0.049   -0.302   -0.085
    age              -0.008    0.005   -1.663    0.096   -0.008   -0.072
    edu               0.047    0.089    0.522    0.601    0.047    0.022
  PC01_04 ~                                                             
    male             -0.225    0.152   -1.476    0.140   -0.225   -0.064
    age              -0.010    0.005   -1.980    0.048   -0.010   -0.085
    edu               0.113    0.089    1.269    0.204    0.113    0.054
  PC01_05 ~                                                             
    male             -0.098    0.154   -0.637    0.524   -0.098   -0.028
    age              -0.006    0.005   -1.164    0.244   -0.006   -0.051
    edu               0.090    0.090    0.996    0.319    0.090    0.043
  PC01_06 ~                                                             
    male             -0.108    0.150   -0.722    0.470   -0.108   -0.032
    age              -0.005    0.005   -1.055    0.291   -0.005   -0.046
    edu               0.043    0.087    0.491    0.623    0.043    0.021
  PC01_07 ~                                                             
    male             -0.174    0.150   -1.160    0.246   -0.174   -0.050
    age              -0.006    0.005   -1.337    0.181   -0.006   -0.058
    edu               0.081    0.087    0.934    0.351    0.081    0.040

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con ~~                                                            
    grats_spec       -0.115    0.067   -1.715    0.086   -0.092   -0.092

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           3.369    0.292   11.557    0.000    3.369    1.955
   .PC01_02           3.769    0.304   12.398    0.000    3.769    2.135
   .PC01_04           3.571    0.297   12.020    0.000    3.571    2.035
   .PC01_05           3.414    0.304   11.229    0.000    3.414    1.937
   .PC01_06           3.215    0.288   11.155    0.000    3.215    1.875
   .PC01_07           3.461    0.294   11.780    0.000    3.461    2.008
   .GR01_01           5.296    0.247   21.424    0.000    5.296    3.763
   .GR01_02           5.895    0.205   28.694    0.000    5.895    4.835
   .GR01_03           5.800    0.221   26.272    0.000    5.800    4.511
   .GR01_04           4.923    0.211   23.378    0.000    4.923    3.730
   .GR01_05           5.109    0.217   23.539    0.000    5.109    3.952
   .GR01_06           5.297    0.252   21.013    0.000    5.297    3.581
   .GR01_07           4.896    0.236   20.768    0.000    4.896    3.363
   .GR01_08           5.062    0.238   21.233    0.000    5.062    3.691
   .GR01_09           4.754    0.237   20.070    0.000    4.754    3.395
   .GR01_10           4.977    0.255   19.492    0.000    4.977    3.425
   .GR01_11           5.158    0.227   22.705    0.000    5.158    3.974
   .GR01_12           5.136    0.233   22.001    0.000    5.136    3.679
   .GR01_13           5.091    0.259   19.644    0.000    5.091    3.101
   .GR01_14           3.454    0.281   12.310    0.000    3.454    2.061
   .GR01_15           4.582    0.266   17.224    0.000    4.582    2.998
   .self_dis_log      1.376    0.375    3.673    0.000    1.376    0.602
    pri_con           0.000                               0.000    0.000
   .grats_inf         0.000                               0.000    0.000
   .grats_rel         0.000                               0.000    0.000
   .grats_par         0.000                               0.000    0.000
   .grats_ide         0.000                               0.000    0.000
   .grats_ext         0.000                               0.000    0.000
    grats_spec        0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           0.394    0.050    7.919    0.000    0.394    0.133
   .PC01_02           0.580    0.104    5.592    0.000    0.580    0.186
   .PC01_04           0.636    0.079    8.086    0.000    0.636    0.207
   .PC01_05           0.540    0.065    8.266    0.000    0.540    0.174
   .PC01_06           1.079    0.117    9.221    0.000    1.079    0.367
   .PC01_07           0.424    0.064    6.635    0.000    0.424    0.143
   .GR01_01           1.038    0.109    9.534    0.000    1.038    0.524
   .GR01_02           0.486    0.066    7.412    0.000    0.486    0.327
   .GR01_03           0.440    0.068    6.498    0.000    0.440    0.266
   .GR01_04           0.349    0.043    8.145    0.000    0.349    0.200
   .GR01_05           0.458    0.057    8.096    0.000    0.458    0.274
   .GR01_06           1.085    0.108   10.006    0.000    1.085    0.496
   .GR01_07           0.679    0.070    9.765    0.000    0.679    0.321
   .GR01_08           0.635    0.068    9.275    0.000    0.635    0.337
   .GR01_09           0.647    0.072    9.034    0.000    0.647    0.330
   .GR01_10           0.773    0.070   11.111    0.000    0.773    0.366
   .GR01_11           0.364    0.055    6.572    0.000    0.364    0.216
   .GR01_12           0.813    0.077   10.575    0.000    0.813    0.417
   .GR01_13           1.871    0.147   12.728    0.000    1.871    0.694
   .GR01_14           2.052    0.123   16.716    0.000    2.052    0.731
   .GR01_15           0.629    0.113    5.576    0.000    0.629    0.270
   .self_dis_log      4.798    0.202   23.739    0.000    4.798    0.920
    pri_con           2.554    0.144   17.722    0.000    1.000    1.000
   .grats_inf         0.286    0.045    6.423    0.000    0.317    0.317
   .grats_rel         0.205    0.049    4.144    0.000    0.147    0.147
   .grats_par         0.080    0.052    1.540    0.123    0.056    0.056
   .grats_ide         0.182    0.047    3.836    0.000    0.137    0.137
   .grats_ext         0.257    0.066    3.914    0.000    0.381    0.381
    grats_spec        0.617    0.118    5.223    0.000    1.000    1.000
rsquare_fit_simple <- inspect(fit_simple, what = "rsquare")["self_dis_log"]

Building on the Model “Adapted”, we now remove the variable Trust General.

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07
grats_inf =~ GR01_01 + GR01_02 + GR01_03 
grats_rel =~ GR01_04 + GR01_05 + GR01_06 
grats_par =~ GR01_07 + GR01_08 + GR01_09
grats_ide =~ GR01_10 + GR01_11 + GR01_12 
grats_ext =~ GR01_13 + GR01_14 + GR01_15
grats_spec =~ grats_inf + grats_rel + grats_par + grats_ide + grats_ext
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
  SE01_01 ~~ x*SE01_02
  SE01_03 ~~ x*SE01_04

self_dis_log ~ a1*pri_con + b1*grats_spec + c1*pri_delib + d1*self_eff

# Covariates
self_dis_log + GR01_01 + GR01_02 + GR01_03 + GR01_04 + GR01_05 + GR01_06 + GR01_07 + GR01_08 + GR01_09 + GR01_10 + GR01_11 + GR01_12 + GR01_13 + GR01_14 + GR01_15 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu
"
fit <- sem(model, data = d, estimator = "MLR", missing = "ML")
summary(fit, fit = TRUE, std = TRUE)
lavaan 0.6-8 ended normally after 346 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       202
  Number of equality constraints                     1
                                                      
                                                  Used       Total
  Number of observations                           558         559
  Number of missing patterns                         2            
                                                                  
Model Test User Model:
                                               Standard      Robust
  Test Statistic                               1253.386     932.347
  Degrees of freedom                                419         419
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.344
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                             12739.213    9344.473
  Degrees of freedom                               558         558
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.363

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.932       0.942
  Tucker-Lewis Index (TLI)                       0.909       0.922
                                                                  
  Robust Comparative Fit Index (CFI)                         0.942
  Robust Tucker-Lewis Index (TLI)                            0.923

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -26032.954  -26032.954
  Scaling correction factor                                  1.271
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -25406.261  -25406.261
  Scaling correction factor                                  1.323
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               52467.908   52467.908
  Bayesian (BIC)                             53337.104   53337.104
  Sample-size adjusted Bayesian (BIC)        52699.034   52699.034

Root Mean Square Error of Approximation:

  RMSEA                                          0.060       0.047
  90 Percent confidence interval - lower         0.056       0.043
  90 Percent confidence interval - upper         0.064       0.050
  P-value RMSEA <= 0.05                          0.000       0.931
                                                                  
  Robust RMSEA                                               0.054
  90 Percent confidence interval - lower                     0.050
  90 Percent confidence interval - upper                     0.059

Standardized Root Mean Square Residual:

  SRMR                                           0.058       0.058

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con =~                                                            
    PC01_01           1.000                               1.596    0.926
    PC01_02           0.990    0.027   36.230    0.000    1.579    0.894
    PC01_04           0.971    0.027   35.512    0.000    1.549    0.883
    PC01_05           1.002    0.024   42.333    0.000    1.598    0.907
    PC01_06           0.855    0.038   22.653    0.000    1.364    0.795
    PC01_07           0.995    0.023   43.722    0.000    1.587    0.921
  grats_inf =~                                                          
    GR01_01           1.000                               0.947    0.673
    GR01_02           1.048    0.078   13.486    0.000    0.992    0.814
    GR01_03           1.153    0.081   14.304    0.000    1.092    0.849
  grats_rel =~                                                          
    GR01_04           1.000                               1.179    0.893
    GR01_05           0.935    0.038   24.875    0.000    1.102    0.853
    GR01_06           0.878    0.047   18.776    0.000    1.036    0.700
  grats_par =~                                                          
    GR01_07           1.000                               1.193    0.819
    GR01_08           0.933    0.039   23.636    0.000    1.113    0.812
    GR01_09           0.955    0.039   24.573    0.000    1.139    0.813
  grats_ide =~                                                          
    GR01_10           1.000                               1.149    0.790
    GR01_11           1.000    0.042   23.710    0.000    1.148    0.885
    GR01_12           0.920    0.041   22.193    0.000    1.056    0.757
  grats_ext =~                                                          
    GR01_13           1.000                               0.824    0.502
    GR01_14           1.028    0.104    9.885    0.000    0.847    0.506
    GR01_15           1.578    0.189    8.355    0.000    1.301    0.851
  grats_spec =~                                                         
    grats_inf         1.000                               0.831    0.831
    grats_rel         1.387    0.114   12.164    0.000    0.925    0.925
    grats_par         1.479    0.128   11.522    0.000    0.975    0.975
    grats_ide         1.350    0.116   11.646    0.000    0.924    0.924
    grats_ext         0.816    0.109    7.451    0.000    0.778    0.778
  pri_delib =~                                                          
    PD01_01           1.000                               1.476    0.855
    PD01_02           0.669    0.048   13.896    0.000    0.988    0.643
    PD01_03           0.705    0.054   13.047    0.000    1.041    0.668
    PD01_04           0.841    0.047   17.974    0.000    1.242    0.728
    PD01_05           0.713    0.049   14.456    0.000    1.052    0.635
  self_eff =~                                                           
    SE01_01           1.000                               1.118    0.810
    SE01_02           0.807    0.059   13.767    0.000    0.902    0.669
    SE01_03           0.927    0.047   19.527    0.000    1.036    0.773
    SE01_04           0.955    0.044   21.876    0.000    1.068    0.791

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  self_dis_log ~                                                        
    pri_con   (a1)   -0.027    0.076   -0.354    0.723   -0.043   -0.019
    grats_spc (b1)    0.193    0.171    1.126    0.260    0.152    0.066
    pri_delib (c1)   -0.187    0.094   -1.995    0.046   -0.277   -0.121
    self_eff  (d1)    0.628    0.134    4.693    0.000    0.702    0.307
    male             -0.022    0.197   -0.109    0.913   -0.022   -0.005
    age               0.003    0.006    0.570    0.569    0.003    0.024
    edu               0.213    0.116    1.836    0.066    0.213    0.078
  GR01_01 ~                                                             
    male             -0.342    0.121   -2.833    0.005   -0.342   -0.122
    age              -0.005    0.004   -1.333    0.182   -0.005   -0.059
    edu               0.000    0.072    0.006    0.995    0.000    0.000
  GR01_02 ~                                                             
    male             -0.142    0.103   -1.378    0.168   -0.142   -0.058
    age              -0.007    0.003   -2.107    0.035   -0.007   -0.088
    edu              -0.037    0.060   -0.617    0.537   -0.037   -0.026
  GR01_03 ~                                                             
    male             -0.186    0.109   -1.713    0.087   -0.186   -0.073
    age              -0.006    0.004   -1.704    0.088   -0.006   -0.075
    edu              -0.076    0.063   -1.204    0.228   -0.076   -0.050
  GR01_04 ~                                                             
    male             -0.004    0.113   -0.037    0.971   -0.004   -0.002
    age               0.001    0.004    0.262    0.793    0.001    0.011
    edu              -0.021    0.066   -0.319    0.749   -0.021   -0.013
  GR01_05 ~                                                             
    male             -0.069    0.112   -0.614    0.539   -0.069   -0.027
    age              -0.001    0.004   -0.198    0.843   -0.001   -0.009
    edu               0.025    0.064    0.387    0.699    0.025    0.016
  GR01_06 ~                                                             
    male              0.030    0.125    0.241    0.809    0.030    0.010
    age              -0.011    0.004   -2.567    0.010   -0.011   -0.111
    edu              -0.087    0.074   -1.176    0.240   -0.087   -0.050
  GR01_07 ~                                                             
    male              0.075    0.125    0.602    0.547    0.075    0.026
    age              -0.006    0.004   -1.391    0.164   -0.006   -0.060
    edu               0.004    0.072    0.057    0.955    0.004    0.002
  GR01_08 ~                                                             
    male              0.006    0.116    0.052    0.959    0.006    0.002
    age              -0.004    0.004   -1.121    0.262   -0.004   -0.051
    edu               0.113    0.068    1.675    0.094    0.113    0.070
  GR01_09 ~                                                             
    male              0.090    0.119    0.757    0.449    0.090    0.032
    age              -0.004    0.004   -0.952    0.341   -0.004   -0.041
    edu               0.115    0.069    1.667    0.096    0.115    0.069
  GR01_10 ~                                                             
    male             -0.019    0.125   -0.156    0.876   -0.019   -0.007
    age              -0.008    0.004   -1.993    0.046   -0.008   -0.089
    edu              -0.021    0.074   -0.277    0.781   -0.021   -0.012
  GR01_11 ~                                                             
    male             -0.083    0.111   -0.749    0.454   -0.083   -0.032
    age              -0.001    0.004   -0.313    0.755   -0.001   -0.014
    edu              -0.053    0.065   -0.822    0.411   -0.053   -0.034
  GR01_12 ~                                                             
    male             -0.218    0.120   -1.820    0.069   -0.218   -0.078
    age              -0.004    0.004   -1.010    0.313   -0.004   -0.043
    edu              -0.049    0.071   -0.685    0.493   -0.049   -0.029
  GR01_13 ~                                                             
    male             -0.181    0.138   -1.311    0.190   -0.181   -0.055
    age              -0.023    0.004   -5.515    0.000   -0.023   -0.219
    edu               0.078    0.081    0.959    0.338    0.078    0.040
  GR01_14 ~                                                             
    male             -0.303    0.145   -2.092    0.036   -0.303   -0.090
    age              -0.007    0.005   -1.540    0.124   -0.007   -0.065
    edu               0.030    0.084    0.361    0.718    0.030    0.015
  GR01_15 ~                                                             
    male              0.048    0.132    0.360    0.719    0.048    0.016
    age              -0.005    0.004   -1.214    0.225   -0.005   -0.053
    edu               0.024    0.078    0.300    0.764    0.024    0.013
  PC01_01 ~                                                             
    male             -0.182    0.151   -1.206    0.228   -0.182   -0.053
    age              -0.004    0.005   -0.819    0.413   -0.004   -0.036
    edu               0.110    0.087    1.255    0.210    0.110    0.054
  PC01_02 ~                                                             
    male             -0.302    0.154   -1.966    0.049   -0.302   -0.085
    age              -0.008    0.005   -1.663    0.096   -0.008   -0.072
    edu               0.047    0.089    0.522    0.601    0.047    0.022
  PC01_04 ~                                                             
    male             -0.225    0.152   -1.475    0.140   -0.225   -0.064
    age              -0.010    0.005   -1.980    0.048   -0.010   -0.085
    edu               0.113    0.089    1.269    0.204    0.113    0.054
  PC01_05 ~                                                             
    male             -0.098    0.154   -0.636    0.525   -0.098   -0.028
    age              -0.006    0.005   -1.164    0.244   -0.006   -0.051
    edu               0.090    0.090    0.996    0.319    0.090    0.043
  PC01_06 ~                                                             
    male             -0.108    0.150   -0.722    0.470   -0.108   -0.032
    age              -0.005    0.005   -1.055    0.291   -0.005   -0.046
    edu               0.043    0.087    0.491    0.623    0.043    0.021
  PC01_07 ~                                                             
    male             -0.174    0.150   -1.160    0.246   -0.174   -0.050
    age              -0.006    0.005   -1.337    0.181   -0.006   -0.058
    edu               0.081    0.087    0.934    0.350    0.081    0.040
  PD01_01 ~                                                             
    male             -0.177    0.148   -1.197    0.231   -0.177   -0.051
    age              -0.015    0.005   -3.275    0.001   -0.015   -0.137
    edu              -0.026    0.085   -0.310    0.756   -0.026   -0.013
  PD01_02 ~                                                             
    male             -0.119    0.131   -0.906    0.365   -0.119   -0.039
    age              -0.014    0.004   -3.443    0.001   -0.014   -0.142
    edu               0.031    0.077    0.405    0.686    0.031    0.017
  PD01_03 ~                                                             
    male             -0.321    0.132   -2.425    0.015   -0.321   -0.103
    age              -0.004    0.004   -1.024    0.306   -0.004   -0.044
    edu               0.065    0.080    0.807    0.419    0.065    0.035
  PD01_04 ~                                                             
    male             -0.412    0.145   -2.847    0.004   -0.412   -0.121
    age              -0.009    0.005   -1.904    0.057   -0.009   -0.082
    edu               0.103    0.085    1.207    0.227    0.103    0.051
  PD01_05 ~                                                             
    male             -0.205    0.142   -1.439    0.150   -0.205   -0.062
    age              -0.012    0.004   -2.696    0.007   -0.012   -0.111
    edu              -0.002    0.084   -0.025    0.980   -0.002   -0.001
  SE01_01 ~                                                             
    male              0.118    0.118    0.996    0.319    0.118    0.043
    age              -0.000    0.004   -0.007    0.995   -0.000   -0.000
    edu               0.209    0.068    3.082    0.002    0.209    0.128
  SE01_02 ~                                                             
    male              0.057    0.112    0.514    0.607    0.057    0.021
    age              -0.013    0.004   -3.609    0.000   -0.013   -0.152
    edu               0.197    0.066    2.975    0.003    0.197    0.123
  SE01_03 ~                                                             
    male              0.192    0.114    1.682    0.093    0.192    0.072
    age               0.001    0.004    0.232    0.816    0.001    0.010
    edu               0.141    0.067    2.105    0.035    0.141    0.089
  SE01_04 ~                                                             
    male              0.051    0.115    0.447    0.655    0.051    0.019
    age               0.007    0.004    2.032    0.042    0.007    0.085
    edu               0.125    0.066    1.878    0.060    0.125    0.078

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .SE01_01 ~~                                                            
   .SE01_02    (x)    0.108    0.045    2.421    0.015    0.108    0.143
 .SE01_03 ~~                                                            
   .SE01_04    (x)    0.108    0.045    2.421    0.015    0.108    0.160
  pri_con ~~                                                            
    grats_spec       -0.115    0.067   -1.721    0.085   -0.092   -0.092
    pri_delib         1.327    0.130   10.211    0.000    0.563    0.563
    self_eff         -0.381    0.091   -4.169    0.000   -0.213   -0.213
  grats_spec ~~                                                         
    pri_delib        -0.004    0.071   -0.058    0.954   -0.004   -0.004
    self_eff          0.479    0.061    7.916    0.000    0.545    0.545
  pri_delib ~~                                                          
    self_eff         -0.327    0.095   -3.455    0.001   -0.198   -0.198

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           3.369    0.292   11.557    0.000    3.369    1.955
   .PC01_02           3.769    0.304   12.398    0.000    3.769    2.135
   .PC01_04           3.571    0.297   12.020    0.000    3.571    2.035
   .PC01_05           3.414    0.304   11.229    0.000    3.414    1.937
   .PC01_06           3.215    0.288   11.155    0.000    3.215    1.875
   .PC01_07           3.461    0.294   11.780    0.000    3.461    2.008
   .GR01_01           5.296    0.247   21.424    0.000    5.296    3.763
   .GR01_02           5.895    0.205   28.694    0.000    5.895    4.835
   .GR01_03           5.800    0.221   26.272    0.000    5.800    4.511
   .GR01_04           4.923    0.211   23.378    0.000    4.923    3.730
   .GR01_05           5.109    0.217   23.539    0.000    5.109    3.952
   .GR01_06           5.297    0.252   21.013    0.000    5.297    3.581
   .GR01_07           4.896    0.236   20.768    0.000    4.896    3.363
   .GR01_08           5.062    0.238   21.233    0.000    5.062    3.691
   .GR01_09           4.755    0.237   20.070    0.000    4.755    3.395
   .GR01_10           4.977    0.255   19.492    0.000    4.977    3.425
   .GR01_11           5.158    0.227   22.706    0.000    5.158    3.974
   .GR01_12           5.136    0.233   22.001    0.000    5.136    3.679
   .GR01_13           5.091    0.259   19.644    0.000    5.091    3.101
   .GR01_14           3.454    0.281   12.310    0.000    3.454    2.061
   .GR01_15           4.582    0.266   17.224    0.000    4.582    2.998
   .PD01_01           4.493    0.290   15.507    0.000    4.493    2.602
   .PD01_02           3.997    0.248   16.102    0.000    3.997    2.601
   .PD01_03           4.432    0.270   16.437    0.000    4.432    2.845
   .PD01_04           4.506    0.295   15.283    0.000    4.506    2.640
   .PD01_05           5.000    0.276   18.089    0.000    5.000    3.018
   .SE01_01           4.829    0.250   19.354    0.000    4.829    3.498
   .SE01_02           5.735    0.234   24.460    0.000    5.735    4.250
   .SE01_03           4.824    0.226   21.319    0.000    4.824    3.598
   .SE01_04           4.538    0.234   19.372    0.000    4.538    3.363
   .self_dis_log      1.376    0.375    3.673    0.000    1.376    0.602
    pri_con           0.000                               0.000    0.000
   .grats_inf         0.000                               0.000    0.000
   .grats_rel         0.000                               0.000    0.000
   .grats_par         0.000                               0.000    0.000
   .grats_ide         0.000                               0.000    0.000
   .grats_ext         0.000                               0.000    0.000
    grats_spec        0.000                               0.000    0.000
    pri_delib         0.000                               0.000    0.000
    self_eff          0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           0.402    0.050    8.021    0.000    0.402    0.136
   .PC01_02           0.580    0.102    5.676    0.000    0.580    0.186
   .PC01_04           0.631    0.078    8.114    0.000    0.631    0.205
   .PC01_05           0.534    0.064    8.333    0.000    0.534    0.172
   .PC01_06           1.068    0.116    9.243    0.000    1.068    0.363
   .PC01_07           0.430    0.065    6.631    0.000    0.430    0.145
   .GR01_01           1.045    0.109    9.618    0.000    1.045    0.528
   .GR01_02           0.483    0.065    7.420    0.000    0.483    0.325
   .GR01_03           0.436    0.066    6.574    0.000    0.436    0.264
   .GR01_04           0.351    0.043    8.198    0.000    0.351    0.202
   .GR01_05           0.455    0.057    8.050    0.000    0.455    0.272
   .GR01_06           1.086    0.108   10.011    0.000    1.086    0.496
   .GR01_07           0.688    0.070    9.873    0.000    0.688    0.325
   .GR01_08           0.626    0.067    9.300    0.000    0.626    0.333
   .GR01_09           0.647    0.072    9.000    0.000    0.647    0.330
   .GR01_10           0.775    0.070   11.048    0.000    0.775    0.367
   .GR01_11           0.362    0.055    6.527    0.000    0.362    0.215
   .GR01_12           0.814    0.077   10.595    0.000    0.814    0.418
   .GR01_13           1.866    0.148   12.621    0.000    1.866    0.692
   .GR01_14           2.050    0.124   16.543    0.000    2.050    0.731
   .GR01_15           0.635    0.115    5.519    0.000    0.635    0.272
   .PD01_01           0.734    0.108    6.807    0.000    0.734    0.246
   .PD01_02           1.330    0.127   10.433    0.000    1.330    0.563
   .PD01_03           1.310    0.128   10.274    0.000    1.310    0.540
   .PD01_04           1.298    0.146    8.867    0.000    1.298    0.446
   .PD01_05           1.589    0.128   12.436    0.000    1.589    0.579
   .SE01_01           0.619    0.089    6.983    0.000    0.619    0.325
   .SE01_02           0.931    0.118    7.890    0.000    0.931    0.511
   .SE01_03           0.697    0.095    7.325    0.000    0.697    0.388
   .SE01_04           0.656    0.078    8.409    0.000    0.656    0.360
   .self_dis_log      4.369    0.200   21.840    0.000    4.369    0.837
    pri_con           2.546    0.145   17.616    0.000    1.000    1.000
   .grats_inf         0.278    0.043    6.395    0.000    0.310    0.310
   .grats_rel         0.200    0.050    4.033    0.000    0.144    0.144
   .grats_par         0.071    0.050    1.422    0.155    0.050    0.050
   .grats_ide         0.193    0.048    4.051    0.000    0.146    0.146
   .grats_ext         0.268    0.069    3.914    0.000    0.395    0.395
    grats_spec        0.618    0.116    5.335    0.000    1.000    1.000
    pri_delib         2.180    0.156   13.989    0.000    1.000    1.000
    self_eff          1.250    0.114   10.972    0.000    1.000    1.000

Interestingly, now almost all effects disappear.

Results without covariates

As stated in our preregistration, we also provide the results of all analyses without controlling for covariates. The results remain virtually the same.

Model “Peregistered”

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 
grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
  SE01_01 ~~ x*SE01_02
  SE01_03 ~~ x*SE01_04
trust_community =~ TR01_02 + TR01_03 + TR01_04
trust_provider =~ TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12
trust_spec =~ trust_community + trust_provider

COMM_log ~ a1*pri_con + b1*grats_gen + c1*pri_delib + d1*self_eff + e1*trust_spec
"
fit_prereg <- sem(model, data = d, estimator = "MLR", missing = "ML")
summary(fit_prereg, fit = TRUE, std = TRUE)
lavaan 0.6-8 ended normally after 122 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       108
  Number of equality constraints                     1
                                                      
  Number of observations                           559
  Number of missing patterns                         3
                                                      
Model Test User Model:
                                               Standard      Robust
  Test Statistic                               1242.924     948.812
  Degrees of freedom                                388         388
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.310
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                             13164.929    9384.152
  Degrees of freedom                               435         435
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.403

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.933       0.937
  Tucker-Lewis Index (TLI)                       0.925       0.930
                                                                  
  Robust Comparative Fit Index (CFI)                         0.941
  Robust Tucker-Lewis Index (TLI)                            0.934

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -23989.445  -23989.445
  Scaling correction factor                                  1.466
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -23367.982  -23367.982
  Scaling correction factor                                  1.347
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               48192.889   48192.889
  Bayesian (BIC)                             48655.787   48655.787
  Sample-size adjusted Bayesian (BIC)        48316.117   48316.117

Root Mean Square Error of Approximation:

  RMSEA                                          0.063       0.051
  90 Percent confidence interval - lower         0.059       0.047
  90 Percent confidence interval - upper         0.067       0.054
  P-value RMSEA <= 0.05                          0.000       0.343
                                                                  
  Robust RMSEA                                               0.058
  90 Percent confidence interval - lower                     0.054
  90 Percent confidence interval - upper                     0.063

Standardized Root Mean Square Residual:

  SRMR                                           0.054       0.054

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con =~                                                              
    PC01_01             1.000                               1.602    0.929
    PC01_02             0.994    0.027   36.156    0.000    1.592    0.901
    PC01_04             0.977    0.027   35.592    0.000    1.566    0.892
    PC01_05             1.001    0.024   41.957    0.000    1.604    0.910
    PC01_06             0.854    0.038   22.423    0.000    1.368    0.798
    PC01_07             0.996    0.022   44.917    0.000    1.595    0.925
  grats_gen =~                                                            
    GR02_01             1.000                               1.132    0.844
    GR02_02             1.121    0.034   33.370    0.000    1.269    0.896
    GR02_03             1.022    0.048   21.321    0.000    1.157    0.865
    GR02_04             0.986    0.049   20.298    0.000    1.116    0.849
    GR02_05             1.070    0.040   26.535    0.000    1.211    0.845
  pri_delib =~                                                            
    PD01_01             1.000                               1.491    0.864
    PD01_02             0.677    0.047   14.364    0.000    1.009    0.657
    PD01_03             0.708    0.053   13.246    0.000    1.055    0.678
    PD01_04             0.848    0.047   18.192    0.000    1.264    0.741
    PD01_05             0.723    0.048   14.944    0.000    1.078    0.652
  self_eff =~                                                             
    SE01_01             1.000                               1.135    0.822
    SE01_02             0.805    0.059   13.703    0.000    0.913    0.677
    SE01_03             0.926    0.045   20.681    0.000    1.051    0.784
    SE01_04             0.938    0.042   22.274    0.000    1.065    0.789
  trust_community =~                                                      
    TR01_02             1.000                               1.031    0.814
    TR01_03             0.819    0.051   16.027    0.000    0.844    0.768
    TR01_04             0.918    0.046   19.904    0.000    0.946    0.820
  trust_provider =~                                                       
    TR01_06             1.000                               1.047    0.873
    TR01_07             0.854    0.039   21.694    0.000    0.895    0.773
    TR01_08             0.832    0.041   20.230    0.000    0.871    0.786
    TR01_10             0.788    0.038   20.521    0.000    0.826    0.701
    TR01_11             0.821    0.052   15.878    0.000    0.860    0.663
    TR01_12             1.100    0.039   28.278    0.000    1.152    0.857
  trust_spec =~                                                           
    trust_communty      1.000                               0.872    0.872
    trust_provider      1.111    0.077   14.363    0.000    0.954    0.954

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  COMM_log ~                                                            
    pri_con   (a1)   -0.048    0.080   -0.597    0.551   -0.077   -0.033
    grats_gen (b1)    0.079    0.167    0.474    0.636    0.090    0.039
    pri_delib (c1)   -0.154    0.092   -1.676    0.094   -0.230   -0.100
    self_eff  (d1)    0.817    0.147    5.546    0.000    0.927    0.401
    trust_spc (e1)   -0.259    0.271   -0.956    0.339   -0.233   -0.101

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .SE01_01 ~~                                                            
   .SE01_02    (x)    0.116    0.046    2.521    0.012    0.116    0.149
 .SE01_03 ~~                                                            
   .SE01_04    (x)    0.116    0.046    2.521    0.012    0.116    0.168
  pri_con ~~                                                            
    grats_gen        -0.283    0.096   -2.939    0.003   -0.156   -0.156
    pri_delib         1.353    0.132   10.238    0.000    0.566    0.566
    self_eff         -0.382    0.092   -4.159    0.000   -0.210   -0.210
    trust_spec       -0.415    0.075   -5.538    0.000   -0.288   -0.288
  grats_gen ~~                                                          
    pri_delib        -0.071    0.102   -0.699    0.484   -0.042   -0.042
    self_eff          0.463    0.067    6.858    0.000    0.360    0.360
    trust_spec        0.800    0.086    9.309    0.000    0.786    0.786
  pri_delib ~~                                                          
    self_eff         -0.335    0.093   -3.579    0.000   -0.198   -0.198
    trust_spec       -0.127    0.085   -1.487    0.137   -0.095   -0.095
  self_eff ~~                                                           
    trust_spec        0.553    0.060    9.298    0.000    0.542    0.542

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           3.293    0.073   45.160    0.000    3.293    1.910
   .PC01_02           3.327    0.075   44.525    0.000    3.327    1.883
   .PC01_04           3.222    0.074   43.395    0.000    3.222    1.835
   .PC01_05           3.263    0.075   43.748    0.000    3.263    1.850
   .PC01_06           3.004    0.073   41.410    0.000    3.004    1.751
   .PC01_07           3.224    0.073   44.188    0.000    3.224    1.869
   .GR02_01           4.281    0.057   75.413    0.000    4.281    3.190
   .GR02_02           4.596    0.060   76.742    0.000    4.596    3.246
   .GR02_03           5.131    0.057   90.628    0.000    5.131    3.833
   .GR02_04           5.089    0.056   91.559    0.000    5.089    3.873
   .GR02_05           4.692    0.061   77.447    0.000    4.692    3.276
   .PD01_01           3.658    0.073   50.136    0.000    3.658    2.121
   .PD01_02           3.352    0.065   51.628    0.000    3.352    2.184
   .PD01_03           4.191    0.066   63.662    0.000    4.191    2.693
   .PD01_04           4.080    0.072   56.578    0.000    4.080    2.393
   .PD01_05           4.351    0.070   62.149    0.000    4.351    2.629
   .SE01_01           5.278    0.058   90.221    0.000    5.278    3.823
   .SE01_02           5.524    0.057   96.595    0.000    5.524    4.094
   .SE01_03           5.224    0.057   92.105    0.000    5.224    3.896
   .SE01_04           5.138    0.057   89.971    0.000    5.138    3.806
   .TR01_02           4.764    0.054   88.923    0.000    4.764    3.761
   .TR01_03           4.844    0.046  104.195    0.000    4.844    4.407
   .TR01_04           4.615    0.049   94.568    0.000    4.615    4.000
   .TR01_06           5.403    0.051  106.478    0.000    5.403    4.504
   .TR01_07           5.200    0.049  106.180    0.000    5.200    4.491
   .TR01_08           5.129    0.047  109.405    0.000    5.129    4.627
   .TR01_10           5.725    0.050  114.993    0.000    5.725    4.864
   .TR01_11           4.834    0.055   88.152    0.000    4.834    3.728
   .TR01_12           5.179    0.057   91.089    0.000    5.179    3.853
   .COMM_log          1.834    0.098   18.765    0.000    1.834    0.794
    pri_con           0.000                               0.000    0.000
    grats_gen         0.000                               0.000    0.000
    pri_delib         0.000                               0.000    0.000
    self_eff          0.000                               0.000    0.000
   .trust_communty    0.000                               0.000    0.000
   .trust_provider    0.000                               0.000    0.000
    trust_spec        0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           0.405    0.050    8.078    0.000    0.405    0.136
   .PC01_02           0.586    0.104    5.657    0.000    0.586    0.188
   .PC01_04           0.631    0.077    8.206    0.000    0.631    0.205
   .PC01_05           0.536    0.065    8.262    0.000    0.536    0.172
   .PC01_06           1.069    0.116    9.189    0.000    1.069    0.363
   .PC01_07           0.430    0.065    6.586    0.000    0.430    0.144
   .GR02_01           0.519    0.055    9.502    0.000    0.519    0.288
   .GR02_02           0.394    0.041    9.680    0.000    0.394    0.196
   .GR02_03           0.452    0.072    6.240    0.000    0.452    0.252
   .GR02_04           0.481    0.049    9.909    0.000    0.481    0.279
   .GR02_05           0.585    0.066    8.887    0.000    0.585    0.285
   .PD01_01           0.754    0.111    6.803    0.000    0.754    0.253
   .PD01_02           1.339    0.130   10.305    0.000    1.339    0.568
   .PD01_03           1.309    0.129   10.161    0.000    1.309    0.540
   .PD01_04           1.311    0.147    8.905    0.000    1.311    0.451
   .PD01_05           1.576    0.128   12.271    0.000    1.576    0.575
   .SE01_01           0.618    0.088    6.992    0.000    0.618    0.324
   .SE01_02           0.986    0.129    7.668    0.000    0.986    0.542
   .SE01_03           0.694    0.096    7.224    0.000    0.694    0.386
   .SE01_04           0.689    0.081    8.534    0.000    0.689    0.378
   .TR01_02           0.542    0.070    7.753    0.000    0.542    0.338
   .TR01_03           0.496    0.055    9.039    0.000    0.496    0.410
   .TR01_04           0.436    0.045    9.767    0.000    0.436    0.328
   .TR01_06           0.343    0.035    9.820    0.000    0.343    0.238
   .TR01_07           0.541    0.053   10.253    0.000    0.541    0.403
   .TR01_08           0.469    0.043   10.871    0.000    0.469    0.382
   .TR01_10           0.704    0.057   12.267    0.000    0.704    0.508
   .TR01_11           0.942    0.079   11.950    0.000    0.942    0.560
   .TR01_12           0.480    0.053    9.021    0.000    0.480    0.266
   .COMM_log          4.450    0.219   20.335    0.000    4.450    0.833
    pri_con           2.568    0.147   17.514    0.000    1.000    1.000
    grats_gen         1.282    0.115   11.166    0.000    1.000    1.000
    pri_delib         2.223    0.158   14.076    0.000    1.000    1.000
    self_eff          1.288    0.115   11.249    0.000    1.000    1.000
   .trust_communty    0.254    0.045    5.620    0.000    0.239    0.239
   .trust_provider    0.099    0.044    2.257    0.024    0.090    0.090
    trust_spec        0.808    0.099    8.153    0.000    1.000    1.000
rsquare_fit_prereg <- inspect(fit_prereg, what = "rsquare")["comm"]

Model “Adapted”

Building on the preregistered model, instead of general gratifications and specific trust, we now use specific gratifications and general trust.

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07
grats_inf =~ GR01_01 + GR01_02 + GR01_03 
grats_rel =~ GR01_04 + GR01_05 + GR01_06 
grats_par =~ GR01_07 + GR01_08 + GR01_09
grats_ide =~ GR01_10 + GR01_11 + GR01_12 
grats_ext =~ GR01_13 + GR01_14 + GR01_15
grats_spec =~ grats_inf + grats_rel + grats_par + grats_ide + grats_ext
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
  SE01_01 ~~ x*SE01_02
  SE01_03 ~~ x*SE01_04
trust_gen =~ TR01_01 + TR01_05 + TR01_09

COMM_log ~ a1*pri_con + b1*grats_spec + c1*pri_delib + d1*self_eff + e1*trust_gen
"
fit_adapted <- sem(model, data = d, estimator = "MLR", missing = "ML", missing = "ML")
summary(fit_adapted, fit = TRUE, std = TRUE)
lavaan 0.6-8 ended normally after 132 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       123
  Number of equality constraints                     1
                                                      
  Number of observations                           559
  Number of missing patterns                         2
                                                      
Model Test User Model:
                                               Standard      Robust
  Test Statistic                               1513.741    1142.051
  Degrees of freedom                                507         507
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.325
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                             14130.591   10081.550
  Degrees of freedom                               561         561
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.402

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.926       0.933
  Tucker-Lewis Index (TLI)                       0.918       0.926
                                                                  
  Robust Comparative Fit Index (CFI)                         0.937
  Robust Tucker-Lewis Index (TLI)                            0.930

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -28170.779  -28170.779
  Scaling correction factor                                  1.461
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -27413.909  -27413.909
  Scaling correction factor                                  1.354
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               56585.559   56585.559
  Bayesian (BIC)                             57113.349   57113.349
  Sample-size adjusted Bayesian (BIC)        56726.062   56726.062

Root Mean Square Error of Approximation:

  RMSEA                                          0.060       0.047
  90 Percent confidence interval - lower         0.056       0.044
  90 Percent confidence interval - upper         0.063       0.051
  P-value RMSEA <= 0.05                          0.000       0.915
                                                                  
  Robust RMSEA                                               0.054
  90 Percent confidence interval - lower                     0.050
  90 Percent confidence interval - upper                     0.059

Standardized Root Mean Square Residual:

  SRMR                                           0.065       0.065

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con =~                                                            
    PC01_01           1.000                               1.602    0.929
    PC01_02           0.993    0.027   36.391    0.000    1.592    0.901
    PC01_04           0.977    0.027   35.851    0.000    1.565    0.892
    PC01_05           1.002    0.024   42.031    0.000    1.605    0.910
    PC01_06           0.855    0.038   22.512    0.000    1.369    0.798
    PC01_07           0.996    0.022   45.085    0.000    1.596    0.925
  grats_inf =~                                                          
    GR01_01           1.000                               0.967    0.688
    GR01_02           1.035    0.075   13.862    0.000    1.001    0.820
    GR01_03           1.130    0.076   14.912    0.000    1.093    0.850
  grats_rel =~                                                          
    GR01_04           1.000                               1.174    0.890
    GR01_05           0.942    0.037   25.157    0.000    1.106    0.856
    GR01_06           0.882    0.047   18.900    0.000    1.036    0.701
  grats_par =~                                                          
    GR01_07           1.000                               1.190    0.818
    GR01_08           0.942    0.040   23.593    0.000    1.121    0.818
    GR01_09           0.962    0.039   24.791    0.000    1.145    0.818
  grats_ide =~                                                          
    GR01_10           1.000                               1.147    0.790
    GR01_11           1.001    0.041   24.235    0.000    1.149    0.885
    GR01_12           0.929    0.041   22.543    0.000    1.065    0.764
  grats_ext =~                                                          
    GR01_13           1.000                               0.861    0.525
    GR01_14           0.996    0.098   10.114    0.000    0.857    0.512
    GR01_15           1.500    0.176    8.514    0.000    1.291    0.845
  grats_spec =~                                                         
    grats_inf         1.000                               0.841    0.841
    grats_rel         1.332    0.103   12.903    0.000    0.923    0.923
    grats_par         1.410    0.116   12.168    0.000    0.964    0.964
    grats_ide         1.308    0.105   12.425    0.000    0.927    0.927
    grats_ext         0.824    0.107    7.714    0.000    0.779    0.779
  pri_delib =~                                                          
    PD01_01           1.000                               1.499    0.869
    PD01_02           0.675    0.047   14.347    0.000    1.011    0.659
    PD01_03           0.699    0.053   13.182    0.000    1.048    0.673
    PD01_04           0.843    0.046   18.185    0.000    1.264    0.741
    PD01_05           0.714    0.048   14.804    0.000    1.069    0.646
  self_eff =~                                                           
    SE01_01           1.000                               1.138    0.824
    SE01_02           0.804    0.059   13.589    0.000    0.915    0.678
    SE01_03           0.920    0.044   21.013    0.000    1.047    0.781
    SE01_04           0.936    0.042   22.277    0.000    1.066    0.789
  trust_gen =~                                                          
    TR01_01           1.000                               0.770    0.668
    TR01_05           1.330    0.071   18.836    0.000    1.024    0.890
    TR01_09           1.456    0.080   18.096    0.000    1.121    0.929

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  COMM_log ~                                                            
    pri_con   (a1)   -0.086    0.081   -1.057    0.291   -0.138   -0.060
    grats_spc (b1)    0.380    0.201    1.895    0.058    0.310    0.134
    pri_delib (c1)   -0.194    0.093   -2.099    0.036   -0.291   -0.126
    self_eff  (d1)    0.737    0.143    5.138    0.000    0.839    0.363
    trust_gen (e1)   -0.485    0.222   -2.188    0.029   -0.374   -0.162

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .SE01_01 ~~                                                            
   .SE01_02    (x)    0.117    0.046    2.535    0.011    0.117    0.150
 .SE01_03 ~~                                                            
   .SE01_04    (x)    0.117    0.046    2.535    0.011    0.117    0.168
  pri_con ~~                                                            
    grats_spec       -0.108    0.069   -1.563    0.118   -0.083   -0.083
    pri_delib         1.362    0.131   10.361    0.000    0.567    0.567
    self_eff         -0.386    0.092   -4.191    0.000   -0.211   -0.211
    trust_gen        -0.519    0.066   -7.864    0.000   -0.421   -0.421
  grats_spec ~~                                                         
    pri_delib         0.010    0.073    0.136    0.892    0.008    0.008
    self_eff          0.494    0.060    8.252    0.000    0.533    0.533
    trust_gen         0.407    0.058    6.983    0.000    0.650    0.650
  pri_delib ~~                                                          
    self_eff         -0.338    0.094   -3.592    0.000   -0.198   -0.198
    trust_gen        -0.299    0.071   -4.197    0.000   -0.259   -0.259
  self_eff ~~                                                           
    trust_gen         0.458    0.056    8.250    0.000    0.523    0.523

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           3.293    0.073   45.160    0.000    3.293    1.910
   .PC01_02           3.327    0.075   44.525    0.000    3.327    1.883
   .PC01_04           3.222    0.074   43.395    0.000    3.222    1.835
   .PC01_05           3.263    0.075   43.748    0.000    3.263    1.850
   .PC01_06           3.004    0.073   41.410    0.000    3.004    1.751
   .PC01_07           3.224    0.073   44.188    0.000    3.224    1.869
   .GR01_01           4.878    0.059   82.009    0.000    4.878    3.469
   .GR01_02           5.436    0.052  105.390    0.000    5.436    4.458
   .GR01_03           5.283    0.054   97.076    0.000    5.283    4.106
   .GR01_04           4.925    0.056   88.264    0.000    4.925    3.733
   .GR01_05           5.086    0.055   93.032    0.000    5.086    3.935
   .GR01_06           4.660    0.063   74.538    0.000    4.660    3.153
   .GR01_07           4.682    0.062   76.077    0.000    4.682    3.218
   .GR01_08           5.066    0.058   87.374    0.000    5.066    3.696
   .GR01_09           4.841    0.059   81.781    0.000    4.841    3.459
   .GR01_10           4.547    0.061   74.048    0.000    4.547    3.132
   .GR01_11           4.964    0.055   90.449    0.000    4.964    3.826
   .GR01_12           4.760    0.059   80.678    0.000    4.760    3.412
   .GR01_13           4.079    0.069   58.781    0.000    4.079    2.486
   .GR01_14           3.039    0.071   42.918    0.000    3.039    1.815
   .GR01_15           4.410    0.065   68.283    0.000    4.410    2.888
   .PD01_01           3.658    0.073   50.136    0.000    3.658    2.121
   .PD01_02           3.352    0.065   51.628    0.000    3.352    2.184
   .PD01_03           4.191    0.066   63.662    0.000    4.191    2.693
   .PD01_04           4.080    0.072   56.578    0.000    4.080    2.393
   .PD01_05           4.351    0.070   62.149    0.000    4.351    2.629
   .SE01_01           5.277    0.059   90.171    0.000    5.277    3.819
   .SE01_02           5.523    0.057   96.541    0.000    5.523    4.091
   .SE01_03           5.223    0.057   92.072    0.000    5.223    3.895
   .SE01_04           5.137    0.057   89.932    0.000    5.137    3.805
   .TR01_01           4.846    0.049   99.399    0.000    4.846    4.204
   .TR01_05           5.383    0.049  110.607    0.000    5.383    4.678
   .TR01_09           5.390    0.051  105.542    0.000    5.390    4.464
   .COMM_log          1.834    0.098   18.765    0.000    1.834    0.794
    pri_con           0.000                               0.000    0.000
   .grats_inf         0.000                               0.000    0.000
   .grats_rel         0.000                               0.000    0.000
   .grats_par         0.000                               0.000    0.000
   .grats_ide         0.000                               0.000    0.000
   .grats_ext         0.000                               0.000    0.000
    grats_spec        0.000                               0.000    0.000
    pri_delib         0.000                               0.000    0.000
    self_eff          0.000                               0.000    0.000
    trust_gen         0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           0.406    0.050    8.109    0.000    0.406    0.137
   .PC01_02           0.588    0.103    5.694    0.000    0.588    0.188
   .PC01_04           0.632    0.077    8.227    0.000    0.632    0.205
   .PC01_05           0.534    0.065    8.238    0.000    0.534    0.172
   .PC01_06           1.066    0.116    9.192    0.000    1.066    0.363
   .PC01_07           0.429    0.065    6.560    0.000    0.429    0.144
   .GR01_01           1.043    0.109    9.553    0.000    1.043    0.527
   .GR01_02           0.486    0.065    7.429    0.000    0.486    0.327
   .GR01_03           0.460    0.068    6.742    0.000    0.460    0.278
   .GR01_04           0.361    0.043    8.389    0.000    0.361    0.208
   .GR01_05           0.447    0.057    7.858    0.000    0.447    0.268
   .GR01_06           1.112    0.110   10.084    0.000    1.112    0.509
   .GR01_07           0.700    0.071    9.873    0.000    0.700    0.331
   .GR01_08           0.623    0.069    9.073    0.000    0.623    0.331
   .GR01_09           0.647    0.072    8.921    0.000    0.647    0.330
   .GR01_10           0.792    0.072   11.058    0.000    0.792    0.375
   .GR01_11           0.364    0.056    6.554    0.000    0.364    0.216
   .GR01_12           0.811    0.077   10.597    0.000    0.811    0.417
   .GR01_13           1.951    0.161   12.149    0.000    1.951    0.725
   .GR01_14           2.069    0.124   16.673    0.000    2.069    0.738
   .GR01_15           0.665    0.115    5.793    0.000    0.665    0.285
   .PD01_01           0.730    0.108    6.755    0.000    0.730    0.245
   .PD01_02           1.334    0.130   10.249    0.000    1.334    0.566
   .PD01_03           1.326    0.130   10.218    0.000    1.326    0.547
   .PD01_04           1.311    0.147    8.934    0.000    1.311    0.451
   .PD01_05           1.596    0.130   12.271    0.000    1.596    0.582
   .SE01_01           0.614    0.088    6.985    0.000    0.614    0.321
   .SE01_02           0.985    0.128    7.686    0.000    0.985    0.541
   .SE01_03           0.702    0.094    7.470    0.000    0.702    0.390
   .SE01_04           0.687    0.081    8.478    0.000    0.687    0.377
   .TR01_01           0.736    0.062   11.837    0.000    0.736    0.554
   .TR01_05           0.275    0.032    8.504    0.000    0.275    0.208
   .TR01_09           0.200    0.037    5.449    0.000    0.200    0.137
   .COMM_log          4.402    0.210   20.958    0.000    4.402    0.824
    pri_con           2.567    0.146   17.535    0.000    1.000    1.000
   .grats_inf         0.273    0.042    6.512    0.000    0.292    0.292
   .grats_rel         0.205    0.048    4.276    0.000    0.148    0.148
   .grats_par         0.100    0.052    1.924    0.054    0.071    0.071
   .grats_ide         0.185    0.048    3.884    0.000    0.140    0.140
   .grats_ext         0.291    0.074    3.949    0.000    0.393    0.393
    grats_spec        0.662    0.117    5.660    0.000    1.000    1.000
    pri_delib         2.246    0.157   14.310    0.000    1.000    1.000
    self_eff          1.296    0.114   11.371    0.000    1.000    1.000
    trust_gen         0.593    0.071    8.310    0.000    1.000    1.000
rsquare_fit_adapted <- inspect(fit_adapted, what = "rsquare")["comm"]

Model “Simple”

We now use only variables, that is specific gratifications and privacy concerns.

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07  
grats_inf =~ GR01_01 + GR01_02 + GR01_03 
grats_rel =~ GR01_04 + GR01_05 + GR01_06 
grats_par =~ GR01_07 + GR01_08 + GR01_09
grats_ide =~ GR01_10 + GR01_11 + GR01_12 
grats_ext =~ GR01_13 + GR01_14 + GR01_15
grats_spec =~ grats_inf + grats_rel + grats_par + grats_ide + grats_ext

COMM_log ~ a1*pri_con + b1*grats_spec
"
fit_simple <- sem(model, data = d, estimator = "MLR", missing = "ML")
summary(fit_simple, fit = TRUE, std = TRUE)
lavaan 0.6-8 ended normally after 51 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        73
                                                      
  Number of observations                           559
  Number of missing patterns                         1
                                                      
Model Test User Model:
                                               Standard      Robust
  Test Statistic                                725.576     498.303
  Degrees of freedom                                202         202
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.456
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                              9529.484    6135.147
  Degrees of freedom                               231         231
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.553

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.944       0.950
  Tucker-Lewis Index (TLI)                       0.936       0.943
                                                                  
  Robust Comparative Fit Index (CFI)                         0.953
  Robust Tucker-Lewis Index (TLI)                            0.946

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -18251.766  -18251.766
  Scaling correction factor                                  1.466
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -17888.978  -17888.978
  Scaling correction factor                                  1.459
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               36649.532   36649.532
  Bayesian (BIC)                             36965.341   36965.341
  Sample-size adjusted Bayesian (BIC)        36733.604   36733.604

Root Mean Square Error of Approximation:

  RMSEA                                          0.068       0.051
  90 Percent confidence interval - lower         0.063       0.047
  90 Percent confidence interval - upper         0.073       0.056
  P-value RMSEA <= 0.05                          0.000       0.327
                                                                  
  Robust RMSEA                                               0.062
  90 Percent confidence interval - lower                     0.055
  90 Percent confidence interval - upper                     0.069

Standardized Root Mean Square Residual:

  SRMR                                           0.060       0.060

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con =~                                                            
    PC01_01           1.000                               1.605    0.931
    PC01_02           0.992    0.028   36.060    0.000    1.592    0.901
    PC01_04           0.973    0.027   35.517    0.000    1.563    0.890
    PC01_05           0.998    0.024   41.964    0.000    1.602    0.909
    PC01_06           0.850    0.038   22.348    0.000    1.365    0.796
    PC01_07           0.995    0.022   44.601    0.000    1.598    0.926
  grats_inf =~                                                          
    GR01_01           1.000                               0.966    0.687
    GR01_02           1.035    0.076   13.555    0.000    1.000    0.820
    GR01_03           1.134    0.078   14.489    0.000    1.095    0.851
  grats_rel =~                                                          
    GR01_04           1.000                               1.176    0.892
    GR01_05           0.936    0.037   25.102    0.000    1.101    0.852
    GR01_06           0.884    0.047   18.823    0.000    1.040    0.704
  grats_par =~                                                          
    GR01_07           1.000                               1.200    0.825
    GR01_08           0.928    0.040   22.954    0.000    1.114    0.813
    GR01_09           0.952    0.040   24.051    0.000    1.142    0.816
  grats_ide =~                                                          
    GR01_10           1.000                               1.154    0.795
    GR01_11           0.993    0.042   23.561    0.000    1.146    0.883
    GR01_12           0.920    0.042   22.071    0.000    1.062    0.761
  grats_ext =~                                                          
    GR01_13           1.000                               0.849    0.517
    GR01_14           1.007    0.100   10.031    0.000    0.855    0.510
    GR01_15           1.531    0.178    8.591    0.000    1.299    0.851
  grats_spec =~                                                         
    grats_inf         1.000                               0.824    0.824
    grats_rel         1.365    0.111   12.310    0.000    0.923    0.923
    grats_par         1.458    0.128   11.389    0.000    0.967    0.967
    grats_ide         1.348    0.116   11.635    0.000    0.929    0.929
    grats_ext         0.843    0.112    7.533    0.000    0.791    0.791

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  COMM_log ~                                                            
    pri_con   (a1)   -0.192    0.061   -3.154    0.002   -0.308   -0.133
    grats_spc (b1)    0.623    0.142    4.379    0.000    0.496    0.214

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con ~~                                                            
    grats_spec       -0.106    0.068   -1.558    0.119   -0.083   -0.083

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           3.293    0.073   45.160    0.000    3.293    1.910
   .PC01_02           3.327    0.075   44.525    0.000    3.327    1.883
   .PC01_04           3.222    0.074   43.395    0.000    3.222    1.835
   .PC01_05           3.263    0.075   43.748    0.000    3.263    1.850
   .PC01_06           3.004    0.073   41.410    0.000    3.004    1.751
   .PC01_07           3.224    0.073   44.188    0.000    3.224    1.869
   .GR01_01           4.878    0.059   82.009    0.000    4.878    3.469
   .GR01_02           5.436    0.052  105.390    0.000    5.436    4.458
   .GR01_03           5.283    0.054   97.076    0.000    5.283    4.106
   .GR01_04           4.925    0.056   88.264    0.000    4.925    3.733
   .GR01_05           5.086    0.055   93.032    0.000    5.086    3.935
   .GR01_06           4.660    0.063   74.538    0.000    4.660    3.153
   .GR01_07           4.682    0.062   76.077    0.000    4.682    3.218
   .GR01_08           5.066    0.058   87.374    0.000    5.066    3.696
   .GR01_09           4.841    0.059   81.781    0.000    4.841    3.459
   .GR01_10           4.547    0.061   74.048    0.000    4.547    3.132
   .GR01_11           4.964    0.055   90.449    0.000    4.964    3.826
   .GR01_12           4.760    0.059   80.678    0.000    4.760    3.412
   .GR01_13           4.079    0.069   58.781    0.000    4.079    2.486
   .GR01_14           3.039    0.071   42.918    0.000    3.039    1.815
   .GR01_15           4.410    0.065   68.283    0.000    4.410    2.888
   .COMM_log          1.834    0.098   18.765    0.000    1.834    0.794
    pri_con           0.000                               0.000    0.000
   .grats_inf         0.000                               0.000    0.000
   .grats_rel         0.000                               0.000    0.000
   .grats_par         0.000                               0.000    0.000
   .grats_ide         0.000                               0.000    0.000
   .grats_ext         0.000                               0.000    0.000
    grats_spec        0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           0.396    0.050    7.919    0.000    0.396    0.133
   .PC01_02           0.587    0.105    5.607    0.000    0.587    0.188
   .PC01_04           0.639    0.078    8.162    0.000    0.639    0.207
   .PC01_05           0.542    0.066    8.176    0.000    0.542    0.174
   .PC01_06           1.078    0.118    9.165    0.000    1.078    0.367
   .PC01_07           0.423    0.064    6.630    0.000    0.423    0.142
   .GR01_01           1.045    0.111    9.441    0.000    1.045    0.528
   .GR01_02           0.488    0.065    7.492    0.000    0.488    0.328
   .GR01_03           0.456    0.069    6.592    0.000    0.456    0.275
   .GR01_04           0.356    0.043    8.343    0.000    0.356    0.205
   .GR01_05           0.457    0.057    7.978    0.000    0.457    0.274
   .GR01_06           1.103    0.110   10.037    0.000    1.103    0.505
   .GR01_07           0.676    0.069    9.809    0.000    0.676    0.320
   .GR01_08           0.638    0.069    9.302    0.000    0.638    0.340
   .GR01_09           0.654    0.074    8.871    0.000    0.654    0.334
   .GR01_10           0.776    0.070   11.086    0.000    0.776    0.368
   .GR01_11           0.370    0.057    6.543    0.000    0.370    0.220
   .GR01_12           0.818    0.077   10.591    0.000    0.818    0.421
   .GR01_13           1.971    0.158   12.462    0.000    1.971    0.732
   .GR01_14           2.073    0.123   16.911    0.000    2.073    0.739
   .GR01_15           0.643    0.113    5.712    0.000    0.643    0.276
   .COMM_log          4.975    0.206   24.175    0.000    4.975    0.932
    pri_con           2.577    0.146   17.609    0.000    1.000    1.000
   .grats_inf         0.299    0.045    6.618    0.000    0.321    0.321
   .grats_rel         0.204    0.050    4.107    0.000    0.147    0.147
   .grats_par         0.093    0.055    1.700    0.089    0.065    0.065
   .grats_ide         0.181    0.048    3.742    0.000    0.136    0.136
   .grats_ext         0.270    0.069    3.899    0.000    0.375    0.375
    grats_spec        0.634    0.118    5.362    0.000    1.000    1.000
rsquare_fit_simple <- inspect(fit_simple, what = "rsquare")["comm"]

Results including removed participants

As stated in the preregistration, we also report the analyses including the deleted participants. Results don’t change meaningfully.

Baseline model

model_baseline <- "
  pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07
  grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
  grats_inf =~ GR01_01 + GR01_02 + GR01_03 
  grats_rel =~ GR01_04 + GR01_05 + GR01_06 
  grats_par =~ GR01_07 + GR01_08 + GR01_09
  grats_ide =~ GR01_10 + GR01_11 + GR01_12
  grats_ext =~ GR01_13 + GR01_14 + GR01_15
  grats_spec =~ grats_inf + grats_rel + grats_par + grats_ide + grats_ext
  pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
  trust_gen =~ TR01_01 + TR01_05 + TR01_09
  trust_community =~ TR01_02 + TR01_03 + TR01_04
  trust_provider =~ TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12
  trust_spec =~ trust_community + trust_provider
  self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
    SE01_01 ~~ x*SE01_02
    SE01_03 ~~ x*SE01_04
  comm_log =~ COMM_log
  
  COMM_log ~~ a1*pri_con + b1*grats_gen + c1*pri_delib + d1*self_eff + e1*trust_spec + f1*trust_gen + g1*grats_spec
"
fit_baseline <- sem(model_baseline, data = d_all, missing = "ML")
summary(fit_baseline, standardized = TRUE, fit.measures = TRUE)
lavaan 0.6-8 ended normally after 165 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       187
  Number of equality constraints                     1
                                                      
  Number of observations                           590
  Number of missing patterns                         4
                                                      
Model Test User Model:
                                                      
  Test statistic                              3304.927
  Degrees of freedom                              1038
  P-value (Chi-square)                           0.000

Model Test Baseline Model:

  Test statistic                             24074.746
  Degrees of freedom                              1128
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.901
  Tucker-Lewis Index (TLI)                       0.893

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -39838.640
  Loglikelihood unrestricted model (H1)     -38186.176
                                                      
  Akaike (AIC)                               80049.279
  Bayesian (BIC)                             80863.982
  Sample-size adjusted Bayesian (BIC)        80273.494

Root Mean Square Error of Approximation:

  RMSEA                                          0.061
  90 Percent confidence interval - lower         0.059
  90 Percent confidence interval - upper         0.063
  P-value RMSEA <= 0.05                          0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.066

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Observed
  Observed information based on                Hessian

Latent Variables:
                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con =~                                                              
    PC01_01             1.000                               1.622    0.926
    PC01_02             0.996    0.026   37.848    0.000    1.616    0.905
    PC01_04             0.971    0.027   36.242    0.000    1.576    0.892
    PC01_05             1.003    0.026   39.030    0.000    1.628    0.913
    PC01_06             0.868    0.031   28.279    0.000    1.409    0.808
    PC01_07             1.001    0.024   41.245    0.000    1.625    0.928
  grats_gen =~                                                            
    GR02_01             1.000                               1.148    0.847
    GR02_02             1.116    0.038   29.247    0.000    1.281    0.894
    GR02_03             1.016    0.037   27.084    0.000    1.166    0.870
    GR02_04             0.983    0.038   26.075    0.000    1.129    0.851
    GR02_05             1.067    0.040   26.702    0.000    1.225    0.852
  grats_inf =~                                                            
    GR01_01             1.000                               0.999    0.710
    GR01_02             1.014    0.058   17.575    0.000    1.013    0.824
    GR01_03             1.107    0.062   17.827    0.000    1.106    0.848
  grats_rel =~                                                            
    GR01_04             1.000                               1.180    0.891
    GR01_05             0.950    0.033   28.726    0.000    1.121    0.860
    GR01_06             0.883    0.044   20.112    0.000    1.042    0.707
  grats_par =~                                                            
    GR01_07             1.000                               1.204    0.825
    GR01_08             0.924    0.040   22.913    0.000    1.113    0.814
    GR01_09             0.956    0.041   23.344    0.000    1.151    0.822
  grats_ide =~                                                            
    GR01_10             1.000                               1.152    0.797
    GR01_11             1.004    0.041   24.422    0.000    1.157    0.887
    GR01_12             0.939    0.046   20.337    0.000    1.082    0.767
  grats_ext =~                                                            
    GR01_13             1.000                               0.883    0.540
    GR01_14             1.012    0.101   10.051    0.000    0.894    0.525
    GR01_15             1.468    0.128   11.448    0.000    1.297    0.848
  grats_spec =~                                                           
    grats_inf           1.000                               0.850    0.850
    grats_rel           1.292    0.082   15.697    0.000    0.930    0.930
    grats_par           1.356    0.090   15.083    0.000    0.956    0.956
    grats_ide           1.279    0.087   14.673    0.000    0.942    0.942
    grats_ext           0.822    0.083    9.897    0.000    0.790    0.790
  pri_delib =~                                                            
    PD01_01             1.000                               1.493    0.866
    PD01_02             0.705    0.040   17.752    0.000    1.052    0.677
    PD01_03             0.711    0.042   16.989    0.000    1.062    0.678
    PD01_04             0.848    0.043   19.880    0.000    1.266    0.744
    PD01_05             0.731    0.043   16.952    0.000    1.092    0.663
  trust_gen =~                                                            
    TR01_01             1.000                               0.837    0.724
    TR01_05             1.251    0.061   20.573    0.000    1.047    0.888
    TR01_09             1.312    0.063   20.722    0.000    1.099    0.897
  trust_community =~                                                      
    TR01_02             1.000                               1.033    0.808
    TR01_03             0.832    0.042   19.593    0.000    0.860    0.767
    TR01_04             0.947    0.043   22.184    0.000    0.979    0.835
  trust_provider =~                                                       
    TR01_06             1.000                               1.056    0.861
    TR01_07             0.880    0.037   23.587    0.000    0.929    0.779
    TR01_08             0.880    0.035   25.150    0.000    0.929    0.813
    TR01_10             0.771    0.040   19.457    0.000    0.814    0.686
    TR01_11             0.827    0.044   18.792    0.000    0.874    0.674
    TR01_12             1.076    0.040   26.847    0.000    1.136    0.844
  trust_spec =~                                                           
    trust_communty      1.000                               0.865    0.865
    trust_provider      1.154    0.058   19.742    0.000    0.977    0.977
  self_eff =~                                                             
    SE01_01             1.000                               1.158    0.828
    SE01_02             0.834    0.044   18.888    0.000    0.966    0.705
    SE01_03             0.919    0.045   20.286    0.000    1.064    0.789
    SE01_04             0.920    0.045   20.377    0.000    1.065    0.779
  comm_log =~                                                             
    COMM_log            1.000                               2.283    1.000

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .SE01_01 ~~                                                            
   .SE01_02    (x)    0.106    0.028    3.820    0.000    0.106    0.140
 .SE01_03 ~~                                                            
   .SE01_04    (x)    0.106    0.028    3.820    0.000    0.106    0.150
  pri_con ~~                                                            
   .COMM_log  (a1)   -0.308    0.079   -3.905    0.000   -0.190     -Inf
  grats_gen ~~                                                          
   .COMM_log  (b1)    0.126    0.056    2.251    0.024    0.110      Inf
  pri_delib ~~                                                          
   .COMM_log  (c1)   -0.338    0.077   -4.399    0.000   -0.226     -Inf
  self_eff ~~                                                           
   .COMM_log  (d1)    0.509    0.064    7.912    0.000    0.439      Inf
  trust_spec ~~                                                         
   .COMM_log  (e1)    0.163    0.045    3.598    0.000    0.183      Inf
  trust_gen ~~                                                          
   .COMM_log  (f1)    0.158    0.042    3.727    0.000    0.189      Inf
  grats_spec ~~                                                         
   .COMM_log  (g1)    0.191    0.043    4.402    0.000    0.225      Inf
  pri_con ~~                                                            
    grats_gen        -0.180    0.081   -2.220    0.026   -0.097   -0.097
    grats_spc        -0.030    0.060   -0.504    0.614   -0.022   -0.022
    pri_delib         1.430    0.131   10.950    0.000    0.590    0.590
    trust_gen        -0.500    0.067   -7.504    0.000   -0.368   -0.368
    trust_spc        -0.355    0.067   -5.263    0.000   -0.245   -0.245
    self_eff         -0.383    0.088   -4.340    0.000   -0.204   -0.204
    comm_log         -0.308    0.079   -3.905    0.000   -0.083   -0.083
  grats_gen ~~                                                          
    grats_spc         0.769    0.071   10.828    0.000    0.789    0.789
    pri_delib         0.025    0.079    0.322    0.747    0.015    0.015
    trust_gen         0.599    0.058   10.398    0.000    0.623    0.623
    trust_spc         0.782    0.068   11.560    0.000    0.762    0.762
    self_eff          0.473    0.066    7.120    0.000    0.356    0.356
    comm_log          0.126    0.056    2.251    0.024    0.048    0.048
  grats_spec ~~                                                         
    pri_delib         0.078    0.059    1.324    0.185    0.061    0.061
    trust_gen         0.479    0.050    9.494    0.000    0.673    0.673
    trust_spc         0.598    0.059   10.073    0.000    0.788    0.788
    self_eff          0.495    0.058    8.499    0.000    0.503    0.503
    comm_log          0.191    0.043    4.402    0.000    0.099    0.099
  pri_delib ~~                                                          
    trust_gen        -0.247    0.061   -4.048    0.000   -0.197   -0.197
    trust_spc        -0.083    0.063   -1.306    0.192   -0.062   -0.062
    self_eff         -0.309    0.085   -3.627    0.000   -0.179   -0.179
    comm_log         -0.338    0.077   -4.399    0.000   -0.099   -0.099
  trust_gen ~~                                                          
    trust_spc         0.719    0.062   11.631    0.000    0.961    0.961
    self_eff          0.521    0.056    9.278    0.000    0.537    0.537
    comm_log          0.158    0.042    3.727    0.000    0.083    0.083
  trust_spec ~~                                                         
    self_eff          0.579    0.060    9.580    0.000    0.560    0.560
    comm_log          0.163    0.045    3.598    0.000    0.080    0.080
  self_eff ~~                                                           
    comm_log          0.509    0.064    7.912    0.000    0.192    0.192

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           3.353    0.072   46.459    0.000    3.353    1.913
   .PC01_02           3.395    0.074   46.159    0.000    3.395    1.900
   .PC01_04           3.286    0.073   45.171    0.000    3.286    1.860
   .PC01_05           3.327    0.073   45.323    0.000    3.327    1.866
   .PC01_06           3.078    0.072   42.870    0.000    3.078    1.765
   .PC01_07           3.292    0.072   45.649    0.000    3.292    1.879
   .GR02_01           4.300    0.056   77.060    0.000    4.300    3.173
   .GR02_02           4.608    0.059   78.148    0.000    4.608    3.217
   .GR02_03           5.120    0.055   92.770    0.000    5.120    3.819
   .GR02_04           5.078    0.055   92.974    0.000    5.078    3.828
   .GR02_05           4.698    0.059   79.418    0.000    4.698    3.270
   .GR01_01           4.878    0.058   84.167    0.000    4.878    3.465
   .GR01_02           5.412    0.051  106.975    0.000    5.412    4.404
   .GR01_03           5.242    0.054   97.598    0.000    5.242    4.018
   .GR01_04           4.922    0.055   90.292    0.000    4.922    3.717
   .GR01_05           5.078    0.054   94.628    0.000    5.078    3.896
   .GR01_06           4.669    0.061   76.928    0.000    4.669    3.167
   .GR01_07           4.680    0.060   77.892    0.000    4.680    3.207
   .GR01_08           5.054    0.056   89.819    0.000    5.054    3.698
   .GR01_09           4.832    0.058   83.767    0.000    4.832    3.449
   .GR01_10           4.554    0.060   76.499    0.000    4.554    3.149
   .GR01_11           4.958    0.054   92.315    0.000    4.958    3.801
   .GR01_12           4.766    0.058   82.079    0.000    4.766    3.379
   .GR01_13           4.108    0.067   61.001    0.000    4.108    2.511
   .GR01_14           3.129    0.070   44.664    0.000    3.129    1.839
   .GR01_15           4.432    0.063   70.425    0.000    4.432    2.899
   .PD01_01           3.715    0.071   52.336    0.000    3.715    2.155
   .PD01_02           3.417    0.064   53.359    0.000    3.417    2.197
   .PD01_03           4.220    0.064   65.450    0.000    4.220    2.695
   .PD01_04           4.105    0.070   58.613    0.000    4.105    2.413
   .PD01_05           4.378    0.068   64.560    0.000    4.378    2.658
   .TR01_01           4.839    0.048  101.596    0.000    4.839    4.183
   .TR01_05           5.334    0.049  109.817    0.000    5.334    4.521
   .TR01_09           5.358    0.050  106.224    0.000    5.358    4.373
   .TR01_02           4.746    0.053   90.189    0.000    4.746    3.713
   .TR01_03           4.834    0.046  104.720    0.000    4.834    4.311
   .TR01_04           4.605    0.048   95.408    0.000    4.605    3.928
   .TR01_06           5.358    0.050  106.104    0.000    5.358    4.368
   .TR01_07           5.166    0.049  105.184    0.000    5.166    4.330
   .TR01_08           5.098    0.047  108.380    0.000    5.098    4.462
   .TR01_10           5.688    0.049  116.332    0.000    5.688    4.792
   .TR01_11           4.819    0.053   90.284    0.000    4.819    3.717
   .TR01_12           5.159    0.055   93.101    0.000    5.159    3.833
   .SE01_01           5.237    0.058   90.932    0.000    5.237    3.746
   .SE01_02           5.472    0.057   96.846    0.000    5.472    3.992
   .SE01_03           5.193    0.056   93.415    0.000    5.193    3.850
   .SE01_04           5.111    0.056   90.727    0.000    5.111    3.739
   .COMM_log          1.788    0.094   19.017    0.000    1.788    0.783
    pri_con           0.000                               0.000    0.000
    grats_gen         0.000                               0.000    0.000
   .grats_inf         0.000                               0.000    0.000
   .grats_rel         0.000                               0.000    0.000
   .grats_par         0.000                               0.000    0.000
   .grats_ide         0.000                               0.000    0.000
   .grats_ext         0.000                               0.000    0.000
    grats_spec        0.000                               0.000    0.000
    pri_delib         0.000                               0.000    0.000
    trust_gen         0.000                               0.000    0.000
   .trust_communty    0.000                               0.000    0.000
   .trust_provider    0.000                               0.000    0.000
    trust_spec        0.000                               0.000    0.000
    self_eff          0.000                               0.000    0.000
    comm_log          0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           0.440    0.033   13.423    0.000    0.440    0.143
   .PC01_02           0.579    0.040   14.320    0.000    0.579    0.181
   .PC01_04           0.640    0.043   14.729    0.000    0.640    0.205
   .PC01_05           0.530    0.038   14.053    0.000    0.530    0.167
   .PC01_06           1.056    0.066   15.977    0.000    1.056    0.347
   .PC01_07           0.428    0.032   13.303    0.000    0.428    0.140
   .GR02_01           0.519    0.036   14.290    0.000    0.519    0.282
   .GR02_02           0.410    0.032   12.716    0.000    0.410    0.200
   .GR02_03           0.438    0.032   13.601    0.000    0.438    0.244
   .GR02_04           0.486    0.034   14.250    0.000    0.486    0.276
   .GR02_05           0.565    0.040   14.298    0.000    0.565    0.274
   .GR01_01           0.984    0.068   14.368    0.000    0.984    0.496
   .GR01_02           0.485    0.041   11.921    0.000    0.485    0.321
   .GR01_03           0.479    0.044   10.812    0.000    0.479    0.281
   .GR01_04           0.360    0.033   10.937    0.000    0.360    0.205
   .GR01_05           0.442    0.035   12.624    0.000    0.442    0.260
   .GR01_06           1.087    0.070   15.594    0.000    1.087    0.500
   .GR01_07           0.680    0.049   13.752    0.000    0.680    0.319
   .GR01_08           0.630    0.045   13.960    0.000    0.630    0.337
   .GR01_09           0.637    0.047   13.699    0.000    0.637    0.325
   .GR01_10           0.763    0.053   14.402    0.000    0.763    0.365
   .GR01_11           0.363    0.033   10.995    0.000    0.363    0.213
   .GR01_12           0.818    0.055   14.903    0.000    0.818    0.411
   .GR01_13           1.897    0.125   15.217    0.000    1.897    0.709
   .GR01_14           2.097    0.136   15.419    0.000    2.097    0.724
   .GR01_15           0.655    0.090    7.255    0.000    0.655    0.280
   .PD01_01           0.743    0.077    9.595    0.000    0.743    0.250
   .PD01_02           1.312    0.087   15.127    0.000    1.312    0.542
   .PD01_03           1.324    0.090   14.771    0.000    1.324    0.540
   .PD01_04           1.291    0.092   14.076    0.000    1.291    0.446
   .PD01_05           1.520    0.100   15.174    0.000    1.520    0.560
   .TR01_01           0.637    0.042   15.232    0.000    0.637    0.476
   .TR01_05           0.295    0.025   11.766    0.000    0.295    0.212
   .TR01_09           0.294    0.026   11.250    0.000    0.294    0.196
   .TR01_02           0.566    0.044   12.911    0.000    0.566    0.346
   .TR01_03           0.518    0.037   13.974    0.000    0.518    0.412
   .TR01_04           0.417    0.035   11.823    0.000    0.417    0.303
   .TR01_06           0.389    0.028   13.872    0.000    0.389    0.259
   .TR01_07           0.560    0.036   15.528    0.000    0.560    0.393
   .TR01_08           0.442    0.029   15.137    0.000    0.442    0.338
   .TR01_10           0.747    0.046   16.248    0.000    0.747    0.530
   .TR01_11           0.917    0.056   16.352    0.000    0.917    0.546
   .TR01_12           0.521    0.036   14.554    0.000    0.521    0.288
   .SE01_01           0.613    0.052   11.892    0.000    0.613    0.314
   .SE01_02           0.947    0.064   14.860    0.000    0.947    0.504
   .SE01_03           0.687    0.053   12.906    0.000    0.687    0.378
   .SE01_04           0.734    0.054   13.472    0.000    0.734    0.393
   .COMM_log          0.000                               0.000    0.000
    pri_con           2.632    0.178   14.771    0.000    1.000    1.000
    grats_gen         1.318    0.105   12.606    0.000    1.000    1.000
   .grats_inf         0.277    0.036    7.648    0.000    0.277    0.277
   .grats_rel         0.189    0.031    6.123    0.000    0.136    0.136
   .grats_par         0.125    0.030    4.124    0.000    0.086    0.086
   .grats_ide         0.149    0.029    5.130    0.000    0.112    0.112
   .grats_ext         0.293    0.053    5.492    0.000    0.376    0.376
    grats_spec        0.721    0.092    7.847    0.000    1.000    1.000
    pri_delib         2.231    0.179   12.427    0.000    1.000    1.000
    trust_gen         0.701    0.071    9.846    0.000    1.000    1.000
   .trust_communty    0.269    0.034    7.812    0.000    0.252    0.252
   .trust_provider    0.052    0.021    2.430    0.015    0.046    0.046
    trust_spec        0.798    0.082    9.690    0.000    1.000    1.000
    self_eff          1.341    0.115   11.619    0.000    1.000    1.000
    comm_log          5.213    0.304   17.175    0.000    1.000    1.000
# extract model predicted values for items & calc means
d_fs <- lavPredict(fit_baseline, type = "ov") %>% as.data.frame() %>% mutate(version = d_all$version, grats_gen_fs = rowMeans(select(., 
    starts_with("GR02"))), grats_spec_fs = rowMeans(select(., starts_with("GR01"))), pri_con_fs = rowMeans(select(., starts_with("PC01"))), 
    trust_gen_fs = rowMeans(select(., TR01_01, TR01_05, TR01_09)), trust_spec_fs = rowMeans(select(., TR01_02:TR01_04, TR01_06:TR01_12)), 
    pri_del_fs = rowMeans(select(., starts_with("PD01"))), self_eff_fs = rowMeans(select(., starts_with("SE01")))) %>% select(version, 
    pri_con_fs, grats_gen_fs, grats_spec_fs, pri_del_fs, self_eff_fs, trust_gen_fs, trust_spec_fs, COMM_log)

# combine d with d factor scores
d_all %<>% cbind(select(d_fs, -version, -COMM_log))

Privacy calculus

Model “Peregistered”

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 
grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
  SE01_01 ~~ x*SE01_02
  SE01_03 ~~ x*SE01_04
trust_community =~ TR01_02 + TR01_03 + TR01_04
trust_provider =~ TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12
trust_spec =~ trust_community + trust_provider

COMM_log ~ a1*pri_con + b1*grats_gen + c1*pri_delib + d1*self_eff + e1*trust_spec

# Covariates
COMM_log + GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR01_02 + TR01_03 + TR01_04 + TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu
"
fit_prereg <- sem(model, data = d_all, estimator = "MLR", missing = "ML")
summary(fit_prereg, fit = TRUE, std = TRUE)
lavaan 0.6-8 ended normally after 328 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       198
  Number of equality constraints                     1
                                                      
                                                  Used       Total
  Number of observations                           589         590
  Number of missing patterns                         4            
                                                                  
Model Test User Model:
                                               Standard      Robust
  Test Statistic                               1258.211     943.255
  Degrees of freedom                                388         388
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.334
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                             14204.010   10449.124
  Degrees of freedom                               525         525
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.359

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.936       0.944
  Tucker-Lewis Index (TLI)                       0.914       0.924
                                                                  
  Robust Comparative Fit Index (CFI)                         0.945
  Robust Tucker-Lewis Index (TLI)                            0.926

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -25255.003  -25255.003
  Scaling correction factor                                  1.277
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -24625.898  -24625.898
  Scaling correction factor                                  1.317
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               50904.006   50904.006
  Bayesian (BIC)                             51766.556   51766.556
  Sample-size adjusted Bayesian (BIC)        51141.147   51141.147

Root Mean Square Error of Approximation:

  RMSEA                                          0.062       0.049
  90 Percent confidence interval - lower         0.058       0.046
  90 Percent confidence interval - upper         0.066       0.053
  P-value RMSEA <= 0.05                          0.000       0.627
                                                                  
  Robust RMSEA                                               0.057
  90 Percent confidence interval - lower                     0.052
  90 Percent confidence interval - upper                     0.062

Standardized Root Mean Square Residual:

  SRMR                                           0.049       0.049

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con =~                                                              
    PC01_01             1.000                               1.613    0.921
    PC01_02             0.993    0.027   37.163    0.000    1.601    0.897
    PC01_04             0.965    0.026   36.523    0.000    1.557    0.882
    PC01_05             1.003    0.023   43.213    0.000    1.619    0.908
    PC01_06             0.867    0.036   24.367    0.000    1.399    0.802
    PC01_07             1.000    0.023   44.338    0.000    1.613    0.922
  grats_gen =~                                                            
    GR02_01             1.000                               1.152    0.849
    GR02_02             1.116    0.031   35.566    0.000    1.286    0.897
    GR02_03             1.003    0.044   22.797    0.000    1.156    0.862
    GR02_04             0.976    0.045   21.730    0.000    1.125    0.848
    GR02_05             1.066    0.037   28.721    0.000    1.228    0.854
  pri_delib =~                                                            
    PD01_01             1.000                               1.468    0.851
    PD01_02             0.696    0.046   15.073    0.000    1.023    0.657
    PD01_03             0.718    0.053   13.675    0.000    1.055    0.673
    PD01_04             0.845    0.045   18.724    0.000    1.241    0.729
    PD01_05             0.731    0.048   15.305    0.000    1.073    0.651
  self_eff =~                                                             
    SE01_01             1.000                               1.138    0.815
    SE01_02             0.838    0.054   15.644    0.000    0.954    0.696
    SE01_03             0.925    0.042   22.062    0.000    1.053    0.782
    SE01_04             0.931    0.041   22.940    0.000    1.060    0.776
  trust_community =~                                                      
    TR01_02             1.000                               1.039    0.812
    TR01_03             0.817    0.054   15.254    0.000    0.849    0.757
    TR01_04             0.929    0.043   21.682    0.000    0.965    0.824
  trust_provider =~                                                       
    TR01_06             1.000                               1.069    0.871
    TR01_07             0.876    0.036   24.096    0.000    0.937    0.786
    TR01_08             0.856    0.037   22.945    0.000    0.916    0.803
    TR01_10             0.751    0.048   15.780    0.000    0.803    0.677
    TR01_11             0.818    0.048   17.116    0.000    0.875    0.674
    TR01_12             1.058    0.044   24.178    0.000    1.131    0.840
  trust_spec =~                                                           
    trust_communty      1.000                               0.885    0.885
    trust_provider      1.111    0.072   15.464    0.000    0.956    0.956

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  COMM_log ~                                                            
    pri_con   (a1)   -0.069    0.077   -0.894    0.371   -0.111   -0.049
    grats_gen (b1)    0.098    0.157    0.624    0.532    0.113    0.049
    pri_delib (c1)   -0.159    0.092   -1.725    0.084   -0.233   -0.102
    self_eff  (d1)    0.815    0.145    5.607    0.000    0.928    0.406
    trust_spc (e1)   -0.329    0.255   -1.289    0.198   -0.303   -0.133
    male              0.008    0.191    0.042    0.966    0.008    0.002
    age               0.007    0.006    1.206    0.228    0.007    0.049
    edu               0.198    0.113    1.756    0.079    0.198    0.073
  GR02_01 ~                                                             
    male             -0.124    0.113   -1.098    0.272   -0.124   -0.046
    age              -0.001    0.004   -0.328    0.743   -0.001   -0.014
    edu               0.002    0.067    0.035    0.972    0.002    0.001
  GR02_02 ~                                                             
    male             -0.058    0.119   -0.490    0.624   -0.058   -0.020
    age               0.004    0.004    1.005    0.315    0.004    0.043
    edu              -0.081    0.070   -1.166    0.244   -0.081   -0.048
  GR02_03 ~                                                             
    male             -0.028    0.112   -0.252    0.801   -0.028   -0.010
    age               0.001    0.004    0.198    0.843    0.001    0.008
    edu              -0.099    0.065   -1.515    0.130   -0.099   -0.062
  GR02_04 ~                                                             
    male              0.012    0.111    0.109    0.913    0.012    0.005
    age               0.004    0.004    1.237    0.216    0.004    0.053
    edu              -0.089    0.066   -1.340    0.180   -0.089   -0.057
  GR02_05 ~                                                             
    male             -0.134    0.120   -1.119    0.263   -0.134   -0.047
    age              -0.005    0.004   -1.191    0.234   -0.005   -0.051
    edu               0.001    0.071    0.007    0.994    0.001    0.000
  PC01_01 ~                                                             
    male             -0.114    0.148   -0.769    0.442   -0.114   -0.033
    age              -0.007    0.005   -1.510    0.131   -0.007   -0.065
    edu               0.128    0.087    1.485    0.137    0.128    0.062
  PC01_02 ~                                                             
    male             -0.255    0.150   -1.696    0.090   -0.255   -0.071
    age              -0.011    0.005   -2.336    0.020   -0.011   -0.098
    edu               0.052    0.088    0.589    0.556    0.052    0.025
  PC01_04 ~                                                             
    male             -0.189    0.148   -1.271    0.204   -0.189   -0.053
    age              -0.012    0.005   -2.441    0.015   -0.012   -0.102
    edu               0.127    0.087    1.462    0.144    0.127    0.061
  PC01_05 ~                                                             
    male             -0.055    0.150   -0.367    0.714   -0.055   -0.015
    age              -0.008    0.005   -1.719    0.086   -0.008   -0.073
    edu               0.103    0.088    1.172    0.241    0.103    0.049
  PC01_06 ~                                                             
    male             -0.098    0.147   -0.664    0.507   -0.098   -0.028
    age              -0.008    0.005   -1.675    0.094   -0.008   -0.071
    edu               0.064    0.086    0.751    0.453    0.064    0.031
  PC01_07 ~                                                             
    male             -0.143    0.147   -0.971    0.331   -0.143   -0.041
    age              -0.009    0.005   -1.910    0.056   -0.009   -0.081
    edu               0.095    0.086    1.108    0.268    0.095    0.046
  TR01_02 ~                                                             
    male             -0.275    0.106   -2.596    0.009   -0.275   -0.107
    age              -0.005    0.004   -1.332    0.183   -0.005   -0.058
    edu               0.005    0.061    0.087    0.931    0.005    0.003
  TR01_03 ~                                                             
    male             -0.152    0.094   -1.623    0.105   -0.152   -0.068
    age              -0.002    0.003   -0.528    0.597   -0.002   -0.023
    edu               0.017    0.053    0.313    0.755    0.017    0.012
  TR01_04 ~                                                             
    male             -0.117    0.098   -1.200    0.230   -0.117   -0.050
    age              -0.005    0.003   -1.443    0.149   -0.005   -0.064
    edu               0.003    0.059    0.051    0.959    0.003    0.002
  TR01_06 ~                                                             
    male             -0.086    0.102   -0.837    0.403   -0.086   -0.035
    age               0.000    0.003    0.097    0.923    0.000    0.004
    edu              -0.052    0.058   -0.897    0.370   -0.052   -0.036
  TR01_07 ~                                                             
    male             -0.034    0.099   -0.339    0.735   -0.034   -0.014
    age               0.001    0.003    0.221    0.825    0.001    0.009
    edu               0.019    0.058    0.326    0.745    0.019    0.013
  TR01_08 ~                                                             
    male              0.046    0.095    0.484    0.628    0.046    0.020
    age              -0.004    0.003   -1.289    0.197   -0.004   -0.054
    edu               0.017    0.056    0.300    0.764    0.017    0.012
  TR01_10 ~                                                             
    male              0.068    0.098    0.691    0.489    0.068    0.029
    age              -0.001    0.003   -0.316    0.752   -0.001   -0.013
    edu              -0.060    0.057   -1.037    0.300   -0.060   -0.042
  TR01_11 ~                                                             
    male              0.035    0.108    0.327    0.743    0.035    0.014
    age               0.002    0.003    0.643    0.520    0.002    0.027
    edu              -0.090    0.064   -1.410    0.159   -0.090   -0.058
  TR01_12 ~                                                             
    male             -0.117    0.111   -1.053    0.292   -0.117   -0.044
    age              -0.001    0.004   -0.351    0.726   -0.001   -0.015
    edu              -0.151    0.066   -2.276    0.023   -0.151   -0.094
  PD01_01 ~                                                             
    male             -0.137    0.143   -0.959    0.338   -0.137   -0.040
    age              -0.018    0.005   -3.928    0.000   -0.018   -0.160
    edu              -0.020    0.083   -0.244    0.807   -0.020   -0.010
  PD01_02 ~                                                             
    male             -0.103    0.129   -0.798    0.425   -0.103   -0.033
    age              -0.016    0.004   -4.090    0.000   -0.016   -0.164
    edu               0.033    0.076    0.429    0.668    0.033    0.018
  PD01_03 ~                                                             
    male             -0.294    0.130   -2.268    0.023   -0.294   -0.094
    age              -0.005    0.004   -1.277    0.202   -0.005   -0.053
    edu               0.095    0.079    1.203    0.229    0.095    0.051
  PD01_04 ~                                                             
    male             -0.394    0.139   -2.826    0.005   -0.394   -0.116
    age              -0.010    0.005   -2.236    0.025   -0.010   -0.094
    edu               0.109    0.083    1.319    0.187    0.109    0.054
  PD01_05 ~                                                             
    male             -0.184    0.137   -1.341    0.180   -0.184   -0.056
    age              -0.013    0.004   -3.125    0.002   -0.013   -0.125
    edu              -0.003    0.082   -0.043    0.966   -0.003   -0.002
  SE01_01 ~                                                             
    male              0.136    0.116    1.177    0.239    0.136    0.049
    age               0.001    0.004    0.237    0.812    0.001    0.010
    edu               0.212    0.067    3.159    0.002    0.212    0.128
  SE01_02 ~                                                             
    male              0.056    0.111    0.500    0.617    0.056    0.020
    age              -0.012    0.004   -3.213    0.001   -0.012   -0.132
    edu               0.192    0.066    2.929    0.003    0.192    0.118
  SE01_03 ~                                                             
    male              0.210    0.112    1.877    0.061    0.210    0.078
    age               0.001    0.004    0.365    0.715    0.001    0.015
    edu               0.151    0.066    2.307    0.021    0.151    0.095
  SE01_04 ~                                                             
    male              0.059    0.113    0.523    0.601    0.059    0.022
    age               0.006    0.004    1.548    0.122    0.006    0.063
    edu               0.107    0.066    1.615    0.106    0.107    0.066

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .SE01_01 ~~                                                            
   .SE01_02    (x)    0.102    0.043    2.344    0.019    0.102    0.137
 .SE01_03 ~~                                                            
   .SE01_04    (x)    0.102    0.043    2.344    0.019    0.102    0.145
  pri_con ~~                                                            
    grats_gen        -0.178    0.097   -1.835    0.067   -0.096   -0.096
    pri_delib         1.384    0.129   10.762    0.000    0.584    0.584
    self_eff         -0.380    0.093   -4.067    0.000   -0.207   -0.207
    trust_spec       -0.355    0.076   -4.672    0.000   -0.239   -0.239
  grats_gen ~~                                                          
    pri_delib         0.029    0.102    0.287    0.774    0.017    0.017
    self_eff          0.481    0.068    7.091    0.000    0.367    0.367
    trust_spec        0.823    0.084    9.773    0.000    0.777    0.777
  pri_delib ~~                                                          
    self_eff         -0.303    0.096   -3.162    0.002   -0.181   -0.181
    trust_spec       -0.085    0.085   -1.000    0.317   -0.063   -0.063
  self_eff ~~                                                           
    trust_spec        0.598    0.062    9.718    0.000    0.571    0.571

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           3.506    0.285   12.292    0.000    3.506    2.002
   .PC01_02           3.940    0.297   13.268    0.000    3.940    2.207
   .PC01_04           3.673    0.288   12.743    0.000    3.673    2.079
   .PC01_05           3.544    0.296   11.992    0.000    3.544    1.989
   .PC01_06           3.371    0.282   11.941    0.000    3.371    1.933
   .PC01_07           3.602    0.286   12.592    0.000    3.602    2.058
   .GR02_01           4.413    0.222   19.917    0.000    4.413    3.254
   .GR02_02           4.610    0.240   19.170    0.000    4.610    3.216
   .GR02_03           5.288    0.218   24.259    0.000    5.288    3.943
   .GR02_04           5.036    0.219   23.037    0.000    5.036    3.795
   .GR02_05           4.981    0.248   20.123    0.000    4.981    3.464
   .PD01_01           4.626    0.281   16.486    0.000    4.626    2.681
   .PD01_02           4.153    0.243   17.065    0.000    4.153    2.668
   .PD01_03           4.435    0.264   16.813    0.000    4.435    2.829
   .PD01_04           4.565    0.286   15.975    0.000    4.565    2.681
   .PD01_05           5.082    0.267   19.031    0.000    5.082    3.083
   .SE01_01           4.730    0.242   19.517    0.000    4.730    3.386
   .SE01_02           5.612    0.231   24.320    0.000    5.612    4.096
   .SE01_03           4.742    0.220   21.590    0.000    4.742    3.520
   .SE01_04           4.626    0.231   20.015    0.000    4.626    3.388
   .TR01_02           5.088    0.215   23.693    0.000    5.088    3.978
   .TR01_03           4.953    0.189   26.211    0.000    4.953    4.418
   .TR01_04           4.875    0.199   24.554    0.000    4.875    4.159
   .TR01_06           5.482    0.203   26.948    0.000    5.482    4.467
   .TR01_07           5.111    0.199   25.716    0.000    5.111    4.289
   .TR01_08           5.221    0.189   27.584    0.000    5.221    4.577
   .TR01_10           5.809    0.190   30.547    0.000    5.809    4.894
   .TR01_11           4.866    0.215   22.674    0.000    4.866    3.753
   .TR01_12           5.560    0.227   24.445    0.000    5.560    4.128
   .COMM_log          1.086    0.366    2.965    0.003    1.086    0.475
    pri_con           0.000                               0.000    0.000
    grats_gen         0.000                               0.000    0.000
    pri_delib         0.000                               0.000    0.000
    self_eff          0.000                               0.000    0.000
   .trust_communty    0.000                               0.000    0.000
   .trust_provider    0.000                               0.000    0.000
    trust_spec        0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           0.436    0.056    7.803    0.000    0.436    0.142
   .PC01_02           0.571    0.097    5.871    0.000    0.571    0.179
   .PC01_04           0.638    0.074    8.606    0.000    0.638    0.205
   .PC01_05           0.529    0.061    8.709    0.000    0.529    0.167
   .PC01_06           1.061    0.113    9.386    0.000    1.061    0.349
   .PC01_07           0.428    0.063    6.829    0.000    0.428    0.140
   .GR02_01           0.508    0.051    9.919    0.000    0.508    0.276
   .GR02_02           0.391    0.039   10.097    0.000    0.391    0.190
   .GR02_03           0.454    0.070    6.521    0.000    0.454    0.252
   .GR02_04           0.484    0.046   10.484    0.000    0.484    0.275
   .GR02_05           0.549    0.059    9.304    0.000    0.549    0.265
   .PD01_01           0.739    0.107    6.906    0.000    0.739    0.248
   .PD01_02           1.306    0.125   10.414    0.000    1.306    0.539
   .PD01_03           1.309    0.123   10.615    0.000    1.309    0.533
   .PD01_04           1.283    0.140    9.190    0.000    1.283    0.443
   .PD01_05           1.512    0.122   12.346    0.000    1.512    0.556
   .SE01_01           0.615    0.083    7.389    0.000    0.615    0.315
   .SE01_02           0.901    0.114    7.890    0.000    0.901    0.480
   .SE01_03           0.675    0.090    7.475    0.000    0.675    0.372
   .SE01_04           0.725    0.084    8.612    0.000    0.725    0.389
   .TR01_02           0.531    0.064    8.264    0.000    0.531    0.324
   .TR01_03           0.529    0.063    8.359    0.000    0.529    0.421
   .TR01_04           0.432    0.044    9.754    0.000    0.432    0.315
   .TR01_06           0.359    0.036    9.837    0.000    0.359    0.238
   .TR01_07           0.542    0.052   10.447    0.000    0.542    0.381
   .TR01_08           0.459    0.041   11.230    0.000    0.459    0.352
   .TR01_10           0.761    0.066   11.575    0.000    0.761    0.540
   .TR01_11           0.909    0.076   12.000    0.000    0.909    0.541
   .TR01_12           0.513    0.065    7.914    0.000    0.513    0.283
   .COMM_log          4.318    0.212   20.372    0.000    4.318    0.828
    pri_con           2.602    0.146   17.837    0.000    1.000    1.000
    grats_gen         1.328    0.113   11.795    0.000    1.000    1.000
    pri_delib         2.156    0.153   14.128    0.000    1.000    1.000
    self_eff          1.296    0.113   11.493    0.000    1.000    1.000
   .trust_communty    0.233    0.044    5.345    0.000    0.216    0.216
   .trust_provider    0.098    0.043    2.283    0.022    0.086    0.086
    trust_spec        0.847    0.100    8.505    0.000    1.000    1.000

Model “Adapted”

Building on the preregistered model, instead of general gratifications and specific trust, we now use specific gratifications and general trust.

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07
grats_inf =~ GR01_01 + GR01_02 + GR01_03 
grats_rel =~ GR01_04 + GR01_05 + GR01_06 
grats_par =~ GR01_07 + GR01_08 + GR01_09
grats_ide =~ GR01_10 + GR01_11 + GR01_12 
grats_ext =~ GR01_13 + GR01_14 + GR01_15
grats_spec =~ grats_inf + grats_rel + grats_par + grats_ide + grats_ext
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
  SE01_01 ~~ x*SE01_02
  SE01_03 ~~ x*SE01_04
trust_gen =~ TR01_01 + TR01_05 + TR01_09

COMM_log ~ a1*pri_con + b1*grats_spec + c1*pri_delib + d1*self_eff + e1*trust_gen

# Covariates
COMM_log + GR01_01 + GR01_02 + GR01_03 + GR01_04 + GR01_05 + GR01_06 + GR01_07 + GR01_08 + GR01_09 + GR01_10 + GR01_11 + GR01_12 + GR01_13 + GR01_14 + GR01_15 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR01_01 + TR01_05 + TR01_09 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu
"
fit_adapted <- sem(model, data = d_all, estimator = "MLR", missing = "ML", missing = "ML")
summary(fit_adapted, fit = TRUE, std = TRUE)
lavaan 0.6-8 ended normally after 357 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       225
  Number of equality constraints                     1
                                                      
                                                  Used       Total
  Number of observations                           589         590
  Number of missing patterns                         3            
                                                                  
Model Test User Model:
                                               Standard      Robust
  Test Statistic                               1566.360    1180.294
  Degrees of freedom                                507         507
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.327
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                             15398.674   11439.794
  Degrees of freedom                               663         663
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.346

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.928       0.938
  Tucker-Lewis Index (TLI)                       0.906       0.918
                                                                  
  Robust Comparative Fit Index (CFI)                         0.938
  Robust Tucker-Lewis Index (TLI)                            0.919

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -29544.515  -29544.515
  Scaling correction factor                                  1.266
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -28761.335  -28761.335
  Scaling correction factor                                  1.310
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               59537.030   59537.030
  Bayesian (BIC)                             60517.797   60517.797
  Sample-size adjusted Bayesian (BIC)        59806.672   59806.672

Root Mean Square Error of Approximation:

  RMSEA                                          0.060       0.047
  90 Percent confidence interval - lower         0.056       0.044
  90 Percent confidence interval - upper         0.063       0.051
  P-value RMSEA <= 0.05                          0.000       0.911
                                                                  
  Robust RMSEA                                               0.055
  90 Percent confidence interval - lower                     0.051
  90 Percent confidence interval - upper                     0.059

Standardized Root Mean Square Residual:

  SRMR                                           0.061       0.061

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con =~                                                            
    PC01_01           1.000                               1.613    0.921
    PC01_02           0.993    0.027   37.310    0.000    1.601    0.897
    PC01_04           0.965    0.026   36.712    0.000    1.557    0.882
    PC01_05           1.004    0.023   43.198    0.000    1.619    0.909
    PC01_06           0.868    0.036   24.437    0.000    1.400    0.803
    PC01_07           1.000    0.023   44.445    0.000    1.613    0.922
  grats_inf =~                                                          
    GR01_01           1.000                               0.973    0.691
    GR01_02           1.038    0.070   14.856    0.000    1.010    0.822
    GR01_03           1.136    0.072   15.805    0.000    1.106    0.848
  grats_rel =~                                                          
    GR01_04           1.000                               1.183    0.893
    GR01_05           0.946    0.035   26.672    0.000    1.120    0.859
    GR01_06           0.879    0.043   20.349    0.000    1.040    0.705
  grats_par =~                                                          
    GR01_07           1.000                               1.199    0.821
    GR01_08           0.927    0.037   24.769    0.000    1.112    0.813
    GR01_09           0.958    0.036   26.563    0.000    1.149    0.819
  grats_ide =~                                                          
    GR01_10           1.000                               1.145    0.791
    GR01_11           1.013    0.039   25.868    0.000    1.160    0.889
    GR01_12           0.940    0.040   23.774    0.000    1.077    0.763
  grats_ext =~                                                          
    GR01_13           1.000                               0.858    0.524
    GR01_14           1.025    0.096   10.718    0.000    0.879    0.516
    GR01_15           1.507    0.165    9.105    0.000    1.293    0.845
  grats_spec =~                                                         
    grats_inf         1.000                               0.852    0.852
    grats_rel         1.327    0.098   13.520    0.000    0.931    0.931
    grats_par         1.399    0.109   12.888    0.000    0.968    0.968
    grats_ide         1.287    0.100   12.885    0.000    0.932    0.932
    grats_ext         0.811    0.099    8.190    0.000    0.784    0.784
  pri_delib =~                                                          
    PD01_01           1.000                               1.476    0.855
    PD01_02           0.694    0.046   15.052    0.000    1.024    0.658
    PD01_03           0.710    0.052   13.606    0.000    1.048    0.669
    PD01_04           0.841    0.045   18.741    0.000    1.241    0.729
    PD01_05           0.722    0.048   15.134    0.000    1.066    0.646
  self_eff =~                                                           
    SE01_01           1.000                               1.143    0.818
    SE01_02           0.834    0.054   15.389    0.000    0.953    0.696
    SE01_03           0.917    0.042   22.056    0.000    1.048    0.778
    SE01_04           0.930    0.041   22.638    0.000    1.063    0.778
  trust_gen =~                                                          
    TR01_01           1.000                               0.780    0.674
    TR01_05           1.347    0.071   18.989    0.000    1.051    0.892
    TR01_09           1.438    0.079   18.137    0.000    1.122    0.917

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  COMM_log ~                                                            
    pri_con   (a1)   -0.106    0.079   -1.347    0.178   -0.171   -0.075
    grats_spc (b1)    0.377    0.192    1.959    0.050    0.313    0.137
    pri_delib (c1)   -0.199    0.092   -2.160    0.031   -0.294   -0.129
    self_eff  (d1)    0.717    0.135    5.329    0.000    0.820    0.359
    trust_gen (e1)   -0.500    0.216   -2.315    0.021   -0.390   -0.171
    male              0.008    0.191    0.042    0.967    0.008    0.002
    age               0.007    0.006    1.206    0.228    0.007    0.049
    edu               0.198    0.113    1.755    0.079    0.198    0.073
  GR01_01 ~                                                             
    male             -0.329    0.117   -2.815    0.005   -0.329   -0.117
    age              -0.006    0.004   -1.453    0.146   -0.006   -0.063
    edu              -0.001    0.070   -0.018    0.986   -0.001   -0.001
  GR01_02 ~                                                             
    male             -0.156    0.101   -1.554    0.120   -0.156   -0.064
    age              -0.006    0.003   -1.820    0.069   -0.006   -0.074
    edu              -0.037    0.060   -0.620    0.535   -0.037   -0.025
  GR01_03 ~                                                             
    male             -0.212    0.107   -1.987    0.047   -0.212   -0.081
    age              -0.004    0.004   -1.239    0.215   -0.004   -0.053
    edu              -0.089    0.063   -1.412    0.158   -0.089   -0.057
  GR01_04 ~                                                             
    male              0.000    0.110    0.003    0.998    0.000    0.000
    age               0.001    0.004    0.169    0.866    0.001    0.007
    edu              -0.022    0.065   -0.347    0.729   -0.022   -0.014
  GR01_05 ~                                                             
    male             -0.074    0.109   -0.681    0.496   -0.074   -0.029
    age              -0.000    0.004   -0.119    0.906   -0.000   -0.005
    edu               0.017    0.063    0.272    0.786    0.017    0.011
  GR01_06 ~                                                             
    male              0.031    0.120    0.257    0.797    0.031    0.010
    age              -0.011    0.004   -2.785    0.005   -0.011   -0.118
    edu              -0.081    0.073   -1.111    0.267   -0.081   -0.046
  GR01_07 ~                                                             
    male              0.047    0.121    0.385    0.700    0.047    0.016
    age              -0.006    0.004   -1.418    0.156   -0.006   -0.059
    edu               0.006    0.071    0.082    0.935    0.006    0.003
  GR01_08 ~                                                             
    male              0.005    0.112    0.049    0.961    0.005    0.002
    age              -0.004    0.004   -1.131    0.258   -0.004   -0.050
    edu               0.098    0.066    1.482    0.138    0.098    0.061
  GR01_09 ~                                                             
    male              0.058    0.116    0.505    0.614    0.058    0.021
    age              -0.003    0.004   -0.728    0.467   -0.003   -0.031
    edu               0.107    0.067    1.588    0.112    0.107    0.064
  GR01_10 ~                                                             
    male             -0.028    0.120   -0.234    0.815   -0.028   -0.010
    age              -0.008    0.004   -2.110    0.035   -0.008   -0.091
    edu              -0.023    0.072   -0.322    0.747   -0.023   -0.014
  GR01_11 ~                                                             
    male             -0.086    0.108   -0.798    0.425   -0.086   -0.033
    age              -0.001    0.004   -0.368    0.713   -0.001   -0.016
    edu              -0.058    0.064   -0.910    0.363   -0.058   -0.037
  GR01_12 ~                                                             
    male             -0.196    0.117   -1.667    0.095   -0.196   -0.069
    age              -0.004    0.004   -1.129    0.259   -0.004   -0.047
    edu              -0.065    0.070   -0.938    0.348   -0.065   -0.039
  GR01_13 ~                                                             
    male             -0.188    0.133   -1.415    0.157   -0.188   -0.058
    age              -0.023    0.004   -5.610    0.000   -0.023   -0.219
    edu               0.080    0.078    1.022    0.307    0.080    0.041
  GR01_14 ~                                                             
    male             -0.248    0.143   -1.741    0.082   -0.248   -0.073
    age              -0.011    0.004   -2.418    0.016   -0.011   -0.099
    edu               0.053    0.083    0.638    0.524    0.053    0.026
  GR01_15 ~                                                             
    male              0.041    0.128    0.321    0.748    0.041    0.013
    age              -0.006    0.004   -1.491    0.136   -0.006   -0.063
    edu               0.041    0.076    0.543    0.587    0.041    0.023
  PC01_01 ~                                                             
    male             -0.114    0.148   -0.769    0.442   -0.114   -0.033
    age              -0.007    0.005   -1.510    0.131   -0.007   -0.065
    edu               0.128    0.087    1.485    0.138    0.128    0.062
  PC01_02 ~                                                             
    male             -0.255    0.150   -1.696    0.090   -0.255   -0.071
    age              -0.011    0.005   -2.336    0.020   -0.011   -0.098
    edu               0.052    0.088    0.589    0.556    0.052    0.025
  PC01_04 ~                                                             
    male             -0.189    0.148   -1.271    0.204   -0.189   -0.053
    age              -0.012    0.005   -2.441    0.015   -0.012   -0.102
    edu               0.127    0.087    1.462    0.144    0.127    0.061
  PC01_05 ~                                                             
    male             -0.055    0.150   -0.367    0.714   -0.055   -0.015
    age              -0.008    0.005   -1.719    0.086   -0.008   -0.073
    edu               0.103    0.088    1.172    0.241    0.103    0.049
  PC01_06 ~                                                             
    male             -0.098    0.147   -0.664    0.507   -0.098   -0.028
    age              -0.008    0.005   -1.675    0.094   -0.008   -0.071
    edu               0.064    0.086    0.751    0.453    0.064    0.031
  PC01_07 ~                                                             
    male             -0.143    0.147   -0.971    0.331   -0.143   -0.041
    age              -0.009    0.005   -1.910    0.056   -0.009   -0.081
    edu               0.095    0.086    1.108    0.268    0.095    0.046
  TR01_01 ~                                                             
    male             -0.149    0.096   -1.555    0.120   -0.149   -0.065
    age              -0.004    0.003   -1.201    0.230   -0.004   -0.054
    edu               0.014    0.059    0.231    0.817    0.014    0.010
  TR01_05 ~                                                             
    male              0.047    0.099    0.475    0.635    0.047    0.020
    age              -0.003    0.003   -0.850    0.395   -0.003   -0.036
    edu               0.074    0.059    1.240    0.215    0.074    0.053
  TR01_09 ~                                                             
    male              0.049    0.102    0.480    0.631    0.049    0.020
    age              -0.005    0.004   -1.496    0.135   -0.005   -0.067
    edu              -0.034    0.059   -0.571    0.568   -0.034   -0.023
  PD01_01 ~                                                             
    male             -0.137    0.143   -0.958    0.338   -0.137   -0.040
    age              -0.018    0.005   -3.928    0.000   -0.018   -0.160
    edu              -0.020    0.083   -0.244    0.807   -0.020   -0.010
  PD01_02 ~                                                             
    male             -0.103    0.129   -0.798    0.425   -0.103   -0.033
    age              -0.016    0.004   -4.090    0.000   -0.016   -0.164
    edu               0.033    0.076    0.429    0.668    0.033    0.018
  PD01_03 ~                                                             
    male             -0.294    0.130   -2.268    0.023   -0.294   -0.094
    age              -0.005    0.004   -1.277    0.202   -0.005   -0.053
    edu               0.095    0.079    1.203    0.229    0.095    0.051
  PD01_04 ~                                                             
    male             -0.394    0.139   -2.826    0.005   -0.394   -0.116
    age              -0.010    0.005   -2.236    0.025   -0.010   -0.094
    edu               0.109    0.083    1.319    0.187    0.109    0.054
  PD01_05 ~                                                             
    male             -0.184    0.137   -1.341    0.180   -0.184   -0.056
    age              -0.013    0.004   -3.125    0.002   -0.013   -0.125
    edu              -0.004    0.082   -0.043    0.966   -0.004   -0.002
  SE01_01 ~                                                             
    male              0.135    0.116    1.168    0.243    0.135    0.048
    age               0.001    0.004    0.228    0.820    0.001    0.010
    edu               0.211    0.067    3.141    0.002    0.211    0.127
  SE01_02 ~                                                             
    male              0.054    0.111    0.490    0.624    0.054    0.020
    age              -0.012    0.004   -3.219    0.001   -0.012   -0.132
    edu               0.191    0.066    2.917    0.004    0.191    0.117
  SE01_03 ~                                                             
    male              0.208    0.112    1.865    0.062    0.208    0.077
    age               0.001    0.004    0.360    0.719    0.001    0.015
    edu               0.150    0.066    2.293    0.022    0.150    0.094
  SE01_04 ~                                                             
    male              0.058    0.113    0.511    0.609    0.058    0.021
    age               0.006    0.004    1.542    0.123    0.006    0.063
    edu               0.106    0.066    1.602    0.109    0.106    0.066

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .SE01_01 ~~                                                            
   .SE01_02    (x)    0.103    0.043    2.372    0.018    0.103    0.139
 .SE01_03 ~~                                                            
   .SE01_04    (x)    0.103    0.043    2.372    0.018    0.103    0.146
  pri_con ~~                                                            
    grats_spec       -0.043    0.069   -0.629    0.530   -0.032   -0.032
    pri_delib         1.392    0.128   10.880    0.000    0.585    0.585
    self_eff         -0.384    0.094   -4.092    0.000   -0.209   -0.209
    trust_gen        -0.474    0.063   -7.478    0.000   -0.377   -0.377
  grats_spec ~~                                                         
    pri_delib         0.058    0.073    0.798    0.425    0.048    0.048
    self_eff          0.490    0.060    8.211    0.000    0.517    0.517
    trust_gen         0.432    0.061    7.094    0.000    0.667    0.667
  pri_delib ~~                                                          
    self_eff         -0.307    0.097   -3.176    0.001   -0.182   -0.182
    trust_gen        -0.253    0.070   -3.602    0.000   -0.220   -0.220
  self_eff ~~                                                           
    trust_gen         0.476    0.055    8.675    0.000    0.534    0.534

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           3.506    0.285   12.292    0.000    3.506    2.002
   .PC01_02           3.940    0.297   13.268    0.000    3.940    2.207
   .PC01_04           3.673    0.288   12.743    0.000    3.673    2.079
   .PC01_05           3.544    0.296   11.992    0.000    3.544    1.989
   .PC01_06           3.371    0.282   11.941    0.000    3.371    1.933
   .PC01_07           3.602    0.286   12.592    0.000    3.602    2.058
   .GR01_01           5.305    0.241   21.998    0.000    5.305    3.767
   .GR01_02           5.829    0.205   28.369    0.000    5.829    4.745
   .GR01_03           5.715    0.221   25.876    0.000    5.715    4.383
   .GR01_04           4.938    0.208   23.706    0.000    4.938    3.728
   .GR01_05           5.104    0.215   23.716    0.000    5.104    3.915
   .GR01_06           5.313    0.246   21.637    0.000    5.313    3.601
   .GR01_07           4.899    0.231   21.165    0.000    4.899    3.355
   .GR01_08           5.067    0.233   21.706    0.000    5.067    3.706
   .GR01_09           4.731    0.233   20.274    0.000    4.731    3.374
   .GR01_10           4.997    0.248   20.168    0.000    4.997    3.453
   .GR01_11           5.171    0.223   23.181    0.000    5.171    3.962
   .GR01_12           5.180    0.230   22.518    0.000    5.180    3.671
   .GR01_13           5.100    0.253   20.182    0.000    5.100    3.115
   .GR01_14           3.646    0.274   13.318    0.000    3.646    2.141
   .GR01_15           4.615    0.259   17.811    0.000    4.615    3.017
   .PD01_01           4.626    0.281   16.486    0.000    4.626    2.681
   .PD01_02           4.153    0.243   17.065    0.000    4.153    2.668
   .PD01_03           4.435    0.264   16.813    0.000    4.435    2.829
   .PD01_04           4.565    0.286   15.975    0.000    4.565    2.681
   .PD01_05           5.082    0.267   19.031    0.000    5.082    3.083
   .SE01_01           4.733    0.242   19.522    0.000    4.733    3.387
   .SE01_02           5.614    0.231   24.327    0.000    5.614    4.095
   .SE01_03           4.744    0.220   21.587    0.000    4.744    3.521
   .SE01_04           4.628    0.231   20.020    0.000    4.628    3.389
   .TR01_01           5.067    0.205   24.664    0.000    5.067    4.380
   .TR01_05           5.294    0.203   26.113    0.000    5.294    4.491
   .TR01_09           5.633    0.214   26.264    0.000    5.633    4.601
   .COMM_log          1.086    0.366    2.965    0.003    1.086    0.475
    pri_con           0.000                               0.000    0.000
   .grats_inf         0.000                               0.000    0.000
   .grats_rel         0.000                               0.000    0.000
   .grats_par         0.000                               0.000    0.000
   .grats_ide         0.000                               0.000    0.000
   .grats_ext         0.000                               0.000    0.000
    grats_spec        0.000                               0.000    0.000
    pri_delib         0.000                               0.000    0.000
    self_eff          0.000                               0.000    0.000
    trust_gen         0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           0.438    0.056    7.819    0.000    0.438    0.143
   .PC01_02           0.573    0.097    5.903    0.000    0.573    0.180
   .PC01_04           0.639    0.074    8.618    0.000    0.639    0.205
   .PC01_05           0.527    0.061    8.681    0.000    0.527    0.166
   .PC01_06           1.058    0.113    9.392    0.000    1.058    0.348
   .PC01_07           0.428    0.063    6.790    0.000    0.428    0.140
   .GR01_01           0.999    0.103    9.669    0.000    0.999    0.504
   .GR01_02           0.472    0.063    7.467    0.000    0.472    0.313
   .GR01_03           0.453    0.065    6.995    0.000    0.453    0.266
   .GR01_04           0.354    0.041    8.552    0.000    0.354    0.202
   .GR01_05           0.444    0.054    8.256    0.000    0.444    0.261
   .GR01_06           1.062    0.103   10.314    0.000    1.062    0.488
   .GR01_07           0.688    0.068   10.063    0.000    0.688    0.323
   .GR01_08           0.621    0.065    9.523    0.000    0.621    0.332
   .GR01_09           0.634    0.067    9.411    0.000    0.634    0.323
   .GR01_10           0.765    0.068   11.275    0.000    0.765    0.365
   .GR01_11           0.353    0.052    6.805    0.000    0.353    0.207
   .GR01_12           0.814    0.074   10.984    0.000    0.814    0.409
   .GR01_13           1.795    0.144   12.451    0.000    1.795    0.670
   .GR01_14           2.077    0.125   16.641    0.000    2.077    0.716
   .GR01_15           0.657    0.107    6.157    0.000    0.657    0.281
   .PD01_01           0.718    0.105    6.851    0.000    0.718    0.241
   .PD01_02           1.303    0.125   10.399    0.000    1.303    0.538
   .PD01_03           1.323    0.124   10.671    0.000    1.323    0.539
   .PD01_04           1.283    0.139    9.216    0.000    1.283    0.442
   .PD01_05           1.528    0.124   12.325    0.000    1.528    0.562
   .SE01_01           0.607    0.083    7.328    0.000    0.607    0.311
   .SE01_02           0.905    0.115    7.898    0.000    0.905    0.482
   .SE01_03           0.687    0.090    7.632    0.000    0.687    0.378
   .SE01_04           0.720    0.084    8.613    0.000    0.720    0.386
   .TR01_01           0.720    0.060   11.990    0.000    0.720    0.538
   .TR01_05           0.278    0.032    8.634    0.000    0.278    0.200
   .TR01_09           0.232    0.040    5.790    0.000    0.232    0.155
   .COMM_log          4.283    0.202   21.173    0.000    4.283    0.821
    pri_con           2.601    0.146   17.842    0.000    1.000    1.000
   .grats_inf         0.259    0.040    6.501    0.000    0.274    0.274
   .grats_rel         0.188    0.044    4.229    0.000    0.134    0.134
   .grats_par         0.090    0.048    1.882    0.060    0.062    0.062
   .grats_ide         0.171    0.043    3.968    0.000    0.131    0.131
   .grats_ext         0.284    0.067    4.205    0.000    0.385    0.385
    grats_spec        0.688    0.117    5.892    0.000    1.000    1.000
    pri_delib         2.177    0.152   14.313    0.000    1.000    1.000
    self_eff          1.306    0.114   11.501    0.000    1.000    1.000
    trust_gen         0.609    0.073    8.304    0.000    1.000    1.000

Model “Simple”

We now use only variables, that is specific gratifications and privacy concerns.

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07  
grats_inf =~ GR01_01 + GR01_02 + GR01_03 
grats_rel =~ GR01_04 + GR01_05 + GR01_06 
grats_par =~ GR01_07 + GR01_08 + GR01_09
grats_ide =~ GR01_10 + GR01_11 + GR01_12 
grats_ext =~ GR01_13 + GR01_14 + GR01_15
grats_spec =~ grats_inf + grats_rel + grats_par + grats_ide + grats_ext

COMM_log ~ a1*pri_con + b1*grats_spec

# Covariates
COMM_log + GR01_01 + GR01_02 + GR01_03 + GR01_04 + GR01_05 + GR01_06 + GR01_07 + GR01_08 + GR01_09 + GR01_10 + GR01_11 + GR01_12 + GR01_13 + GR01_14 + GR01_15 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 ~ male + age + edu
"
fit_simple <- sem(model, data = d_all, estimator = "MLR", missing = "ML")
summary(fit_simple, fit = TRUE, std = TRUE)
lavaan 0.6-8 ended normally after 255 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       139
                                                      
                                                  Used       Total
  Number of observations                           589         590
  Number of missing patterns                         1            
                                                                  
Model Test User Model:
                                               Standard      Robust
  Test Statistic                                753.381     518.260
  Degrees of freedom                                202         202
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.454
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                             10395.964    7245.225
  Degrees of freedom                               297         297
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.435

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.945       0.954
  Tucker-Lewis Index (TLI)                       0.920       0.933
                                                                  
  Robust Comparative Fit Index (CFI)                         0.954
  Robust Tucker-Lewis Index (TLI)                            0.932

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -19123.917  -19123.917
  Scaling correction factor                                  1.256
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -18747.226  -18747.226
  Scaling correction factor                                  1.373
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               38525.834   38525.834
  Bayesian (BIC)                             39134.436   39134.436
  Sample-size adjusted Bayesian (BIC)        38693.157   38693.157

Root Mean Square Error of Approximation:

  RMSEA                                          0.068       0.052
  90 Percent confidence interval - lower         0.063       0.047
  90 Percent confidence interval - upper         0.073       0.056
  P-value RMSEA <= 0.05                          0.000       0.281
                                                                  
  Robust RMSEA                                               0.062
  90 Percent confidence interval - lower                     0.056
  90 Percent confidence interval - upper                     0.069

Standardized Root Mean Square Residual:

  SRMR                                           0.054       0.054

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con =~                                                            
    PC01_01           1.000                               1.616    0.922
    PC01_02           0.991    0.027   36.965    0.000    1.601    0.897
    PC01_04           0.962    0.026   36.419    0.000    1.555    0.880
    PC01_05           1.001    0.023   43.210    0.000    1.617    0.907
    PC01_06           0.863    0.036   24.263    0.000    1.395    0.800
    PC01_07           1.000    0.023   44.019    0.000    1.615    0.923
  grats_inf =~                                                          
    GR01_01           1.000                               0.971    0.689
    GR01_02           1.039    0.072   14.519    0.000    1.009    0.822
    GR01_03           1.142    0.074   15.351    0.000    1.109    0.850
  grats_rel =~                                                          
    GR01_04           1.000                               1.185    0.895
    GR01_05           0.941    0.035   26.575    0.000    1.115    0.855
    GR01_06           0.881    0.044   20.235    0.000    1.045    0.708
  grats_par =~                                                          
    GR01_07           1.000                               1.207    0.827
    GR01_08           0.916    0.038   24.126    0.000    1.106    0.809
    GR01_09           0.949    0.037   25.835    0.000    1.146    0.817
  grats_ide =~                                                          
    GR01_10           1.000                               1.153    0.796
    GR01_11           1.003    0.040   25.145    0.000    1.156    0.886
    GR01_12           0.931    0.040   23.307    0.000    1.073    0.760
  grats_ext =~                                                          
    GR01_13           1.000                               0.848    0.518
    GR01_14           1.036    0.097   10.664    0.000    0.879    0.516
    GR01_15           1.532    0.167    9.175    0.000    1.299    0.849
  grats_spec =~                                                         
    grats_inf         1.000                               0.835    0.835
    grats_rel         1.360    0.105   12.911    0.000    0.931    0.931
    grats_par         1.448    0.120   12.056    0.000    0.973    0.973
    grats_ide         1.327    0.110   12.062    0.000    0.934    0.934
    grats_ext         0.833    0.104    8.013    0.000    0.796    0.796

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  COMM_log ~                                                            
    pri_con   (a1)   -0.225    0.058   -3.859    0.000   -0.363   -0.159
    grats_spc (b1)    0.560    0.133    4.224    0.000    0.455    0.199
    male              0.008    0.191    0.042    0.966    0.008    0.002
    age               0.007    0.006    1.206    0.228    0.007    0.049
    edu               0.198    0.113    1.755    0.079    0.198    0.073
  GR01_01 ~                                                             
    male             -0.329    0.117   -2.815    0.005   -0.329   -0.117
    age              -0.006    0.004   -1.453    0.146   -0.006   -0.063
    edu              -0.001    0.070   -0.018    0.986   -0.001   -0.001
  GR01_02 ~                                                             
    male             -0.156    0.101   -1.554    0.120   -0.156   -0.064
    age              -0.006    0.003   -1.820    0.069   -0.006   -0.074
    edu              -0.037    0.060   -0.620    0.535   -0.037   -0.025
  GR01_03 ~                                                             
    male             -0.212    0.107   -1.987    0.047   -0.212   -0.081
    age              -0.004    0.004   -1.239    0.215   -0.004   -0.053
    edu              -0.089    0.063   -1.412    0.158   -0.089   -0.057
  GR01_04 ~                                                             
    male              0.000    0.110    0.003    0.997    0.000    0.000
    age               0.001    0.004    0.169    0.866    0.001    0.007
    edu              -0.022    0.065   -0.347    0.729   -0.022   -0.014
  GR01_05 ~                                                             
    male             -0.074    0.109   -0.681    0.496   -0.074   -0.028
    age              -0.000    0.004   -0.119    0.906   -0.000   -0.005
    edu               0.017    0.063    0.272    0.786    0.017    0.011
  GR01_06 ~                                                             
    male              0.031    0.120    0.257    0.797    0.031    0.011
    age              -0.011    0.004   -2.785    0.005   -0.011   -0.118
    edu              -0.081    0.073   -1.111    0.267   -0.081   -0.046
  GR01_07 ~                                                             
    male              0.047    0.121    0.385    0.700    0.047    0.016
    age              -0.006    0.004   -1.418    0.156   -0.006   -0.059
    edu               0.006    0.071    0.082    0.935    0.006    0.003
  GR01_08 ~                                                             
    male              0.006    0.112    0.050    0.961    0.006    0.002
    age              -0.004    0.004   -1.131    0.258   -0.004   -0.050
    edu               0.098    0.066    1.482    0.138    0.098    0.061
  GR01_09 ~                                                             
    male              0.058    0.116    0.505    0.614    0.058    0.021
    age              -0.003    0.004   -0.728    0.467   -0.003   -0.031
    edu               0.107    0.067    1.588    0.112    0.107    0.064
  GR01_10 ~                                                             
    male             -0.028    0.120   -0.234    0.815   -0.028   -0.010
    age              -0.008    0.004   -2.110    0.035   -0.008   -0.091
    edu              -0.023    0.072   -0.322    0.747   -0.023   -0.014
  GR01_11 ~                                                             
    male             -0.086    0.108   -0.798    0.425   -0.086   -0.033
    age              -0.001    0.004   -0.368    0.713   -0.001   -0.016
    edu              -0.058    0.064   -0.910    0.363   -0.058   -0.037
  GR01_12 ~                                                             
    male             -0.196    0.117   -1.667    0.096   -0.196   -0.069
    age              -0.004    0.004   -1.129    0.259   -0.004   -0.047
    edu              -0.065    0.070   -0.938    0.348   -0.065   -0.039
  GR01_13 ~                                                             
    male             -0.188    0.133   -1.415    0.157   -0.188   -0.058
    age              -0.023    0.004   -5.610    0.000   -0.023   -0.219
    edu               0.080    0.078    1.022    0.307    0.080    0.041
  GR01_14 ~                                                             
    male             -0.248    0.143   -1.740    0.082   -0.248   -0.073
    age              -0.011    0.004   -2.418    0.016   -0.011   -0.099
    edu               0.053    0.083    0.638    0.524    0.053    0.026
  GR01_15 ~                                                             
    male              0.041    0.128    0.322    0.748    0.041    0.013
    age              -0.006    0.004   -1.491    0.136   -0.006   -0.063
    edu               0.041    0.076    0.543    0.587    0.041    0.023
  PC01_01 ~                                                             
    male             -0.114    0.148   -0.769    0.442   -0.114   -0.033
    age              -0.007    0.005   -1.510    0.131   -0.007   -0.065
    edu               0.128    0.087    1.485    0.138    0.128    0.062
  PC01_02 ~                                                             
    male             -0.255    0.150   -1.696    0.090   -0.255   -0.071
    age              -0.011    0.005   -2.336    0.020   -0.011   -0.098
    edu               0.052    0.088    0.589    0.556    0.052    0.025
  PC01_04 ~                                                             
    male             -0.189    0.148   -1.271    0.204   -0.189   -0.053
    age              -0.012    0.005   -2.441    0.015   -0.012   -0.102
    edu               0.127    0.087    1.462    0.144    0.127    0.061
  PC01_05 ~                                                             
    male             -0.055    0.150   -0.367    0.714   -0.055   -0.015
    age              -0.008    0.005   -1.719    0.086   -0.008   -0.073
    edu               0.103    0.088    1.172    0.241    0.103    0.049
  PC01_06 ~                                                             
    male             -0.098    0.147   -0.664    0.507   -0.098   -0.028
    age              -0.008    0.005   -1.675    0.094   -0.008   -0.071
    edu               0.064    0.086    0.751    0.453    0.064    0.031
  PC01_07 ~                                                             
    male             -0.143    0.147   -0.972    0.331   -0.143   -0.041
    age              -0.009    0.005   -1.910    0.056   -0.009   -0.081
    edu               0.095    0.086    1.108    0.268    0.095    0.046

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con ~~                                                            
    grats_spec       -0.042    0.067   -0.624    0.533   -0.032   -0.032

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           3.506    0.285   12.292    0.000    3.506    2.002
   .PC01_02           3.940    0.297   13.268    0.000    3.940    2.207
   .PC01_04           3.673    0.288   12.743    0.000    3.673    2.079
   .PC01_05           3.544    0.296   11.992    0.000    3.544    1.989
   .PC01_06           3.371    0.282   11.941    0.000    3.371    1.933
   .PC01_07           3.602    0.286   12.592    0.000    3.602    2.058
   .GR01_01           5.305    0.241   21.998    0.000    5.305    3.767
   .GR01_02           5.829    0.205   28.368    0.000    5.829    4.745
   .GR01_03           5.715    0.221   25.876    0.000    5.715    4.383
   .GR01_04           4.938    0.208   23.706    0.000    4.938    3.728
   .GR01_05           5.104    0.215   23.716    0.000    5.104    3.915
   .GR01_06           5.313    0.246   21.637    0.000    5.313    3.601
   .GR01_07           4.899    0.231   21.165    0.000    4.899    3.355
   .GR01_08           5.067    0.233   21.706    0.000    5.067    3.706
   .GR01_09           4.730    0.233   20.274    0.000    4.730    3.374
   .GR01_10           4.997    0.248   20.168    0.000    4.997    3.453
   .GR01_11           5.171    0.223   23.181    0.000    5.171    3.962
   .GR01_12           5.180    0.230   22.517    0.000    5.180    3.671
   .GR01_13           5.100    0.253   20.182    0.000    5.100    3.115
   .GR01_14           3.646    0.274   13.318    0.000    3.646    2.141
   .GR01_15           4.615    0.259   17.810    0.000    4.615    3.017
   .COMM_log          1.086    0.366    2.965    0.003    1.086    0.475
    pri_con           0.000                               0.000    0.000
   .grats_inf         0.000                               0.000    0.000
   .grats_rel         0.000                               0.000    0.000
   .grats_par         0.000                               0.000    0.000
   .grats_ide         0.000                               0.000    0.000
   .grats_ext         0.000                               0.000    0.000
    grats_spec        0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           0.428    0.056    7.652    0.000    0.428    0.139
   .PC01_02           0.571    0.098    5.797    0.000    0.571    0.179
   .PC01_04           0.646    0.076    8.542    0.000    0.646    0.207
   .PC01_05           0.535    0.062    8.608    0.000    0.535    0.168
   .PC01_06           1.071    0.114    9.359    0.000    1.071    0.352
   .PC01_07           0.422    0.061    6.860    0.000    0.422    0.138
   .GR01_01           1.004    0.105    9.558    0.000    1.004    0.506
   .GR01_02           0.474    0.063    7.521    0.000    0.474    0.314
   .GR01_03           0.447    0.065    6.836    0.000    0.447    0.263
   .GR01_04           0.349    0.041    8.535    0.000    0.349    0.199
   .GR01_05           0.455    0.054    8.386    0.000    0.455    0.268
   .GR01_06           1.053    0.103   10.243    0.000    1.053    0.484
   .GR01_07           0.667    0.066   10.036    0.000    0.667    0.313
   .GR01_08           0.635    0.065    9.732    0.000    0.635    0.339
   .GR01_09           0.641    0.068    9.383    0.000    0.641    0.326
   .GR01_10           0.748    0.066   11.284    0.000    0.748    0.357
   .GR01_11           0.361    0.053    6.810    0.000    0.361    0.212
   .GR01_12           0.822    0.075   10.983    0.000    0.822    0.413
   .GR01_13           1.812    0.142   12.726    0.000    1.812    0.676
   .GR01_14           2.077    0.123   16.826    0.000    2.077    0.717
   .GR01_15           0.641    0.105    6.131    0.000    0.641    0.274
   .COMM_log          4.832    0.203   23.835    0.000    4.832    0.926
    pri_con           2.611    0.146   17.921    0.000    1.000    1.000
   .grats_inf         0.285    0.043    6.651    0.000    0.302    0.302
   .grats_rel         0.188    0.046    4.080    0.000    0.134    0.134
   .grats_par         0.078    0.050    1.576    0.115    0.054    0.054
   .grats_ide         0.170    0.044    3.827    0.000    0.128    0.128
   .grats_ext         0.263    0.064    4.134    0.000    0.366    0.366
    grats_spec        0.658    0.118    5.585    0.000    1.000    1.000

Alternative Models

In what follows, you can find slightly different models that were also explored.

Model 1

Here, we combine both privacy measures into a single one. Likewise, we combine both gratifications and trust.

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
pri_cau =~ pri_con + pri_delib
grats_inf =~ GR01_01 + GR01_02 + GR01_03 
grats_rel =~ GR01_04 + GR01_05 + GR01_06 
grats_par =~ GR01_07 + GR01_08 + GR01_09
grats_ide =~ GR01_10 + GR01_11 + GR01_12 
grats_ext =~ GR01_13 + GR01_14 + GR01_15
trust_community =~ TR01_02 + TR01_03 + TR01_04
trust_provider =~ TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12
grats_meta =~ grats_inf + grats_rel + grats_par + grats_ide + grats_ext + trust_community + trust_provider
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
  SE01_01 ~~ x*SE01_02
  SE01_03 ~~ x*SE01_04
self_dis_log ~ a1*pri_cau + b1*grats_meta + c1*self_eff

# Covariates
self_dis_log + GR01_01 + GR01_02 + GR01_03 + GR01_04 + GR01_05 + GR01_06 + GR01_07 + GR01_08 + GR01_09 + GR01_10 + GR01_11 + GR01_12 + GR01_13 + GR01_14 + GR01_15 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR01_02 + TR01_03 + TR01_04 + TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu
"
fit <- sem(model, data = d, estimator = "MLR", missing = "ML")
summary(fit, fit = TRUE, std = TRUE)
lavaan 0.6-8 ended normally after 398 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       256
  Number of equality constraints                     1
                                                      
                                                  Used       Total
  Number of observations                           558         559
  Number of missing patterns                         3            
                                                                  
Model Test User Model:
                                               Standard      Robust
  Test Statistic                               2305.334    1744.842
  Degrees of freedom                                725         725
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.321
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                             17141.198   12836.227
  Degrees of freedom                               900         900
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.335

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.903       0.915
  Tucker-Lewis Index (TLI)                       0.879       0.894
                                                                  
  Robust Comparative Fit Index (CFI)                         0.915
  Robust Tucker-Lewis Index (TLI)                            0.895

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -32387.951  -32387.951
  Scaling correction factor                                  1.254
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -31235.284  -31235.284
  Scaling correction factor                                  1.305
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               65285.902   65285.902
  Bayesian (BIC)                             66388.614   66388.614
  Sample-size adjusted Bayesian (BIC)        65579.122   65579.122

Root Mean Square Error of Approximation:

  RMSEA                                          0.063       0.050
  90 Percent confidence interval - lower         0.060       0.048
  90 Percent confidence interval - upper         0.065       0.053
  P-value RMSEA <= 0.05                          0.000       0.444
                                                                  
  Robust RMSEA                                               0.058
  90 Percent confidence interval - lower                     0.054
  90 Percent confidence interval - upper                     0.061

Standardized Root Mean Square Residual:

  SRMR                                           0.073       0.073

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con =~                                                              
    PC01_01             1.000                               1.595    0.926
    PC01_02             0.990    0.027   36.234    0.000    1.579    0.895
    PC01_04             0.971    0.027   35.465    0.000    1.550    0.883
    PC01_05             1.002    0.024   42.298    0.000    1.598    0.907
    PC01_06             0.855    0.038   22.665    0.000    1.364    0.796
    PC01_07             0.995    0.023   43.661    0.000    1.587    0.921
  pri_delib =~                                                            
    PD01_01             1.000                               1.483    0.859
    PD01_02             0.665    0.048   13.708    0.000    0.985    0.641
    PD01_03             0.698    0.054   12.937    0.000    1.035    0.665
    PD01_04             0.835    0.047   17.673    0.000    1.238    0.725
    PD01_05             0.710    0.050   14.335    0.000    1.053    0.636
  pri_cau =~                                                              
    pri_con             1.000                               0.704    0.704
    pri_delib           1.059    0.321    3.300    0.001    0.801    0.801
  grats_inf =~                                                            
    GR01_01             1.000                               0.963    0.684
    GR01_02             1.030    0.076   13.580    0.000    0.991    0.813
    GR01_03             1.123    0.077   14.554    0.000    1.081    0.841
  grats_rel =~                                                            
    GR01_04             1.000                               1.176    0.891
    GR01_05             0.945    0.038   25.049    0.000    1.111    0.859
    GR01_06             0.874    0.046   19.073    0.000    1.027    0.694
  grats_par =~                                                            
    GR01_07             1.000                               1.183    0.812
    GR01_08             0.950    0.039   24.066    0.000    1.123    0.819
    GR01_09             0.962    0.039   24.532    0.000    1.138    0.813
  grats_ide =~                                                            
    GR01_10             1.000                               1.141    0.785
    GR01_11             1.007    0.041   24.435    0.000    1.149    0.885
    GR01_12             0.933    0.040   23.106    0.000    1.065    0.763
  grats_ext =~                                                            
    GR01_13             1.000                               0.833    0.507
    GR01_14             1.015    0.103    9.890    0.000    0.845    0.505
    GR01_15             1.558    0.188    8.276    0.000    1.297    0.849
  trust_community =~                                                      
    TR01_02             1.000                               1.040    0.821
    TR01_03             0.785    0.055   14.314    0.000    0.817    0.743
    TR01_04             0.907    0.051   17.760    0.000    0.943    0.818
  trust_provider =~                                                       
    TR01_06             1.000                               1.051    0.875
    TR01_07             0.859    0.039   22.260    0.000    0.903    0.781
    TR01_08             0.827    0.038   21.728    0.000    0.869    0.786
    TR01_10             0.791    0.038   20.646    0.000    0.831    0.706
    TR01_11             0.802    0.052   15.424    0.000    0.843    0.650
    TR01_12             1.088    0.039   27.767    0.000    1.143    0.850
  grats_meta =~                                                           
    grats_inf           1.000                               0.856    0.856
    grats_rel           1.309    0.102   12.794    0.000    0.918    0.918
    grats_par           1.365    0.110   12.395    0.000    0.951    0.951
    grats_ide           1.282    0.103   12.456    0.000    0.926    0.926
    grats_ext           0.773    0.102    7.556    0.000    0.765    0.765
    trust_communty      0.959    0.085   11.231    0.000    0.760    0.760
    trust_provider      1.018    0.088   11.549    0.000    0.799    0.799
  self_eff =~                                                             
    SE01_01             1.000                               1.116    0.809
    SE01_02             0.809    0.058   13.917    0.000    0.902    0.669
    SE01_03             0.930    0.047   19.906    0.000    1.037    0.774
    SE01_04             0.958    0.044   21.963    0.000    1.069    0.792

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  self_dis_log ~                                                        
    pri_cau   (a1)   -0.297    0.133   -2.232    0.026   -0.333   -0.146
    grats_met (b1)    0.105    0.166    0.633    0.527    0.087    0.038
    self_eff  (c1)    0.635    0.140    4.553    0.000    0.709    0.310
    male             -0.022    0.197   -0.110    0.913   -0.022   -0.005
    age               0.003    0.006    0.570    0.569    0.003    0.024
    edu               0.213    0.116    1.836    0.066    0.213    0.078
  GR01_01 ~                                                             
    male             -0.342    0.121   -2.834    0.005   -0.342   -0.122
    age              -0.005    0.004   -1.333    0.183   -0.005   -0.059
    edu               0.000    0.072    0.006    0.995    0.000    0.000
  GR01_02 ~                                                             
    male             -0.142    0.103   -1.378    0.168   -0.142   -0.058
    age              -0.007    0.003   -2.106    0.035   -0.007   -0.088
    edu              -0.037    0.060   -0.617    0.537   -0.037   -0.026
  GR01_03 ~                                                             
    male             -0.187    0.109   -1.714    0.087   -0.187   -0.073
    age              -0.006    0.004   -1.704    0.088   -0.006   -0.075
    edu              -0.076    0.063   -1.204    0.229   -0.076   -0.050
  GR01_04 ~                                                             
    male             -0.004    0.113   -0.037    0.970   -0.004   -0.002
    age               0.001    0.004    0.262    0.793    0.001    0.011
    edu              -0.021    0.066   -0.319    0.750   -0.021   -0.013
  GR01_05 ~                                                             
    male             -0.069    0.112   -0.614    0.539   -0.069   -0.027
    age              -0.001    0.004   -0.198    0.843   -0.001   -0.009
    edu               0.025    0.064    0.388    0.698    0.025    0.016
  GR01_06 ~                                                             
    male              0.030    0.125    0.241    0.810    0.030    0.010
    age              -0.011    0.004   -2.567    0.010   -0.011   -0.111
    edu              -0.087    0.074   -1.176    0.240   -0.087   -0.050
  GR01_07 ~                                                             
    male              0.075    0.125    0.602    0.547    0.075    0.026
    age              -0.006    0.004   -1.391    0.164   -0.006   -0.060
    edu               0.004    0.072    0.057    0.955    0.004    0.002
  GR01_08 ~                                                             
    male              0.006    0.116    0.051    0.959    0.006    0.002
    age              -0.004    0.004   -1.121    0.262   -0.004   -0.051
    edu               0.113    0.068    1.675    0.094    0.113    0.070
  GR01_09 ~                                                             
    male              0.090    0.119    0.757    0.449    0.090    0.032
    age              -0.004    0.004   -0.952    0.341   -0.004   -0.041
    edu               0.115    0.069    1.667    0.096    0.115    0.069
  GR01_10 ~                                                             
    male             -0.019    0.125   -0.156    0.876   -0.019   -0.007
    age              -0.008    0.004   -1.993    0.046   -0.008   -0.089
    edu              -0.021    0.074   -0.277    0.782   -0.021   -0.012
  GR01_11 ~                                                             
    male             -0.083    0.111   -0.749    0.454   -0.083   -0.032
    age              -0.001    0.004   -0.313    0.755   -0.001   -0.014
    edu              -0.053    0.065   -0.822    0.411   -0.053   -0.034
  GR01_12 ~                                                             
    male             -0.218    0.120   -1.821    0.069   -0.218   -0.078
    age              -0.004    0.004   -1.009    0.313   -0.004   -0.043
    edu              -0.049    0.071   -0.685    0.493   -0.049   -0.029
  GR01_13 ~                                                             
    male             -0.181    0.138   -1.311    0.190   -0.181   -0.055
    age              -0.023    0.004   -5.515    0.000   -0.023   -0.219
    edu               0.078    0.081    0.959    0.337    0.078    0.040
  GR01_14 ~                                                             
    male             -0.303    0.145   -2.092    0.036   -0.303   -0.090
    age              -0.007    0.005   -1.540    0.124   -0.007   -0.065
    edu               0.030    0.084    0.361    0.718    0.030    0.015
  GR01_15 ~                                                             
    male              0.048    0.132    0.359    0.719    0.048    0.016
    age              -0.005    0.004   -1.214    0.225   -0.005   -0.053
    edu               0.024    0.078    0.301    0.764    0.024    0.013
  PC01_01 ~                                                             
    male             -0.182    0.151   -1.205    0.228   -0.182   -0.053
    age              -0.004    0.005   -0.820    0.412   -0.004   -0.036
    edu               0.110    0.087    1.255    0.210    0.110    0.054
  PC01_02 ~                                                             
    male             -0.302    0.154   -1.966    0.049   -0.302   -0.085
    age              -0.008    0.005   -1.664    0.096   -0.008   -0.072
    edu               0.047    0.089    0.522    0.602    0.047    0.022
  PC01_04 ~                                                             
    male             -0.225    0.152   -1.475    0.140   -0.225   -0.064
    age              -0.010    0.005   -1.980    0.048   -0.010   -0.085
    edu               0.113    0.089    1.269    0.204    0.113    0.054
  PC01_05 ~                                                             
    male             -0.098    0.154   -0.636    0.525   -0.098   -0.028
    age              -0.006    0.005   -1.164    0.244   -0.006   -0.051
    edu               0.090    0.090    0.996    0.319    0.090    0.043
  PC01_06 ~                                                             
    male             -0.108    0.150   -0.721    0.471   -0.108   -0.032
    age              -0.005    0.005   -1.055    0.291   -0.005   -0.046
    edu               0.043    0.087    0.491    0.623    0.043    0.021
  PC01_07 ~                                                             
    male             -0.174    0.150   -1.160    0.246   -0.174   -0.050
    age              -0.006    0.005   -1.337    0.181   -0.006   -0.058
    edu               0.081    0.087    0.933    0.351    0.081    0.040
  TR01_02 ~                                                             
    male             -0.297    0.108   -2.744    0.006   -0.297   -0.117
    age              -0.004    0.004   -1.103    0.270   -0.004   -0.049
    edu               0.005    0.062    0.086    0.931    0.005    0.004
  TR01_03 ~                                                             
    male             -0.140    0.095   -1.480    0.139   -0.140   -0.064
    age              -0.002    0.003   -0.566    0.571   -0.002   -0.025
    edu               0.023    0.053    0.434    0.664    0.023    0.018
  TR01_04 ~                                                             
    male             -0.135    0.099   -1.362    0.173   -0.135   -0.058
    age              -0.004    0.003   -1.211    0.226   -0.004   -0.055
    edu              -0.003    0.060   -0.045    0.964   -0.003   -0.002
  TR01_06 ~                                                             
    male             -0.086    0.104   -0.831    0.406   -0.086   -0.036
    age               0.000    0.003    0.110    0.912    0.000    0.005
    edu              -0.051    0.058   -0.880    0.379   -0.051   -0.036
  TR01_07 ~                                                             
    male             -0.045    0.099   -0.450    0.653   -0.045   -0.019
    age               0.001    0.003    0.344    0.731    0.001    0.015
    edu               0.018    0.058    0.309    0.757    0.018    0.013
  TR01_08 ~                                                             
    male              0.046    0.095    0.479    0.632    0.046    0.021
    age              -0.004    0.003   -1.250    0.211   -0.004   -0.053
    edu               0.025    0.056    0.445    0.656    0.025    0.019
  TR01_10 ~                                                             
    male              0.091    0.100    0.909    0.364    0.091    0.039
    age              -0.004    0.003   -1.178    0.239   -0.004   -0.050
    edu              -0.055    0.058   -0.941    0.347   -0.055   -0.039
  TR01_11 ~                                                             
    male              0.027    0.112    0.245    0.807    0.027    0.011
    age               0.003    0.004    0.824    0.410    0.003    0.035
    edu              -0.093    0.065   -1.435    0.151   -0.093   -0.061
  TR01_12 ~                                                             
    male             -0.121    0.115   -1.045    0.296   -0.121   -0.045
    age              -0.002    0.004   -0.406    0.685   -0.002   -0.018
    edu              -0.146    0.068   -2.156    0.031   -0.146   -0.091
  PD01_01 ~                                                             
    male             -0.177    0.148   -1.197    0.231   -0.177   -0.051
    age              -0.015    0.005   -3.275    0.001   -0.015   -0.137
    edu              -0.026    0.085   -0.310    0.756   -0.026   -0.013
  PD01_02 ~                                                             
    male             -0.119    0.131   -0.906    0.365   -0.119   -0.039
    age              -0.014    0.004   -3.443    0.001   -0.014   -0.142
    edu               0.031    0.077    0.405    0.686    0.031    0.017
  PD01_03 ~                                                             
    male             -0.321    0.132   -2.424    0.015   -0.321   -0.103
    age              -0.004    0.004   -1.024    0.306   -0.004   -0.044
    edu               0.065    0.080    0.807    0.420    0.065    0.035
  PD01_04 ~                                                             
    male             -0.412    0.145   -2.847    0.004   -0.412   -0.121
    age              -0.009    0.005   -1.904    0.057   -0.009   -0.082
    edu               0.103    0.085    1.207    0.227    0.103    0.051
  PD01_05 ~                                                             
    male             -0.205    0.142   -1.438    0.150   -0.205   -0.062
    age              -0.012    0.004   -2.696    0.007   -0.012   -0.111
    edu              -0.002    0.084   -0.025    0.980   -0.002   -0.001
  SE01_01 ~                                                             
    male              0.118    0.118    0.996    0.319    0.118    0.043
    age              -0.000    0.004   -0.006    0.995   -0.000   -0.000
    edu               0.209    0.068    3.083    0.002    0.209    0.128
  SE01_02 ~                                                             
    male              0.057    0.112    0.514    0.607    0.057    0.021
    age              -0.013    0.004   -3.608    0.000   -0.013   -0.152
    edu               0.197    0.066    2.976    0.003    0.197    0.123
  SE01_03 ~                                                             
    male              0.192    0.114    1.682    0.093    0.192    0.072
    age               0.001    0.004    0.233    0.816    0.001    0.010
    edu               0.141    0.067    2.107    0.035    0.141    0.089
  SE01_04 ~                                                             
    male              0.051    0.115    0.447    0.655    0.051    0.019
    age               0.007    0.004    2.033    0.042    0.007    0.085
    edu               0.125    0.066    1.880    0.060    0.125    0.078

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .SE01_01 ~~                                                            
   .SE01_02    (x)    0.107    0.044    2.415    0.016    0.107    0.141
 .SE01_03 ~~                                                            
   .SE01_04    (x)    0.107    0.044    2.415    0.016    0.107    0.159
  pri_cau ~~                                                            
    grats_meta       -0.087    0.097   -0.901    0.368   -0.094   -0.094
    self_eff         -0.340    0.117   -2.899    0.004   -0.271   -0.271
  grats_meta ~~                                                         
    self_eff          0.518    0.061    8.465    0.000    0.563    0.563

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           3.369    0.292   11.557    0.000    3.369    1.955
   .PC01_02           3.769    0.304   12.398    0.000    3.769    2.135
   .PC01_04           3.571    0.297   12.020    0.000    3.571    2.035
   .PC01_05           3.414    0.304   11.229    0.000    3.414    1.937
   .PC01_06           3.215    0.288   11.155    0.000    3.215    1.875
   .PC01_07           3.461    0.294   11.780    0.000    3.461    2.008
   .PD01_01           4.493    0.290   15.507    0.000    4.493    2.602
   .PD01_02           3.997    0.248   16.102    0.000    3.997    2.601
   .PD01_03           4.432    0.270   16.438    0.000    4.432    2.845
   .PD01_04           4.506    0.295   15.283    0.000    4.506    2.640
   .PD01_05           5.000    0.276   18.089    0.000    5.000    3.019
   .GR01_01           5.296    0.247   21.424    0.000    5.296    3.763
   .GR01_02           5.895    0.205   28.694    0.000    5.895    4.835
   .GR01_03           5.800    0.221   26.272    0.000    5.800    4.511
   .GR01_04           4.923    0.211   23.378    0.000    4.923    3.730
   .GR01_05           5.109    0.217   23.539    0.000    5.109    3.952
   .GR01_06           5.297    0.252   21.013    0.000    5.297    3.581
   .GR01_07           4.896    0.236   20.768    0.000    4.896    3.363
   .GR01_08           5.062    0.238   21.233    0.000    5.062    3.691
   .GR01_09           4.755    0.237   20.070    0.000    4.755    3.395
   .GR01_10           4.977    0.255   19.492    0.000    4.977    3.425
   .GR01_11           5.158    0.227   22.705    0.000    5.158    3.974
   .GR01_12           5.136    0.233   22.001    0.000    5.136    3.679
   .GR01_13           5.091    0.259   19.644    0.000    5.091    3.101
   .GR01_14           3.454    0.281   12.310    0.000    3.454    2.061
   .GR01_15           4.582    0.266   17.224    0.000    4.582    2.998
   .TR01_02           5.083    0.219   23.224    0.000    5.083    4.010
   .TR01_03           4.951    0.189   26.178    0.000    4.951    4.505
   .TR01_04           4.871    0.200   24.361    0.000    4.871    4.223
   .TR01_06           5.521    0.205   26.991    0.000    5.521    4.600
   .TR01_07           5.135    0.197   26.024    0.000    5.135    4.440
   .TR01_08           5.232    0.188   27.764    0.000    5.232    4.728
   .TR01_10           5.955    0.193   30.910    0.000    5.955    5.060
   .TR01_11           4.855    0.218   22.270    0.000    4.855    3.745
   .TR01_12           5.581    0.231   24.175    0.000    5.581    4.149
   .SE01_01           4.829    0.250   19.353    0.000    4.829    3.499
   .SE01_02           5.734    0.234   24.459    0.000    5.734    4.251
   .SE01_03           4.823    0.226   21.322    0.000    4.823    3.598
   .SE01_04           4.538    0.234   19.373    0.000    4.538    3.362
   .self_dis_log      1.376    0.375    3.673    0.000    1.376    0.602
   .pri_con           0.000                               0.000    0.000
   .pri_delib         0.000                               0.000    0.000
    pri_cau           0.000                               0.000    0.000
   .grats_inf         0.000                               0.000    0.000
   .grats_rel         0.000                               0.000    0.000
   .grats_par         0.000                               0.000    0.000
   .grats_ide         0.000                               0.000    0.000
   .grats_ext         0.000                               0.000    0.000
   .trust_communty    0.000                               0.000    0.000
   .trust_provider    0.000                               0.000    0.000
    grats_meta        0.000                               0.000    0.000
    self_eff          0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           0.403    0.050    8.008    0.000    0.403    0.136
   .PC01_02           0.580    0.102    5.677    0.000    0.580    0.186
   .PC01_04           0.630    0.078    8.100    0.000    0.630    0.205
   .PC01_05           0.534    0.064    8.328    0.000    0.534    0.172
   .PC01_06           1.067    0.115    9.245    0.000    1.067    0.363
   .PC01_07           0.430    0.065    6.624    0.000    0.430    0.145
   .PD01_01           0.715    0.107    6.661    0.000    0.715    0.240
   .PD01_02           1.335    0.128   10.454    0.000    1.335    0.565
   .PD01_03           1.321    0.127   10.363    0.000    1.321    0.544
   .PD01_04           1.308    0.147    8.876    0.000    1.308    0.449
   .PD01_05           1.586    0.128   12.413    0.000    1.586    0.578
   .GR01_01           1.015    0.105    9.636    0.000    1.015    0.512
   .GR01_02           0.485    0.067    7.212    0.000    0.485    0.327
   .GR01_03           0.460    0.069    6.709    0.000    0.460    0.279
   .GR01_04           0.360    0.045    7.955    0.000    0.360    0.206
   .GR01_05           0.435    0.055    7.860    0.000    0.435    0.260
   .GR01_06           1.103    0.109   10.139    0.000    1.103    0.504
   .GR01_07           0.712    0.072    9.855    0.000    0.712    0.336
   .GR01_08           0.604    0.066    9.151    0.000    0.604    0.321
   .GR01_09           0.649    0.072    9.060    0.000    0.649    0.331
   .GR01_10           0.794    0.072   10.995    0.000    0.794    0.376
   .GR01_11           0.362    0.053    6.763    0.000    0.362    0.215
   .GR01_12           0.796    0.074   10.690    0.000    0.796    0.409
   .GR01_13           1.853    0.150   12.384    0.000    1.853    0.687
   .GR01_14           2.054    0.124   16.508    0.000    2.054    0.732
   .GR01_15           0.645    0.117    5.528    0.000    0.645    0.276
   .TR01_02           0.497    0.068    7.290    0.000    0.497    0.309
   .TR01_03           0.535    0.058    9.190    0.000    0.535    0.443
   .TR01_04           0.431    0.050    8.641    0.000    0.431    0.324
   .TR01_06           0.333    0.035    9.627    0.000    0.333    0.231
   .TR01_07           0.522    0.051   10.312    0.000    0.522    0.390
   .TR01_08           0.464    0.041   11.365    0.000    0.464    0.379
   .TR01_10           0.688    0.056   12.287    0.000    0.688    0.497
   .TR01_11           0.962    0.082   11.690    0.000    0.962    0.572
   .TR01_12           0.481    0.061    7.891    0.000    0.481    0.266
   .SE01_01           0.623    0.088    7.060    0.000    0.623    0.327
   .SE01_02           0.930    0.118    7.894    0.000    0.930    0.511
   .SE01_03           0.695    0.094    7.359    0.000    0.695    0.387
   .SE01_04           0.655    0.078    8.418    0.000    0.655    0.359
   .self_dis_log      4.360    0.206   21.146    0.000    4.360    0.836
   .pri_con           1.285    0.406    3.169    0.002    0.505    0.505
   .pri_delib         0.787    0.444    1.772    0.076    0.358    0.358
    pri_cau           1.260    0.409    3.077    0.002    1.000    1.000
   .grats_inf         0.247    0.039    6.376    0.000    0.267    0.267
   .grats_rel         0.218    0.047    4.636    0.000    0.157    0.157
   .grats_par         0.134    0.051    2.596    0.009    0.096    0.096
   .grats_ide         0.186    0.044    4.206    0.000    0.143    0.143
   .grats_ext         0.288    0.072    4.012    0.000    0.415    0.415
   .trust_communty    0.458    0.054    8.401    0.000    0.423    0.423
   .trust_provider    0.400    0.050    8.045    0.000    0.362    0.362
    grats_meta        0.679    0.119    5.712    0.000    1.000    1.000
    self_eff          1.245    0.114   10.933    0.000    1.000    1.000

Model 2

Here, we combine both privacy measures into a single one. Likewise, we combine both gratifications and trust.

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
pri_cau =~ pri_con + pri_delib
grats_inf =~ GR01_01 + GR01_02 + GR01_03 
grats_rel =~ GR01_04 + GR01_05 + GR01_06 
grats_par =~ GR01_07 + GR01_08 + GR01_09
grats_ide =~ GR01_10 + GR01_11 + GR01_12 
grats_ext =~ GR01_13 + GR01_14 + GR01_15
trust_community =~ TR01_02 + TR01_03 + TR01_04
trust_provider =~ TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12
grats_meta =~ grats_inf + grats_rel + grats_par + grats_ide + grats_ext + trust_community + trust_provider
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
  SE01_01 ~~ x*SE01_02
  SE01_03 ~~ x*SE01_04
self_dis_log ~ a1*pri_cau + b1*grats_meta + c1*self_eff

# Covariates
self_dis_log + GR01_01 + GR01_02 + GR01_03 + GR01_04 + GR01_05 + GR01_06 + GR01_07 + GR01_08 + GR01_09 + GR01_10 + GR01_11 + GR01_12 + GR01_13 + GR01_14 + GR01_15 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR01_02 + TR01_03 + TR01_04 + TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu
"
fit <- sem(model, data = d, estimator = "MLR", missing = "ML")
summary(fit, fit = TRUE, std = TRUE)
lavaan 0.6-8 ended normally after 398 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       256
  Number of equality constraints                     1
                                                      
                                                  Used       Total
  Number of observations                           558         559
  Number of missing patterns                         3            
                                                                  
Model Test User Model:
                                               Standard      Robust
  Test Statistic                               2305.334    1744.842
  Degrees of freedom                                725         725
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.321
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                             17141.198   12836.227
  Degrees of freedom                               900         900
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.335

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.903       0.915
  Tucker-Lewis Index (TLI)                       0.879       0.894
                                                                  
  Robust Comparative Fit Index (CFI)                         0.915
  Robust Tucker-Lewis Index (TLI)                            0.895

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -32387.951  -32387.951
  Scaling correction factor                                  1.254
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -31235.284  -31235.284
  Scaling correction factor                                  1.305
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               65285.902   65285.902
  Bayesian (BIC)                             66388.614   66388.614
  Sample-size adjusted Bayesian (BIC)        65579.122   65579.122

Root Mean Square Error of Approximation:

  RMSEA                                          0.063       0.050
  90 Percent confidence interval - lower         0.060       0.048
  90 Percent confidence interval - upper         0.065       0.053
  P-value RMSEA <= 0.05                          0.000       0.444
                                                                  
  Robust RMSEA                                               0.058
  90 Percent confidence interval - lower                     0.054
  90 Percent confidence interval - upper                     0.061

Standardized Root Mean Square Residual:

  SRMR                                           0.073       0.073

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con =~                                                              
    PC01_01             1.000                               1.595    0.926
    PC01_02             0.990    0.027   36.234    0.000    1.579    0.895
    PC01_04             0.971    0.027   35.465    0.000    1.550    0.883
    PC01_05             1.002    0.024   42.298    0.000    1.598    0.907
    PC01_06             0.855    0.038   22.665    0.000    1.364    0.796
    PC01_07             0.995    0.023   43.661    0.000    1.587    0.921
  pri_delib =~                                                            
    PD01_01             1.000                               1.483    0.859
    PD01_02             0.665    0.048   13.708    0.000    0.985    0.641
    PD01_03             0.698    0.054   12.937    0.000    1.035    0.665
    PD01_04             0.835    0.047   17.673    0.000    1.238    0.725
    PD01_05             0.710    0.050   14.335    0.000    1.053    0.636
  pri_cau =~                                                              
    pri_con             1.000                               0.704    0.704
    pri_delib           1.059    0.321    3.300    0.001    0.801    0.801
  grats_inf =~                                                            
    GR01_01             1.000                               0.963    0.684
    GR01_02             1.030    0.076   13.580    0.000    0.991    0.813
    GR01_03             1.123    0.077   14.554    0.000    1.081    0.841
  grats_rel =~                                                            
    GR01_04             1.000                               1.176    0.891
    GR01_05             0.945    0.038   25.049    0.000    1.111    0.859
    GR01_06             0.874    0.046   19.073    0.000    1.027    0.694
  grats_par =~                                                            
    GR01_07             1.000                               1.183    0.812
    GR01_08             0.950    0.039   24.066    0.000    1.123    0.819
    GR01_09             0.962    0.039   24.532    0.000    1.138    0.813
  grats_ide =~                                                            
    GR01_10             1.000                               1.141    0.785
    GR01_11             1.007    0.041   24.435    0.000    1.149    0.885
    GR01_12             0.933    0.040   23.106    0.000    1.065    0.763
  grats_ext =~                                                            
    GR01_13             1.000                               0.833    0.507
    GR01_14             1.015    0.103    9.890    0.000    0.845    0.505
    GR01_15             1.558    0.188    8.276    0.000    1.297    0.849
  trust_community =~                                                      
    TR01_02             1.000                               1.040    0.821
    TR01_03             0.785    0.055   14.314    0.000    0.817    0.743
    TR01_04             0.907    0.051   17.760    0.000    0.943    0.818
  trust_provider =~                                                       
    TR01_06             1.000                               1.051    0.875
    TR01_07             0.859    0.039   22.260    0.000    0.903    0.781
    TR01_08             0.827    0.038   21.728    0.000    0.869    0.786
    TR01_10             0.791    0.038   20.646    0.000    0.831    0.706
    TR01_11             0.802    0.052   15.424    0.000    0.843    0.650
    TR01_12             1.088    0.039   27.767    0.000    1.143    0.850
  grats_meta =~                                                           
    grats_inf           1.000                               0.856    0.856
    grats_rel           1.309    0.102   12.794    0.000    0.918    0.918
    grats_par           1.365    0.110   12.395    0.000    0.951    0.951
    grats_ide           1.282    0.103   12.456    0.000    0.926    0.926
    grats_ext           0.773    0.102    7.556    0.000    0.765    0.765
    trust_communty      0.959    0.085   11.231    0.000    0.760    0.760
    trust_provider      1.018    0.088   11.549    0.000    0.799    0.799
  self_eff =~                                                             
    SE01_01             1.000                               1.116    0.809
    SE01_02             0.809    0.058   13.917    0.000    0.902    0.669
    SE01_03             0.930    0.047   19.906    0.000    1.037    0.774
    SE01_04             0.958    0.044   21.963    0.000    1.069    0.792

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  self_dis_log ~                                                        
    pri_cau   (a1)   -0.297    0.133   -2.232    0.026   -0.333   -0.146
    grats_met (b1)    0.105    0.166    0.633    0.527    0.087    0.038
    self_eff  (c1)    0.635    0.140    4.553    0.000    0.709    0.310
    male             -0.022    0.197   -0.110    0.913   -0.022   -0.005
    age               0.003    0.006    0.570    0.569    0.003    0.024
    edu               0.213    0.116    1.836    0.066    0.213    0.078
  GR01_01 ~                                                             
    male             -0.342    0.121   -2.834    0.005   -0.342   -0.122
    age              -0.005    0.004   -1.333    0.183   -0.005   -0.059
    edu               0.000    0.072    0.006    0.995    0.000    0.000
  GR01_02 ~                                                             
    male             -0.142    0.103   -1.378    0.168   -0.142   -0.058
    age              -0.007    0.003   -2.106    0.035   -0.007   -0.088
    edu              -0.037    0.060   -0.617    0.537   -0.037   -0.026
  GR01_03 ~                                                             
    male             -0.187    0.109   -1.714    0.087   -0.187   -0.073
    age              -0.006    0.004   -1.704    0.088   -0.006   -0.075
    edu              -0.076    0.063   -1.204    0.229   -0.076   -0.050
  GR01_04 ~                                                             
    male             -0.004    0.113   -0.037    0.970   -0.004   -0.002
    age               0.001    0.004    0.262    0.793    0.001    0.011
    edu              -0.021    0.066   -0.319    0.750   -0.021   -0.013
  GR01_05 ~                                                             
    male             -0.069    0.112   -0.614    0.539   -0.069   -0.027
    age              -0.001    0.004   -0.198    0.843   -0.001   -0.009
    edu               0.025    0.064    0.388    0.698    0.025    0.016
  GR01_06 ~                                                             
    male              0.030    0.125    0.241    0.810    0.030    0.010
    age              -0.011    0.004   -2.567    0.010   -0.011   -0.111
    edu              -0.087    0.074   -1.176    0.240   -0.087   -0.050
  GR01_07 ~                                                             
    male              0.075    0.125    0.602    0.547    0.075    0.026
    age              -0.006    0.004   -1.391    0.164   -0.006   -0.060
    edu               0.004    0.072    0.057    0.955    0.004    0.002
  GR01_08 ~                                                             
    male              0.006    0.116    0.051    0.959    0.006    0.002
    age              -0.004    0.004   -1.121    0.262   -0.004   -0.051
    edu               0.113    0.068    1.675    0.094    0.113    0.070
  GR01_09 ~                                                             
    male              0.090    0.119    0.757    0.449    0.090    0.032
    age              -0.004    0.004   -0.952    0.341   -0.004   -0.041
    edu               0.115    0.069    1.667    0.096    0.115    0.069
  GR01_10 ~                                                             
    male             -0.019    0.125   -0.156    0.876   -0.019   -0.007
    age              -0.008    0.004   -1.993    0.046   -0.008   -0.089
    edu              -0.021    0.074   -0.277    0.782   -0.021   -0.012
  GR01_11 ~                                                             
    male             -0.083    0.111   -0.749    0.454   -0.083   -0.032
    age              -0.001    0.004   -0.313    0.755   -0.001   -0.014
    edu              -0.053    0.065   -0.822    0.411   -0.053   -0.034
  GR01_12 ~                                                             
    male             -0.218    0.120   -1.821    0.069   -0.218   -0.078
    age              -0.004    0.004   -1.009    0.313   -0.004   -0.043
    edu              -0.049    0.071   -0.685    0.493   -0.049   -0.029
  GR01_13 ~                                                             
    male             -0.181    0.138   -1.311    0.190   -0.181   -0.055
    age              -0.023    0.004   -5.515    0.000   -0.023   -0.219
    edu               0.078    0.081    0.959    0.337    0.078    0.040
  GR01_14 ~                                                             
    male             -0.303    0.145   -2.092    0.036   -0.303   -0.090
    age              -0.007    0.005   -1.540    0.124   -0.007   -0.065
    edu               0.030    0.084    0.361    0.718    0.030    0.015
  GR01_15 ~                                                             
    male              0.048    0.132    0.359    0.719    0.048    0.016
    age              -0.005    0.004   -1.214    0.225   -0.005   -0.053
    edu               0.024    0.078    0.301    0.764    0.024    0.013
  PC01_01 ~                                                             
    male             -0.182    0.151   -1.205    0.228   -0.182   -0.053
    age              -0.004    0.005   -0.820    0.412   -0.004   -0.036
    edu               0.110    0.087    1.255    0.210    0.110    0.054
  PC01_02 ~                                                             
    male             -0.302    0.154   -1.966    0.049   -0.302   -0.085
    age              -0.008    0.005   -1.664    0.096   -0.008   -0.072
    edu               0.047    0.089    0.522    0.602    0.047    0.022
  PC01_04 ~                                                             
    male             -0.225    0.152   -1.475    0.140   -0.225   -0.064
    age              -0.010    0.005   -1.980    0.048   -0.010   -0.085
    edu               0.113    0.089    1.269    0.204    0.113    0.054
  PC01_05 ~                                                             
    male             -0.098    0.154   -0.636    0.525   -0.098   -0.028
    age              -0.006    0.005   -1.164    0.244   -0.006   -0.051
    edu               0.090    0.090    0.996    0.319    0.090    0.043
  PC01_06 ~                                                             
    male             -0.108    0.150   -0.721    0.471   -0.108   -0.032
    age              -0.005    0.005   -1.055    0.291   -0.005   -0.046
    edu               0.043    0.087    0.491    0.623    0.043    0.021
  PC01_07 ~                                                             
    male             -0.174    0.150   -1.160    0.246   -0.174   -0.050
    age              -0.006    0.005   -1.337    0.181   -0.006   -0.058
    edu               0.081    0.087    0.933    0.351    0.081    0.040
  TR01_02 ~                                                             
    male             -0.297    0.108   -2.744    0.006   -0.297   -0.117
    age              -0.004    0.004   -1.103    0.270   -0.004   -0.049
    edu               0.005    0.062    0.086    0.931    0.005    0.004
  TR01_03 ~                                                             
    male             -0.140    0.095   -1.480    0.139   -0.140   -0.064
    age              -0.002    0.003   -0.566    0.571   -0.002   -0.025
    edu               0.023    0.053    0.434    0.664    0.023    0.018
  TR01_04 ~                                                             
    male             -0.135    0.099   -1.362    0.173   -0.135   -0.058
    age              -0.004    0.003   -1.211    0.226   -0.004   -0.055
    edu              -0.003    0.060   -0.045    0.964   -0.003   -0.002
  TR01_06 ~                                                             
    male             -0.086    0.104   -0.831    0.406   -0.086   -0.036
    age               0.000    0.003    0.110    0.912    0.000    0.005
    edu              -0.051    0.058   -0.880    0.379   -0.051   -0.036
  TR01_07 ~                                                             
    male             -0.045    0.099   -0.450    0.653   -0.045   -0.019
    age               0.001    0.003    0.344    0.731    0.001    0.015
    edu               0.018    0.058    0.309    0.757    0.018    0.013
  TR01_08 ~                                                             
    male              0.046    0.095    0.479    0.632    0.046    0.021
    age              -0.004    0.003   -1.250    0.211   -0.004   -0.053
    edu               0.025    0.056    0.445    0.656    0.025    0.019
  TR01_10 ~                                                             
    male              0.091    0.100    0.909    0.364    0.091    0.039
    age              -0.004    0.003   -1.178    0.239   -0.004   -0.050
    edu              -0.055    0.058   -0.941    0.347   -0.055   -0.039
  TR01_11 ~                                                             
    male              0.027    0.112    0.245    0.807    0.027    0.011
    age               0.003    0.004    0.824    0.410    0.003    0.035
    edu              -0.093    0.065   -1.435    0.151   -0.093   -0.061
  TR01_12 ~                                                             
    male             -0.121    0.115   -1.045    0.296   -0.121   -0.045
    age              -0.002    0.004   -0.406    0.685   -0.002   -0.018
    edu              -0.146    0.068   -2.156    0.031   -0.146   -0.091
  PD01_01 ~                                                             
    male             -0.177    0.148   -1.197    0.231   -0.177   -0.051
    age              -0.015    0.005   -3.275    0.001   -0.015   -0.137
    edu              -0.026    0.085   -0.310    0.756   -0.026   -0.013
  PD01_02 ~                                                             
    male             -0.119    0.131   -0.906    0.365   -0.119   -0.039
    age              -0.014    0.004   -3.443    0.001   -0.014   -0.142
    edu               0.031    0.077    0.405    0.686    0.031    0.017
  PD01_03 ~                                                             
    male             -0.321    0.132   -2.424    0.015   -0.321   -0.103
    age              -0.004    0.004   -1.024    0.306   -0.004   -0.044
    edu               0.065    0.080    0.807    0.420    0.065    0.035
  PD01_04 ~                                                             
    male             -0.412    0.145   -2.847    0.004   -0.412   -0.121
    age              -0.009    0.005   -1.904    0.057   -0.009   -0.082
    edu               0.103    0.085    1.207    0.227    0.103    0.051
  PD01_05 ~                                                             
    male             -0.205    0.142   -1.438    0.150   -0.205   -0.062
    age              -0.012    0.004   -2.696    0.007   -0.012   -0.111
    edu              -0.002    0.084   -0.025    0.980   -0.002   -0.001
  SE01_01 ~                                                             
    male              0.118    0.118    0.996    0.319    0.118    0.043
    age              -0.000    0.004   -0.006    0.995   -0.000   -0.000
    edu               0.209    0.068    3.083    0.002    0.209    0.128
  SE01_02 ~                                                             
    male              0.057    0.112    0.514    0.607    0.057    0.021
    age              -0.013    0.004   -3.608    0.000   -0.013   -0.152
    edu               0.197    0.066    2.976    0.003    0.197    0.123
  SE01_03 ~                                                             
    male              0.192    0.114    1.682    0.093    0.192    0.072
    age               0.001    0.004    0.233    0.816    0.001    0.010
    edu               0.141    0.067    2.107    0.035    0.141    0.089
  SE01_04 ~                                                             
    male              0.051    0.115    0.447    0.655    0.051    0.019
    age               0.007    0.004    2.033    0.042    0.007    0.085
    edu               0.125    0.066    1.880    0.060    0.125    0.078

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .SE01_01 ~~                                                            
   .SE01_02    (x)    0.107    0.044    2.415    0.016    0.107    0.141
 .SE01_03 ~~                                                            
   .SE01_04    (x)    0.107    0.044    2.415    0.016    0.107    0.159
  pri_cau ~~                                                            
    grats_meta       -0.087    0.097   -0.901    0.368   -0.094   -0.094
    self_eff         -0.340    0.117   -2.899    0.004   -0.271   -0.271
  grats_meta ~~                                                         
    self_eff          0.518    0.061    8.465    0.000    0.563    0.563

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           3.369    0.292   11.557    0.000    3.369    1.955
   .PC01_02           3.769    0.304   12.398    0.000    3.769    2.135
   .PC01_04           3.571    0.297   12.020    0.000    3.571    2.035
   .PC01_05           3.414    0.304   11.229    0.000    3.414    1.937
   .PC01_06           3.215    0.288   11.155    0.000    3.215    1.875
   .PC01_07           3.461    0.294   11.780    0.000    3.461    2.008
   .PD01_01           4.493    0.290   15.507    0.000    4.493    2.602
   .PD01_02           3.997    0.248   16.102    0.000    3.997    2.601
   .PD01_03           4.432    0.270   16.438    0.000    4.432    2.845
   .PD01_04           4.506    0.295   15.283    0.000    4.506    2.640
   .PD01_05           5.000    0.276   18.089    0.000    5.000    3.019
   .GR01_01           5.296    0.247   21.424    0.000    5.296    3.763
   .GR01_02           5.895    0.205   28.694    0.000    5.895    4.835
   .GR01_03           5.800    0.221   26.272    0.000    5.800    4.511
   .GR01_04           4.923    0.211   23.378    0.000    4.923    3.730
   .GR01_05           5.109    0.217   23.539    0.000    5.109    3.952
   .GR01_06           5.297    0.252   21.013    0.000    5.297    3.581
   .GR01_07           4.896    0.236   20.768    0.000    4.896    3.363
   .GR01_08           5.062    0.238   21.233    0.000    5.062    3.691
   .GR01_09           4.755    0.237   20.070    0.000    4.755    3.395
   .GR01_10           4.977    0.255   19.492    0.000    4.977    3.425
   .GR01_11           5.158    0.227   22.705    0.000    5.158    3.974
   .GR01_12           5.136    0.233   22.001    0.000    5.136    3.679
   .GR01_13           5.091    0.259   19.644    0.000    5.091    3.101
   .GR01_14           3.454    0.281   12.310    0.000    3.454    2.061
   .GR01_15           4.582    0.266   17.224    0.000    4.582    2.998
   .TR01_02           5.083    0.219   23.224    0.000    5.083    4.010
   .TR01_03           4.951    0.189   26.178    0.000    4.951    4.505
   .TR01_04           4.871    0.200   24.361    0.000    4.871    4.223
   .TR01_06           5.521    0.205   26.991    0.000    5.521    4.600
   .TR01_07           5.135    0.197   26.024    0.000    5.135    4.440
   .TR01_08           5.232    0.188   27.764    0.000    5.232    4.728
   .TR01_10           5.955    0.193   30.910    0.000    5.955    5.060
   .TR01_11           4.855    0.218   22.270    0.000    4.855    3.745
   .TR01_12           5.581    0.231   24.175    0.000    5.581    4.149
   .SE01_01           4.829    0.250   19.353    0.000    4.829    3.499
   .SE01_02           5.734    0.234   24.459    0.000    5.734    4.251
   .SE01_03           4.823    0.226   21.322    0.000    4.823    3.598
   .SE01_04           4.538    0.234   19.373    0.000    4.538    3.362
   .self_dis_log      1.376    0.375    3.673    0.000    1.376    0.602
   .pri_con           0.000                               0.000    0.000
   .pri_delib         0.000                               0.000    0.000
    pri_cau           0.000                               0.000    0.000
   .grats_inf         0.000                               0.000    0.000
   .grats_rel         0.000                               0.000    0.000
   .grats_par         0.000                               0.000    0.000
   .grats_ide         0.000                               0.000    0.000
   .grats_ext         0.000                               0.000    0.000
   .trust_communty    0.000                               0.000    0.000
   .trust_provider    0.000                               0.000    0.000
    grats_meta        0.000                               0.000    0.000
    self_eff          0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           0.403    0.050    8.008    0.000    0.403    0.136
   .PC01_02           0.580    0.102    5.677    0.000    0.580    0.186
   .PC01_04           0.630    0.078    8.100    0.000    0.630    0.205
   .PC01_05           0.534    0.064    8.328    0.000    0.534    0.172
   .PC01_06           1.067    0.115    9.245    0.000    1.067    0.363
   .PC01_07           0.430    0.065    6.624    0.000    0.430    0.145
   .PD01_01           0.715    0.107    6.661    0.000    0.715    0.240
   .PD01_02           1.335    0.128   10.454    0.000    1.335    0.565
   .PD01_03           1.321    0.127   10.363    0.000    1.321    0.544
   .PD01_04           1.308    0.147    8.876    0.000    1.308    0.449
   .PD01_05           1.586    0.128   12.413    0.000    1.586    0.578
   .GR01_01           1.015    0.105    9.636    0.000    1.015    0.512
   .GR01_02           0.485    0.067    7.212    0.000    0.485    0.327
   .GR01_03           0.460    0.069    6.709    0.000    0.460    0.279
   .GR01_04           0.360    0.045    7.955    0.000    0.360    0.206
   .GR01_05           0.435    0.055    7.860    0.000    0.435    0.260
   .GR01_06           1.103    0.109   10.139    0.000    1.103    0.504
   .GR01_07           0.712    0.072    9.855    0.000    0.712    0.336
   .GR01_08           0.604    0.066    9.151    0.000    0.604    0.321
   .GR01_09           0.649    0.072    9.060    0.000    0.649    0.331
   .GR01_10           0.794    0.072   10.995    0.000    0.794    0.376
   .GR01_11           0.362    0.053    6.763    0.000    0.362    0.215
   .GR01_12           0.796    0.074   10.690    0.000    0.796    0.409
   .GR01_13           1.853    0.150   12.384    0.000    1.853    0.687
   .GR01_14           2.054    0.124   16.508    0.000    2.054    0.732
   .GR01_15           0.645    0.117    5.528    0.000    0.645    0.276
   .TR01_02           0.497    0.068    7.290    0.000    0.497    0.309
   .TR01_03           0.535    0.058    9.190    0.000    0.535    0.443
   .TR01_04           0.431    0.050    8.641    0.000    0.431    0.324
   .TR01_06           0.333    0.035    9.627    0.000    0.333    0.231
   .TR01_07           0.522    0.051   10.312    0.000    0.522    0.390
   .TR01_08           0.464    0.041   11.365    0.000    0.464    0.379
   .TR01_10           0.688    0.056   12.287    0.000    0.688    0.497
   .TR01_11           0.962    0.082   11.690    0.000    0.962    0.572
   .TR01_12           0.481    0.061    7.891    0.000    0.481    0.266
   .SE01_01           0.623    0.088    7.060    0.000    0.623    0.327
   .SE01_02           0.930    0.118    7.894    0.000    0.930    0.511
   .SE01_03           0.695    0.094    7.359    0.000    0.695    0.387
   .SE01_04           0.655    0.078    8.418    0.000    0.655    0.359
   .self_dis_log      4.360    0.206   21.146    0.000    4.360    0.836
   .pri_con           1.285    0.406    3.169    0.002    0.505    0.505
   .pri_delib         0.787    0.444    1.772    0.076    0.358    0.358
    pri_cau           1.260    0.409    3.077    0.002    1.000    1.000
   .grats_inf         0.247    0.039    6.376    0.000    0.267    0.267
   .grats_rel         0.218    0.047    4.636    0.000    0.157    0.157
   .grats_par         0.134    0.051    2.596    0.009    0.096    0.096
   .grats_ide         0.186    0.044    4.206    0.000    0.143    0.143
   .grats_ext         0.288    0.072    4.012    0.000    0.415    0.415
   .trust_communty    0.458    0.054    8.401    0.000    0.423    0.423
   .trust_provider    0.400    0.050    8.045    0.000    0.362    0.362
    grats_meta        0.679    0.119    5.712    0.000    1.000    1.000
    self_eff          1.245    0.114   10.933    0.000    1.000    1.000

Model 3

We now use also delete self-efficacy.

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
pri_cau =~ pri_con + pri_delib
grats_inf =~ GR01_01 + GR01_02 + GR01_03 
grats_rel =~ GR01_04 + GR01_05 + GR01_06 
grats_par =~ GR01_07 + GR01_08 + GR01_09
grats_ide =~ GR01_10 + GR01_11 + GR01_12 
grats_ext =~ GR01_13 + GR01_14 + GR01_15
trust_community =~ TR01_02 + TR01_03 + TR01_04
trust_provider =~ TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12
grats_meta =~ grats_inf + grats_rel + grats_par + grats_ide + grats_ext + trust_community + trust_provider
self_dis_log ~ a1*pri_cau + b1*grats_meta

# Covariates
self_dis_log + GR01_01 + GR01_02 + GR01_03 + GR01_04 + GR01_05 + GR01_06 + GR01_07 + GR01_08 + GR01_09 + GR01_10 + GR01_11 + GR01_12 + GR01_13 + GR01_14 + GR01_15 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR01_02 + TR01_03 + TR01_04 + TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 ~ male + age + edu
"
fit <- sem(model, data = d, estimator = "MLR", missing = "ML")
summary(fit, fit = TRUE, std = TRUE)
lavaan 0.6-8 ended normally after 383 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       227
                                                      
                                                  Used       Total
  Number of observations                           558         559
  Number of missing patterns                         2            
                                                                  
Model Test User Model:
                                               Standard      Robust
  Test Statistic                               2017.827    1506.031
  Degrees of freedom                                583         583
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.340
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                             15551.219   11557.604
  Degrees of freedom                               738         738
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.346

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.903       0.915
  Tucker-Lewis Index (TLI)                       0.877       0.892
                                                                  
  Robust Comparative Fit Index (CFI)                         0.915
  Robust Tucker-Lewis Index (TLI)                            0.892

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -29202.378  -29202.378
  Scaling correction factor                                  1.236
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -28193.464  -28193.464
  Scaling correction factor                                  1.311
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               58858.756   58858.756
  Bayesian (BIC)                             59840.385   59840.385
  Sample-size adjusted Bayesian (BIC)        59119.779   59119.779

Root Mean Square Error of Approximation:

  RMSEA                                          0.066       0.053
  90 Percent confidence interval - lower         0.063       0.050
  90 Percent confidence interval - upper         0.070       0.056
  P-value RMSEA <= 0.05                          0.000       0.030
                                                                  
  Robust RMSEA                                               0.062
  90 Percent confidence interval - lower                     0.058
  90 Percent confidence interval - upper                     0.065

Standardized Root Mean Square Residual:

  SRMR                                           0.074       0.074

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con =~                                                              
    PC01_01             1.000                               1.595    0.926
    PC01_02             0.990    0.027   36.128    0.000    1.579    0.894
    PC01_04             0.971    0.027   35.382    0.000    1.550    0.883
    PC01_05             1.002    0.024   42.276    0.000    1.598    0.907
    PC01_06             0.855    0.038   22.619    0.000    1.364    0.795
    PC01_07             0.995    0.023   43.626    0.000    1.587    0.921
  pri_delib =~                                                            
    PD01_01             1.000                               1.482    0.858
    PD01_02             0.665    0.049   13.468    0.000    0.985    0.641
    PD01_03             0.700    0.054   12.919    0.000    1.037    0.666
    PD01_04             0.836    0.047   17.644    0.000    1.239    0.726
    PD01_05             0.710    0.050   14.276    0.000    1.053    0.636
  pri_cau =~                                                              
    pri_con             1.000                               0.731    0.731
    pri_delib           0.980    0.450    2.176    0.030    0.771    0.771
  grats_inf =~                                                            
    GR01_01             1.000                               0.967    0.687
    GR01_02             1.023    0.076   13.446    0.000    0.989    0.811
    GR01_03             1.116    0.078   14.387    0.000    1.079    0.839
  grats_rel =~                                                            
    GR01_04             1.000                               1.176    0.891
    GR01_05             0.944    0.038   25.041    0.000    1.110    0.859
    GR01_06             0.874    0.046   19.097    0.000    1.028    0.695
  grats_par =~                                                            
    GR01_07             1.000                               1.186    0.815
    GR01_08             0.945    0.040   23.649    0.000    1.120    0.817
    GR01_09             0.960    0.039   24.523    0.000    1.139    0.813
  grats_ide =~                                                            
    GR01_10             1.000                               1.142    0.786
    GR01_11             1.005    0.041   24.249    0.000    1.147    0.884
    GR01_12             0.933    0.041   23.004    0.000    1.065    0.763
  grats_ext =~                                                            
    GR01_13             1.000                               0.830    0.506
    GR01_14             1.017    0.103    9.870    0.000    0.844    0.504
    GR01_15             1.564    0.187    8.369    0.000    1.299    0.850
  trust_community =~                                                      
    TR01_02             1.000                               1.041    0.821
    TR01_03             0.784    0.055   14.262    0.000    0.816    0.743
    TR01_04             0.906    0.051   17.611    0.000    0.943    0.817
  trust_provider =~                                                       
    TR01_06             1.000                               1.051    0.876
    TR01_07             0.858    0.039   22.173    0.000    0.902    0.780
    TR01_08             0.827    0.038   21.644    0.000    0.869    0.786
    TR01_10             0.789    0.038   20.599    0.000    0.830    0.705
    TR01_11             0.802    0.052   15.370    0.000    0.843    0.650
    TR01_12             1.088    0.039   27.695    0.000    1.144    0.850
  grats_meta =~                                                           
    grats_inf           1.000                               0.854    0.854
    grats_rel           1.306    0.104   12.591    0.000    0.917    0.917
    grats_par           1.364    0.113   12.099    0.000    0.950    0.950
    grats_ide           1.286    0.106   12.101    0.000    0.931    0.931
    grats_ext           0.778    0.104    7.494    0.000    0.774    0.774
    trust_communty      0.956    0.087   11.048    0.000    0.758    0.758
    trust_provider      1.011    0.089   11.410    0.000    0.794    0.794

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  self_dis_log ~                                                        
    pri_cau   (a1)   -0.416    0.199   -2.088    0.037   -0.485   -0.212
    grats_met (b1)    0.563    0.140    4.032    0.000    0.465    0.204
    male             -0.021    0.197   -0.109    0.913   -0.021   -0.005
    age               0.003    0.006    0.570    0.569    0.003    0.024
    edu               0.213    0.116    1.836    0.066    0.213    0.078
  GR01_01 ~                                                             
    male             -0.342    0.121   -2.833    0.005   -0.342   -0.122
    age              -0.005    0.004   -1.333    0.183   -0.005   -0.059
    edu               0.000    0.072    0.006    0.995    0.000    0.000
  GR01_02 ~                                                             
    male             -0.142    0.103   -1.378    0.168   -0.142   -0.058
    age              -0.007    0.003   -2.106    0.035   -0.007   -0.088
    edu              -0.037    0.060   -0.617    0.537   -0.037   -0.026
  GR01_03 ~                                                             
    male             -0.186    0.109   -1.713    0.087   -0.186   -0.073
    age              -0.006    0.004   -1.704    0.088   -0.006   -0.075
    edu              -0.076    0.063   -1.204    0.229   -0.076   -0.050
  GR01_04 ~                                                             
    male             -0.004    0.113   -0.037    0.971   -0.004   -0.002
    age               0.001    0.004    0.262    0.793    0.001    0.011
    edu              -0.021    0.066   -0.319    0.750   -0.021   -0.013
  GR01_05 ~                                                             
    male             -0.069    0.112   -0.614    0.539   -0.069   -0.027
    age              -0.001    0.004   -0.198    0.843   -0.001   -0.009
    edu               0.025    0.064    0.387    0.698    0.025    0.016
  GR01_06 ~                                                             
    male              0.030    0.125    0.241    0.809    0.030    0.010
    age              -0.011    0.004   -2.567    0.010   -0.011   -0.111
    edu              -0.087    0.074   -1.176    0.240   -0.087   -0.050
  GR01_07 ~                                                             
    male              0.075    0.125    0.602    0.547    0.075    0.026
    age              -0.006    0.004   -1.391    0.164   -0.006   -0.060
    edu               0.004    0.072    0.057    0.955    0.004    0.002
  GR01_08 ~                                                             
    male              0.006    0.116    0.052    0.959    0.006    0.002
    age              -0.004    0.004   -1.121    0.262   -0.004   -0.051
    edu               0.113    0.068    1.675    0.094    0.113    0.070
  GR01_09 ~                                                             
    male              0.090    0.119    0.757    0.449    0.090    0.032
    age              -0.004    0.004   -0.951    0.341   -0.004   -0.041
    edu               0.115    0.069    1.667    0.096    0.115    0.069
  GR01_10 ~                                                             
    male             -0.019    0.125   -0.156    0.876   -0.019   -0.007
    age              -0.008    0.004   -1.993    0.046   -0.008   -0.089
    edu              -0.021    0.074   -0.277    0.782   -0.021   -0.012
  GR01_11 ~                                                             
    male             -0.083    0.111   -0.749    0.454   -0.083   -0.032
    age              -0.001    0.004   -0.312    0.755   -0.001   -0.014
    edu              -0.053    0.065   -0.822    0.411   -0.053   -0.034
  GR01_12 ~                                                             
    male             -0.218    0.120   -1.820    0.069   -0.218   -0.078
    age              -0.004    0.004   -1.009    0.313   -0.004   -0.043
    edu              -0.049    0.071   -0.685    0.493   -0.049   -0.029
  GR01_13 ~                                                             
    male             -0.181    0.138   -1.311    0.190   -0.181   -0.055
    age              -0.023    0.004   -5.515    0.000   -0.023   -0.219
    edu               0.078    0.081    0.959    0.337    0.078    0.040
  GR01_14 ~                                                             
    male             -0.303    0.145   -2.091    0.036   -0.303   -0.090
    age              -0.007    0.005   -1.540    0.124   -0.007   -0.065
    edu               0.030    0.084    0.361    0.718    0.030    0.015
  GR01_15 ~                                                             
    male              0.048    0.132    0.360    0.719    0.048    0.016
    age              -0.005    0.004   -1.213    0.225   -0.005   -0.053
    edu               0.024    0.078    0.301    0.764    0.024    0.013
  PC01_01 ~                                                             
    male             -0.182    0.151   -1.206    0.228   -0.182   -0.053
    age              -0.004    0.005   -0.820    0.412   -0.004   -0.036
    edu               0.110    0.087    1.255    0.210    0.110    0.054
  PC01_02 ~                                                             
    male             -0.302    0.154   -1.966    0.049   -0.302   -0.085
    age              -0.008    0.005   -1.664    0.096   -0.008   -0.072
    edu               0.047    0.089    0.522    0.602    0.047    0.022
  PC01_04 ~                                                             
    male             -0.225    0.152   -1.475    0.140   -0.225   -0.064
    age              -0.010    0.005   -1.980    0.048   -0.010   -0.085
    edu               0.113    0.089    1.269    0.204    0.113    0.054
  PC01_05 ~                                                             
    male             -0.098    0.154   -0.636    0.525   -0.098   -0.028
    age              -0.006    0.005   -1.164    0.244   -0.006   -0.051
    edu               0.090    0.090    0.996    0.319    0.090    0.043
  PC01_06 ~                                                             
    male             -0.108    0.150   -0.722    0.470   -0.108   -0.032
    age              -0.005    0.005   -1.055    0.291   -0.005   -0.046
    edu               0.043    0.087    0.491    0.623    0.043    0.021
  PC01_07 ~                                                             
    male             -0.174    0.150   -1.160    0.246   -0.174   -0.050
    age              -0.006    0.005   -1.337    0.181   -0.006   -0.058
    edu               0.081    0.087    0.934    0.351    0.081    0.040
  TR01_02 ~                                                             
    male             -0.297    0.108   -2.744    0.006   -0.297   -0.117
    age              -0.004    0.004   -1.103    0.270   -0.004   -0.049
    edu               0.005    0.062    0.086    0.931    0.005    0.004
  TR01_03 ~                                                             
    male             -0.140    0.095   -1.480    0.139   -0.140   -0.064
    age              -0.002    0.003   -0.566    0.571   -0.002   -0.025
    edu               0.023    0.053    0.434    0.664    0.023    0.018
  TR01_04 ~                                                             
    male             -0.134    0.099   -1.361    0.173   -0.134   -0.058
    age              -0.004    0.003   -1.211    0.226   -0.004   -0.055
    edu              -0.003    0.060   -0.046    0.964   -0.003   -0.002
  TR01_06 ~                                                             
    male             -0.086    0.104   -0.831    0.406   -0.086   -0.036
    age               0.000    0.003    0.110    0.912    0.000    0.005
    edu              -0.051    0.058   -0.880    0.379   -0.051   -0.036
  TR01_07 ~                                                             
    male             -0.045    0.099   -0.450    0.653   -0.045   -0.019
    age               0.001    0.003    0.344    0.731    0.001    0.015
    edu               0.018    0.058    0.309    0.757    0.018    0.013
  TR01_08 ~                                                             
    male              0.046    0.095    0.480    0.631    0.046    0.021
    age              -0.004    0.003   -1.250    0.211   -0.004   -0.053
    edu               0.025    0.056    0.445    0.656    0.025    0.019
  TR01_10 ~                                                             
    male              0.091    0.100    0.909    0.363    0.091    0.039
    age              -0.004    0.003   -1.179    0.239   -0.004   -0.050
    edu              -0.055    0.058   -0.941    0.347   -0.055   -0.039
  TR01_11 ~                                                             
    male              0.027    0.112    0.245    0.806    0.027    0.011
    age               0.003    0.004    0.824    0.410    0.003    0.035
    edu              -0.093    0.065   -1.435    0.151   -0.093   -0.061
  TR01_12 ~                                                             
    male             -0.121    0.115   -1.045    0.296   -0.121   -0.045
    age              -0.002    0.004   -0.405    0.685   -0.002   -0.018
    edu              -0.146    0.068   -2.156    0.031   -0.146   -0.091
  PD01_01 ~                                                             
    male             -0.177    0.148   -1.197    0.231   -0.177   -0.051
    age              -0.015    0.005   -3.275    0.001   -0.015   -0.137
    edu              -0.026    0.085   -0.310    0.756   -0.026   -0.013
  PD01_02 ~                                                             
    male             -0.119    0.131   -0.906    0.365   -0.119   -0.039
    age              -0.014    0.004   -3.443    0.001   -0.014   -0.142
    edu               0.031    0.077    0.405    0.686    0.031    0.017
  PD01_03 ~                                                             
    male             -0.321    0.132   -2.424    0.015   -0.321   -0.103
    age              -0.004    0.004   -1.024    0.306   -0.004   -0.044
    edu               0.065    0.080    0.807    0.420    0.065    0.035
  PD01_04 ~                                                             
    male             -0.412    0.145   -2.846    0.004   -0.412   -0.121
    age              -0.009    0.005   -1.904    0.057   -0.009   -0.082
    edu               0.103    0.085    1.207    0.227    0.103    0.051
  PD01_05 ~                                                             
    male             -0.205    0.142   -1.438    0.150   -0.205   -0.062
    age              -0.012    0.004   -2.696    0.007   -0.012   -0.111
    edu              -0.002    0.084   -0.025    0.980   -0.002   -0.001

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_cau ~~                                                            
    grats_meta       -0.099    0.124   -0.795    0.427   -0.102   -0.102

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           3.369    0.292   11.557    0.000    3.369    1.955
   .PC01_02           3.769    0.304   12.399    0.000    3.769    2.135
   .PC01_04           3.571    0.297   12.020    0.000    3.571    2.036
   .PC01_05           3.414    0.304   11.229    0.000    3.414    1.937
   .PC01_06           3.215    0.288   11.155    0.000    3.215    1.875
   .PC01_07           3.461    0.294   11.780    0.000    3.461    2.008
   .PD01_01           4.493    0.290   15.507    0.000    4.493    2.602
   .PD01_02           3.997    0.248   16.102    0.000    3.997    2.601
   .PD01_03           4.432    0.270   16.438    0.000    4.432    2.845
   .PD01_04           4.506    0.295   15.283    0.000    4.506    2.640
   .PD01_05           5.000    0.276   18.089    0.000    5.000    3.019
   .GR01_01           5.296    0.247   21.424    0.000    5.296    3.763
   .GR01_02           5.895    0.205   28.694    0.000    5.895    4.835
   .GR01_03           5.800    0.221   26.272    0.000    5.800    4.511
   .GR01_04           4.923    0.211   23.377    0.000    4.923    3.730
   .GR01_05           5.109    0.217   23.539    0.000    5.109    3.952
   .GR01_06           5.297    0.252   21.013    0.000    5.297    3.581
   .GR01_07           4.896    0.236   20.767    0.000    4.896    3.363
   .GR01_08           5.062    0.238   21.233    0.000    5.062    3.691
   .GR01_09           4.754    0.237   20.070    0.000    4.754    3.395
   .GR01_10           4.977    0.255   19.492    0.000    4.977    3.425
   .GR01_11           5.158    0.227   22.705    0.000    5.158    3.973
   .GR01_12           5.136    0.233   22.000    0.000    5.136    3.679
   .GR01_13           5.091    0.259   19.644    0.000    5.091    3.101
   .GR01_14           3.454    0.281   12.310    0.000    3.454    2.061
   .GR01_15           4.582    0.266   17.223    0.000    4.582    2.998
   .TR01_02           5.083    0.219   23.224    0.000    5.083    4.010
   .TR01_03           4.951    0.189   26.178    0.000    4.951    4.505
   .TR01_04           4.871    0.200   24.361    0.000    4.871    4.223
   .TR01_06           5.521    0.205   26.991    0.000    5.521    4.600
   .TR01_07           5.134    0.197   26.024    0.000    5.134    4.440
   .TR01_08           5.232    0.188   27.764    0.000    5.232    4.728
   .TR01_10           5.955    0.193   30.909    0.000    5.955    5.060
   .TR01_11           4.855    0.218   22.270    0.000    4.855    3.745
   .TR01_12           5.581    0.231   24.175    0.000    5.581    4.149
   .self_dis_log      1.376    0.375    3.672    0.000    1.376    0.602
   .pri_con           0.000                               0.000    0.000
   .pri_delib         0.000                               0.000    0.000
    pri_cau           0.000                               0.000    0.000
   .grats_inf         0.000                               0.000    0.000
   .grats_rel         0.000                               0.000    0.000
   .grats_par         0.000                               0.000    0.000
   .grats_ide         0.000                               0.000    0.000
   .grats_ext         0.000                               0.000    0.000
   .trust_communty    0.000                               0.000    0.000
   .trust_provider    0.000                               0.000    0.000
    grats_meta        0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           0.403    0.050    7.990    0.000    0.403    0.136
   .PC01_02           0.580    0.102    5.666    0.000    0.580    0.186
   .PC01_04           0.630    0.078    8.100    0.000    0.630    0.205
   .PC01_05           0.534    0.064    8.326    0.000    0.534    0.172
   .PC01_06           1.068    0.116    9.245    0.000    1.068    0.363
   .PC01_07           0.430    0.065    6.609    0.000    0.430    0.145
   .PD01_01           0.718    0.109    6.565    0.000    0.718    0.241
   .PD01_02           1.336    0.128   10.401    0.000    1.336    0.566
   .PD01_03           1.317    0.127   10.359    0.000    1.317    0.543
   .PD01_04           1.306    0.147    8.883    0.000    1.306    0.449
   .PD01_05           1.588    0.128   12.371    0.000    1.588    0.579
   .GR01_01           1.006    0.105    9.541    0.000    1.006    0.508
   .GR01_02           0.489    0.068    7.200    0.000    0.489    0.329
   .GR01_03           0.465    0.070    6.632    0.000    0.465    0.281
   .GR01_04           0.358    0.045    7.937    0.000    0.358    0.206
   .GR01_05           0.438    0.055    7.903    0.000    0.438    0.262
   .GR01_06           1.101    0.109   10.135    0.000    1.101    0.503
   .GR01_07           0.705    0.072    9.762    0.000    0.705    0.332
   .GR01_08           0.611    0.067    9.153    0.000    0.611    0.325
   .GR01_09           0.648    0.071    9.106    0.000    0.648    0.331
   .GR01_10           0.791    0.072   11.054    0.000    0.791    0.375
   .GR01_11           0.365    0.054    6.810    0.000    0.365    0.216
   .GR01_12           0.795    0.074   10.688    0.000    0.795    0.408
   .GR01_13           1.856    0.149   12.490    0.000    1.856    0.688
   .GR01_14           2.056    0.123   16.681    0.000    2.056    0.732
   .GR01_15           0.640    0.115    5.587    0.000    0.640    0.274
   .TR01_02           0.496    0.068    7.272    0.000    0.496    0.308
   .TR01_03           0.536    0.058    9.204    0.000    0.536    0.444
   .TR01_04           0.432    0.050    8.611    0.000    0.432    0.325
   .TR01_06           0.331    0.035    9.577    0.000    0.331    0.230
   .TR01_07           0.523    0.051   10.297    0.000    0.523    0.391
   .TR01_08           0.464    0.041   11.335    0.000    0.464    0.379
   .TR01_10           0.690    0.056   12.303    0.000    0.690    0.498
   .TR01_11           0.962    0.082   11.670    0.000    0.962    0.572
   .TR01_12           0.480    0.061    7.877    0.000    0.480    0.265
   .self_dis_log      4.687    0.223   20.987    0.000    4.687    0.898
   .pri_con           1.185    0.645    1.838    0.066    0.466    0.466
   .pri_delib         0.890    0.624    1.426    0.154    0.405    0.405
    pri_cau           1.360    0.654    2.081    0.037    1.000    1.000
   .grats_inf         0.253    0.040    6.309    0.000    0.271    0.271
   .grats_rel         0.220    0.047    4.675    0.000    0.159    0.159
   .grats_par         0.138    0.052    2.637    0.008    0.098    0.098
   .grats_ide         0.175    0.044    3.997    0.000    0.134    0.134
   .grats_ext         0.277    0.069    4.027    0.000    0.401    0.401
   .trust_communty    0.460    0.055    8.356    0.000    0.425    0.425
   .trust_provider    0.409    0.051    8.083    0.000    0.370    0.370
    grats_meta        0.682    0.121    5.623    0.000    1.000    1.000

Model 4

Here, we exchange specific gratitudes for general gratitudes.

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 
grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05

self_dis_log ~ a1*pri_con + b1*grats_gen

# Covariates
self_dis_log + GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 ~ male + age + edu
"
fit <- sem(model, data = d, estimator = "MLR", missing = "ML")
summary(fit, fit = TRUE, std = TRUE)
lavaan 0.6-8 ended normally after 172 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        74
                                                      
                                                  Used       Total
  Number of observations                           558         559
  Number of missing patterns                         1            
                                                                  
Model Test User Model:
                                               Standard      Robust
  Test Statistic                                195.732     134.370
  Degrees of freedom                                 52          52
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.457
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                              6224.965    4243.430
  Degrees of freedom                               102         102
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.467

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.977       0.980
  Tucker-Lewis Index (TLI)                       0.954       0.961
                                                                  
  Robust Comparative Fit Index (CFI)                         0.980
  Robust Tucker-Lewis Index (TLI)                            0.961

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -9678.380   -9678.380
  Scaling correction factor                                  1.290
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -9580.514   -9580.514
  Scaling correction factor                                  1.359
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               19504.761   19504.761
  Bayesian (BIC)                             19824.763   19824.763
  Sample-size adjusted Bayesian (BIC)        19589.852   19589.852

Root Mean Square Error of Approximation:

  RMSEA                                          0.070       0.053
  90 Percent confidence interval - lower         0.060       0.044
  90 Percent confidence interval - upper         0.081       0.063
  P-value RMSEA <= 0.05                          0.001       0.267
                                                                  
  Robust RMSEA                                               0.064
  90 Percent confidence interval - lower                     0.051
  90 Percent confidence interval - upper                     0.078

Standardized Root Mean Square Residual:

  SRMR                                           0.030       0.030

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con =~                                                            
    PC01_01           1.000                               1.598    0.928
    PC01_02           0.988    0.027   36.123    0.000    1.580    0.895
    PC01_04           0.968    0.027   35.680    0.000    1.548    0.882
    PC01_05           0.999    0.024   42.430    0.000    1.597    0.906
    PC01_06           0.851    0.038   22.618    0.000    1.360    0.793
    PC01_07           0.994    0.023   43.564    0.000    1.588    0.921
  grats_gen =~                                                          
    GR02_01           1.000                               1.144    0.852
    GR02_02           1.121    0.033   33.587    0.000    1.283    0.905
    GR02_03           0.996    0.046   21.598    0.000    1.139    0.851
    GR02_04           0.962    0.047   20.475    0.000    1.100    0.837
    GR02_05           1.064    0.039   27.084    0.000    1.217    0.849

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  self_dis_log ~                                                        
    pri_con   (a1)   -0.204    0.061   -3.330    0.001   -0.327   -0.143
    grats_gen (b1)    0.205    0.087    2.360    0.018    0.235    0.103
    male             -0.022    0.197   -0.109    0.913   -0.022   -0.005
    age               0.003    0.006    0.570    0.569    0.003    0.024
    edu               0.213    0.116    1.836    0.066    0.213    0.078
  GR02_01 ~                                                             
    male             -0.127    0.116   -1.096    0.273   -0.127   -0.047
    age               0.000    0.004    0.091    0.927    0.000    0.004
    edu               0.005    0.068    0.073    0.942    0.005    0.003
  GR02_02 ~                                                             
    male             -0.067    0.120   -0.559    0.576   -0.067   -0.024
    age               0.006    0.004    1.542    0.123    0.006    0.068
    edu              -0.080    0.071   -1.127    0.260   -0.080   -0.047
  GR02_03 ~                                                             
    male             -0.025    0.116   -0.219    0.826   -0.025   -0.009
    age               0.001    0.004    0.310    0.756    0.001    0.014
    edu              -0.083    0.067   -1.237    0.216   -0.083   -0.052
  GR02_04 ~                                                             
    male              0.028    0.113    0.250    0.802    0.028    0.011
    age               0.005    0.004    1.304    0.192    0.005    0.057
    edu              -0.072    0.067   -1.072    0.284   -0.072   -0.046
  GR02_05 ~                                                             
    male             -0.140    0.124   -1.136    0.256   -0.140   -0.049
    age              -0.004    0.004   -0.874    0.382   -0.004   -0.039
    edu               0.013    0.073    0.173    0.862    0.013    0.007
  PC01_01 ~                                                             
    male             -0.182    0.151   -1.206    0.228   -0.182   -0.053
    age              -0.004    0.005   -0.820    0.412   -0.004   -0.036
    edu               0.110    0.087    1.255    0.210    0.110    0.054
  PC01_02 ~                                                             
    male             -0.302    0.154   -1.966    0.049   -0.302   -0.085
    age              -0.008    0.005   -1.663    0.096   -0.008   -0.072
    edu               0.047    0.089    0.522    0.602    0.047    0.022
  PC01_04 ~                                                             
    male             -0.225    0.152   -1.475    0.140   -0.225   -0.064
    age              -0.010    0.005   -1.980    0.048   -0.010   -0.085
    edu               0.113    0.089    1.269    0.204    0.113    0.054
  PC01_05 ~                                                             
    male             -0.098    0.154   -0.636    0.525   -0.098   -0.028
    age              -0.006    0.005   -1.164    0.244   -0.006   -0.051
    edu               0.090    0.090    0.996    0.319    0.090    0.043
  PC01_06 ~                                                             
    male             -0.108    0.150   -0.722    0.470   -0.108   -0.032
    age              -0.005    0.005   -1.055    0.291   -0.005   -0.046
    edu               0.043    0.087    0.491    0.623    0.043    0.021
  PC01_07 ~                                                             
    male             -0.174    0.150   -1.160    0.246   -0.174   -0.050
    age              -0.006    0.005   -1.337    0.181   -0.006   -0.058
    edu               0.081    0.087    0.934    0.351    0.081    0.040

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con ~~                                                            
    grats_gen        -0.280    0.097   -2.887    0.004   -0.153   -0.153

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           3.369    0.292   11.557    0.000    3.369    1.955
   .PC01_02           3.769    0.304   12.398    0.000    3.769    2.135
   .PC01_04           3.571    0.297   12.020    0.000    3.571    2.035
   .PC01_05           3.414    0.304   11.229    0.000    3.414    1.937
   .PC01_06           3.215    0.288   11.155    0.000    3.215    1.875
   .PC01_07           3.461    0.294   11.780    0.000    3.461    2.008
   .GR02_01           4.319    0.224   19.252    0.000    4.319    3.215
   .GR02_02           4.492    0.244   18.372    0.000    4.492    3.170
   .GR02_03           5.244    0.222   23.667    0.000    5.244    3.917
   .GR02_04           4.988    0.221   22.522    0.000    4.988    3.795
   .GR02_05           4.905    0.254   19.323    0.000    4.905    3.422
   .self_dis_log      1.376    0.375    3.673    0.000    1.376    0.602
    pri_con           0.000                               0.000    0.000
    grats_gen         0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           0.394    0.050    7.939    0.000    0.394    0.133
   .PC01_02           0.579    0.104    5.591    0.000    0.579    0.186
   .PC01_04           0.636    0.078    8.103    0.000    0.636    0.206
   .PC01_05           0.540    0.065    8.259    0.000    0.540    0.174
   .PC01_06           1.079    0.117    9.228    0.000    1.079    0.367
   .PC01_07           0.425    0.064    6.632    0.000    0.425    0.143
   .GR02_01           0.492    0.052    9.433    0.000    0.492    0.273
   .GR02_02           0.346    0.036    9.664    0.000    0.346    0.172
   .GR02_03           0.490    0.074    6.639    0.000    0.490    0.273
   .GR02_04           0.507    0.051   10.016    0.000    0.507    0.294
   .GR02_05           0.564    0.062    9.122    0.000    0.564    0.274
   .self_dis_log      4.999    0.208   23.979    0.000    4.999    0.958
    pri_con           2.555    0.144   17.730    0.000    1.000    1.000
    grats_gen         1.309    0.114   11.490    0.000    1.000    1.000