In what follows, you can find the analyses for the results we report in the paper. To see the underlying code, click on the button “code”.

Setup

We first load the packages; load and wrangle data; and extract sample characteristics and descriptives.

# install github packages
# devtools::install_github("tdienlin/td@v.0.0.2.3")  # uncomment to install
# devtools::install_github("tdienlin/td")  # uncomment to install

# define packages
packages <- c("brms", "cowplot", "devtools", "faoutlier", "GGally", "gganimate",
              "kableExtra", "knitr", "lavaan", "magrittr", "MVN", "psych", "pwr", 
              "quanteda", "semTools", "tidyverse", "td")

# load packages
lapply(packages, library, character.only = TRUE, quietly = TRUE)

# load data
# please note that in a prior step several different data sets were merged using information such as case_taken or IP-addresses. To guarantee the privacy of the participants, these data were deleted after merging.
d_raw <- read_csv("data/data_raw.csv")

# recode variables
d <- d_raw %>% 
  dplyr::rename(
    "male" = "SD01", 
    "age" = "SD02_01", 
    "state" = "SD03", 
    "edu_fac" = "SD04"
    ) %>% 
  mutate(
    
    #general
    version = factor(.$VE01_01, labels = c("Control", "Like", "Like & Dislike")),
    version_no = recode(version, "Control" = 1, "Like" = 2, "Like & Dislike" = 3),
    male = replace_na(.$male, "[3]") %>% dplyr::recode(., "männlich [1]" = 1, "weiblich [2]" = 0),
    age_grp = cut(.$age, 
                  breaks = c(0, 29, 39, 49, 59, 100), 
                  labels = c("<30", "30-39", "40-49", "50-59", ">59")),
    
    # contrasts
    like = recode(version, "Control" = 0, "Like" = 1, "Like & Dislike" = 0),
    likedislike = recode(version, "Control" = 0, "Like" = 0, "Like & Dislike" = 1),
    control = recode(version, "Control" = 1, "Like" = 0, "Like & Dislike" = 0),
    lik_ctrl = recode(version, "Control" = 0, "Like" = 1),
    lik_ctrl = na_if(lik_ctrl, "Like & Dislike"),
    likdis_ctrl = recode(version, "Control" = 0, "Like & Dislike" = 1),
    likdis_ctrl = na_if(likdis_ctrl, "Like"),
    likdis_lik = recode(version, "Like" = 0, "Like & Dislike" = 1),
    likdis_lik = na_if(likdis_lik, "Control"),
    likdislik_ctrl = recode(version, "Control" = 0, "Like & Dislike" = 1),
    likdislik_ctrl = na_if(likdislik_ctrl, "Like"),
    
    # recode
    edu = recode(edu_fac, 
                 "Hauptschulabschluss/Volksschulabschluss" = 1, 
                 "Noch Schüler" = 1,
                 "Realschulabschluss (Mittlere Reife)" = 1,
                 "Abschluss Polytechnische Oberschule 10. Klasse (vor 1965: 8. Klasse)" = 1,
                 "Anderer Schulabschluss:" = 1,
                 "Fachhochschulreife (Abschluss einer Fachoberschule)" = 2,
                 "Abitur, allgemeine oder fachgebundene Hochschulreife (Gymnasium bzw. EOS)" = 2,
                 "Hochschulabschluss" = 3),
    PC01_03 = 8 - PC01_03, 
    SE01_05 = 8 - SE01_05, 
    SE01_06 = 8 - SE01_06,
    
    # behavioral data
    COMM = replace_na(.$words, 0),
    self_dis = words + (reactions * 2),
    time_read_MIN = time_read / 60,
    time_sum_min_t2 = TIME_SUM_t2 / 60,
    
    # take logarithm
    posts_log = log1p(.$post_count),
    time_log = log1p(.$time_read),
    posts_read_count_log = log1p(.$posts_read_count),
    words_log = log1p(.$words),
    COMM_log = log1p(COMM),
    self_dis_log = log1p(self_dis)
  )

# variable labels
var_names <- c("Privacy concerns", 
               "General gratifications", 
               "Specific gratifications",
               "Privacy deliberation", 
               "Self-efficacy", 
               "General trust", 
               "Specific trust",
               "Communication log")

var_names_breaks <- c("Privacy\nconcerns", 
                      "General\ngratifications", 
                      "Specific\ngratifications",
                      "Privacy\ndeliberation", 
                      "Self-\nefficacy", 
                      "General\ntrust", 
                      "Specific\ntrust",
                      "Communi-\ncation (log)")

# Extract sample characteristics and descriptives.
# sample descriptives t1
n_t1 <- nrow(d)
age_t1_m <- mean(d$age, na.rm = TRUE)
male_t1_m <- mean(d$male, na.rm = TRUE)
college_t1_m <- table(d$edu)[3] / n_t1

# sample descriptives t2
n_t2 <- filter(d, !is.na(id_survey_t2)) %>% nrow()
age_t2_m <- filter(d, !is.na(id_survey_t2))$age %>% mean()
male_t2_m <- filter(d, !is.na(id_survey_t2))$male %>% mean(na.rm = TRUE)
college_t2_m <- filter(d, !is.na(id_survey_t2))$edu %>% table() %>% .[3] / n_t2

# descriptives users
n_users <- filter(d, !is.na(post_count)) %>% nrow()

# characteristics of posts
n_comments <- sum(d$post_count, na.rm = TRUE)
n_words <- sum(d$words, na.rm = TRUE)
n_time <- sum(d$time_read_MIN, na.rm = TRUE)
n_posts <- sum(d$post_count, na.rm = TRUE)

# filter unmatched cases
d <- filter(d, !is.na(post_count) & !is.na(id_survey_t2))  # Use only completes
n_matched <- nrow(d)

# save data file with all participants to compare results
d_all <- d

Filter Participants

We filtered participants who answered the questionnaire in less than three minutes, which we considered to be unreasonably fast.

# filter speeders
time_crit <- 3  # minimum time on survey
n_speeding <- nrow(filter(d, time_sum_min_t2 < time_crit))
d <- filter(d, time_sum_min_t2 >= time_crit)  # Deletion of fast respondents

We inspected the data manually for cases with obvious response patterns. The following cases show extreme response patterns (alongside fast response times), and were hence removed.

# identify response patterns
resp_pattern <- c("ANIEVLK9F2SW", "BN4MAOWZO7W2"  # clear response pattern
)
n_resp_pattern <- length(resp_pattern)
# infl_cases_tokens <- infl_cases_tokens[!infl_cases_tokens %in% resp_pattern]

d %>% filter(case_token %in% resp_pattern) %>% select(case_token, GR01_01:SE01_06, topics_entered:reactions, -SO01_01, TIME_SUM_t1, 
    TIME_SUM_t2) %>% kable() %>% kable_styling("striped") %>% scroll_box(width = "100%")
case_token GR01_01 GR01_02 GR01_03 GR01_04 GR01_05 GR01_06 GR01_07 GR01_08 GR01_09 GR01_10 GR01_11 GR01_12 GR01_13 GR01_14 GR01_15 GR02_01 GR02_02 GR02_03 GR02_04 GR02_05 PC01_01 PC01_02 PC01_03 PC01_04 PC01_05 PC01_06 PC01_07 TR01_01 TR01_02 TR01_03 TR01_04 TR01_05 TR01_06 TR01_07 TR01_08 TR01_09 TR01_10 TR01_11 TR01_12 PD01_01 PD01_02 PD01_03 PD01_04 PD01_05 SE01_01 SE01_02 SE01_03 SE01_04 SE01_05 SE01_06 topics_entered posts_read_count time_read topic_count post_count words reactions TIME_SUM_t1 TIME_SUM_t2
BN4MAOWZO7W2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 7 7 7 7 4 1 7 1 4 1 1 1 7 7 4 7 7 7 7 7 7 1 1 1 1 7 1 6 27 211 0 1 2 0 37 246
ANIEVLK9F2SW 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 1 1 1 1 5 1 1 7 5 7 1 1 7 3 151 1518 0 2 73 0 66 469
d %<>% filter(!case_token %in% resp_pattern)

# sample descriptives final data set
n_final <- nrow(d)
age_final_m <- mean(d$age)
male_final_m <- mean(d$male, na.rm = TRUE)
college_final_m <- table(d$edu)[[3]]/n_final

Measures

Privacy concerns

Items

Using the participation platform I had …

  1. … concerns about what happens to my data.
  2. … concerns about disclosing information about myself.
  3. … no concerns. (reversed)
  4. … concerns that others could discover my real identity (i.e. my last and first name).
  5. … concerns that information about myself could fall into wrong hands.
  6. … concerns that others could discover what my political views are.
  7. … concerns about my privacy.

Distributions

ggplot(gather(select(d, starts_with("PC01"))), mapping = aes(x = value)) + geom_bar() + facet_wrap(~key, nrow = 1) + theme_bw()

des_pricon <- select(d, starts_with("PC01")) %>% apply(1, mean, na.rm = TRUE) %>% as.data.frame() %>% summarise(m = mean(., 
    na.rm = TRUE), sd = sd(., na.rm = TRUE))

CFA

name <- "pricon"
model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_03 + PC01_04 + PC01_05 + PC01_06 + PC01_07
"
fit <- lavaan::sem(model = model, data = d, estimator = "MLR", missing = "ML")

Model fit:

(factor_val <- fit_tab(fit, reliability = TRUE, scaled = TRUE))
  chisq df pvalue   cfi   tli  rmsea   srmr omega alpha   ave
1  16.1 14  0.307 0.999 0.998 0.0164 0.0104 0.947 0.944 0.724
assign(paste0(name, "_factor_val"), factor_val)

Factor loadings:

inspect(fit, what = "std")$lambda
        pri_cn
PC01_01  0.931
PC01_02  0.901
PC01_03  0.547
PC01_04  0.890
PC01_05  0.908
PC01_06  0.795
PC01_07  0.928

Shows that PC01_03 doesn’t load well. As it’s an inverted item that’s not surprising. Also from a theoretic perspective it’s suboptimal, because it doesn’t explicitly focus on privacy, but just concerns in general. Will be deleted.

CFA 2

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07
"
fit <- lavaan::sem(model = model, data = d, estimator = "MLR", missing = "ML")

Model fit:

(factor_val <- fit_tab(fit, reliability = TRUE, scaled = TRUE))
  chisq df pvalue   cfi   tli  rmsea    srmr omega alpha   ave
1    11  9  0.273 0.998 0.997 0.0201 0.00963  0.96 0.959 0.799
assign(paste0(name, "_factor_val"), factor_val)

Factor loadings:

inspect(fit, what = "std")$lambda
        pri_cn
PC01_01  0.931
PC01_02  0.901
PC01_04  0.891
PC01_05  0.909
PC01_06  0.796
PC01_07  0.926

Updated version shows good fit.

Gratifications general

Items

Using the participation platform …

  1. … had many benefits for me.
  2. … has paid off for me.
  3. … was worthwhile.
  4. … was fun.
  5. … has brought me further regarding content.

Distributions

ggplot(gather(select(d, starts_with("GR02"))), mapping = aes(x = value)) + geom_bar() + facet_wrap(~key, nrow = 1) + theme_bw()

des_grats_gen <- select(d, starts_with("GR02")) %>% apply(1, mean, na.rm = TRUE) %>% as.data.frame() %>% summarise(m = mean(., 
    na.rm = TRUE), sd = sd(., na.rm = TRUE))

CFA

name <- "grats_general"
model <- "
grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
"
fit <- lavaan::sem(model = model, data = d, estimator = "MLR", missing = "ML")

Model fit:

(factor_val <- fit_tab(fit, reliability = TRUE, scaled = TRUE))
  chisq df   pvalue   cfi   tli rmsea   srmr omega alpha   ave
1    34  5 2.35e-06 0.976 0.951 0.102 0.0193 0.934 0.934 0.741
assign(paste0(name, "_factor_val"), factor_val)

Factor loadings:

inspect(fit, what = "std")$lambda
        grts_g
GR02_01  0.853
GR02_02  0.908
GR02_03  0.851
GR02_04  0.837
GR02_05  0.848

Gratifications specific

Items

Using the participation platform it has been possible for me …

Information

  1. … to learn things I would not otherwise have noticed.
  2. … to hear the opinion of others.
  3. … to learn how other people tick.

Relevance

  1. … to react to a subject that is very dear to me.
  2. … to react to a subject that is important to me.
  3. … to react to a subject that I am affected by.

Political participation

  1. … to engage politically.
  2. … to discuss political issues.
  3. … to pursue my political interest.

Idealism

  1. … to try to improve society.
  2. … to advocate to something meaningful.
  3. … to serve a good purpose.

Extrinsic benefits

  1. … to do the responsible persons a favor.
  2. … to soothe my guilty consciences.
  3. … to fulfil my civic duty.

Distributions

ggplot(gather(select(d, starts_with("GR01"))), mapping = aes(x = value)) + geom_bar() + facet_wrap(~key, nrow = 2) + theme_bw()

des_grats_spec <- select(d, starts_with("GR01")) %>% apply(1, mean, na.rm = TRUE) %>% as.data.frame() %>% summarise(m = mean(., 
    na.rm = TRUE), sd = sd(., na.rm = TRUE))

CFA

name <- "grats_specific"
model <- "
  grats_inf =~ GR01_01 + GR01_02 + GR01_03 
  grats_rel =~ GR01_04 + GR01_05 + GR01_06 
  grats_par =~ GR01_07 + GR01_08 + GR01_09
  grats_ide =~ GR01_10 + GR01_11 + GR01_12 
  grats_ext =~ GR01_13 + GR01_14 + GR01_15
  grats_spec =~ grats_inf + grats_rel + grats_par + grats_ide + grats_ext
"
fit <- lavaan::sem(model = model, data = d, estimator = "MLR", missing = "ML")

Model fit:

(factor_val <- fit_tab(fit, reliability = TRUE, scaled = TRUE))
  chisq df pvalue   cfi   tli  rmsea   srmr omega alpha   ave
1   270 85      0 0.941 0.928 0.0624 0.0527 0.946 0.933 0.586
assign(paste0(name, "_factor_val"), factor_val)

Factor loadings:

inspect(fit, what = "std")$lambda
        grts_n grts_r grts_p grts_d grts_x grts_s
GR01_01  0.688  0.000  0.000  0.000  0.000      0
GR01_02  0.819  0.000  0.000  0.000  0.000      0
GR01_03  0.851  0.000  0.000  0.000  0.000      0
GR01_04  0.000  0.891  0.000  0.000  0.000      0
GR01_05  0.000  0.852  0.000  0.000  0.000      0
GR01_06  0.000  0.704  0.000  0.000  0.000      0
GR01_07  0.000  0.000  0.826  0.000  0.000      0
GR01_08  0.000  0.000  0.811  0.000  0.000      0
GR01_09  0.000  0.000  0.816  0.000  0.000      0
GR01_10  0.000  0.000  0.000  0.796  0.000      0
GR01_11  0.000  0.000  0.000  0.882  0.000      0
GR01_12  0.000  0.000  0.000  0.762  0.000      0
GR01_13  0.000  0.000  0.000  0.000  0.519      0
GR01_14  0.000  0.000  0.000  0.000  0.513      0
GR01_15  0.000  0.000  0.000  0.000  0.848      0

Privacy deliberation

Items

Using the participation platform …

  1. … I have considered whether I could be disadvantaged by writing a comment.
  2. … I have considered whether I could be advantaged by writing a comment.
  3. … I have weighed up the advantages and disadvantages of writing a comment.
  4. … I have thought about consequences of a possible comment.
  5. … I have considered whether I should write a comment or not.

Distributions

ggplot(gather(select(d, starts_with("PD01"))), mapping = aes(x = value)) + geom_bar() + facet_wrap(~key, nrow = 1) + theme_bw()

des_pridel <- select(d, starts_with("PD01")) %>% apply(1, mean, na.rm = TRUE) %>% as.data.frame() %>% summarise(m = mean(., 
    na.rm = TRUE), sd = sd(., na.rm = TRUE))

CFA

name <- "pridel"
model <- "
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
"
fit <- lavaan::sem(model = model, data = d, estimator = "MLR", missing = "ML")

Model fit:

(factor_val <- fit_tab(fit, reliability = TRUE, scaled = TRUE))
  chisq df  pvalue  cfi  tli  rmsea   srmr omega alpha   ave
1  15.6  5 0.00825 0.98 0.96 0.0614 0.0235 0.848 0.843 0.532
assign(paste0(name, "_factor_val"), factor_val)

Factor loadings:

inspect(fit, what = "std")$lambda
        pr_dlb
PD01_01  0.849
PD01_02  0.653
PD01_03  0.691
PD01_04  0.752
PD01_05  0.656

Trust general

Items

   1. The other users seemed trustworthy.
   5. The operators of the participation platform seemed trustworthy.
   9. The website seemed trustworthy.

Distributions

ggplot(gather(select(d, TR01_01, TR01_05, TR01_09)), mapping = aes(x = value)) + geom_bar() + facet_wrap(~key, nrow = 1) + 
    theme_bw()

des_trust_gen <- select(d, TR01_01, TR01_05, TR01_09) %>% apply(1, mean, na.rm = TRUE) %>% as.data.frame() %>% summarise(m = mean(., 
    na.rm = TRUE), sd = sd(., na.rm = TRUE))

CFA

name <- "trust_gen"
model <- "
trust =~ TR01_01 + a*TR01_05 + a*TR01_09
"
fit <- lavaan::sem(model = model, data = d, estimator = "MLR", missing = "ML")

Model fit:

(factor_val <- fit_tab(fit, reliability = TRUE, scaled = TRUE))
  chisq df pvalue   cfi   tli  rmsea   srmr omega alpha   ave
1  2.07  1   0.15 0.998 0.993 0.0438 0.0125 0.873 0.864 0.701
assign(paste0(name, "_factor_val"), factor_val)

Factor loadings:

inspect(fit, what = "std")$lambda
        trust
TR01_01 0.660
TR01_05 0.923
TR01_09 0.898

Note that we constrained Items 5 and Item 9 to be equal. Explanation: First, they are theoretically related. Second, not constraining would yield to just-identified model, for which model fit cannot be interpreted meaningfully.

Trust specific

Items

Community

  1. The comments of other users were useful.
  2. The other users had good intentions.
  3. I could rely on the statements of other users.

Provider

  1. The operators of the participation platform have done a good job.
  2. It was important to the operators that the users are satisfied with the participation platform.
  3. I could rely on the statements of the operators of the participation platform.

Information System

  1. The website worked well.
  2. I had the impression that my data was necessary for the use of the website.
  3. I found the website useful.

Distributions

ggplot(gather(select(d, TR01_02:TR01_04, TR01_06:TR01_08, TR01_10:TR01_12)), mapping = aes(x = value)) + geom_bar() + facet_wrap(~key, 
    nrow = 1) + theme_bw()

des_trust_spec <- select(d, TR01_02:TR01_04, TR01_06:TR01_08, TR01_10:TR01_12) %>% apply(1, mean, na.rm = TRUE) %>% as.data.frame() %>% 
    summarise(m = mean(., na.rm = TRUE), sd = sd(., na.rm = TRUE))

CFA

name <- "trust_spec"
model <- "
trust_community =~ TR01_02 + TR01_03 + TR01_04
trust_provider =~ TR01_06 + TR01_07 + TR01_08
trust_system =~ TR01_10 + TR01_11 + TR01_12

trust =~ trust_community + trust_provider + trust_system
"
fit <- lavaan::sem(model = model, data = d, estimator = "MLR", missing = "ML")

Model fit:

(factor_val <- fit_tab(fit, reliability = TRUE, scaled = TRUE))
  chisq df   pvalue   cfi   tli  rmsea   srmr omega alpha   ave
1  89.1 24 2.02e-09 0.963 0.944 0.0697 0.0351  0.93 0.921 0.613
assign(paste0(name, "_factor_val"), factor_val)

Factor loadings:

inspect(fit, what = "std")$lambda
        trst_c trst_p trst_s trust
TR01_02  0.814  0.000  0.000     0
TR01_03  0.765  0.000  0.000     0
TR01_04  0.822  0.000  0.000     0
TR01_06  0.000  0.884  0.000     0
TR01_07  0.000  0.779  0.000     0
TR01_08  0.000  0.793  0.000     0
TR01_10  0.000  0.000  0.690     0
TR01_11  0.000  0.000  0.662     0
TR01_12  0.000  0.000  0.817     0

CFA 2

Because there was Heywoodcase, we now also run a model in which the subdimensions provider and system are combined.

name <- "trust_spec"
model <- "
trust_community =~ TR01_02 + TR01_03 + TR01_04
trust_provider =~ TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12
trust =~ b*trust_community + b*trust_provider
"
fit <- lavaan::sem(model = model, data = d, estimator = "MLR", missing = "ML")

Model fit:

(factor_val <- fit_tab(fit, reliability = TRUE, scaled = TRUE))
  chisq df   pvalue   cfi   tli  rmsea   srmr omega alpha  ave
1  99.5 26 1.57e-10 0.958 0.942 0.0711 0.0369 0.931 0.921 0.62
assign(paste0(name, "_factor_val"), factor_val)

Factor loadings:

inspect(fit, what = "std")$lambda
        trst_c trst_p trust
TR01_02  0.808  0.000     0
TR01_03  0.773  0.000     0
TR01_04  0.821  0.000     0
TR01_06  0.000  0.877     0
TR01_07  0.000  0.777     0
TR01_08  0.000  0.797     0
TR01_10  0.000  0.705     0
TR01_11  0.000  0.667     0
TR01_12  0.000  0.840     0

Warning disappears, results show adequate fit.

Self-efficacy

Items

  1. In principle, I felt able to write a comment.
  2. I felt technically competent enough to write a comment.
  3. In terms of the topic, I felt competent enough to express my opinion.
  4. I found it easy to express my opinion regarding the topic.
  5. I found it complicated to write a comment. (reversed)
  6. I was overburdened to write a comment. (reversed)

Distributions

ggplot(gather(select(d, starts_with("SE01"))), mapping = aes(x = value)) + geom_bar() + facet_wrap(~key, nrow = 1) + theme_bw()

des_selfeff <- select(d, starts_with("SE01")) %>% apply(1, mean, na.rm = TRUE) %>% as.data.frame() %>% summarise(m = mean(., 
    na.rm = TRUE), sd = sd(., na.rm = TRUE))

CFA

name <- "self-eff"
model <- "
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04 + SE01_05 + SE01_06
"
fit <- lavaan::sem(model = model, data = d, estimator = "MLR", missing = "ML")

Model fit:

(factor_val <- fit_tab(fit, reliability = TRUE, scaled = TRUE))
  chisq df   pvalue  cfi   tli rmsea   srmr omega alpha  ave
1  96.1  9 1.11e-16 0.86 0.766 0.132 0.0671 0.851 0.854 0.49
assign(paste0(name, "_factor_val"), factor_val)

Factor loadings:

inspect(fit, what = "std")$lambda
        slf_ff
SE01_01  0.842
SE01_02  0.689
SE01_03  0.764
SE01_04  0.801
SE01_05  0.528
SE01_06  0.633

Shows significant misfit. We will delete inverted items, while allowing covariations between Items 1 and 2 (tech-oriented) and Items 3 and 4 (topic-oriented).

CFA 2

name <- "selfeff"
model <- "
self_eff_pos =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
SE01_01 ~~ x*SE01_02
SE01_03 ~~ x*SE01_04
"
fit <- lavaan::sem(model = model, data = d, estimator = "MLR", missing = "ML")

Model fit:

(factor_val <- fit_tab(fit, reliability = TRUE, scaled = TRUE))
  chisq df pvalue   cfi   tli  rmsea   srmr omega alpha   ave
1  3.23  1 0.0721 0.993 0.957 0.0633 0.0136 0.833 0.862 0.592
assign(paste0(name, "_factor_val"), factor_val)

Factor loadings:

inspect(fit, what = "std")$lambda
        slf_f_
SE01_01  0.828
SE01_02  0.675
SE01_03  0.779
SE01_04  0.787

Adapted version shows better and adequate fit.

Communication

Density plot

ggplot(gather(select(d, COMM)), mapping = aes(x = value)) + geom_density() + facet_wrap(~key, nrow = 1) + theme_bw()

We see that Communication is severely skewed. Will hence be log-scaled for SEMs.

Communication Logged

ggplot(gather(select(d, COMM_log)), mapping = aes(x = value)) + geom_density() + facet_wrap(~key, nrow = 1) + theme_bw()

Baseline model

In what follows, please find the results of all variables combined in one model. This model will be used to extract factor scores.

model_baseline <- "
  pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07
  grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
  grats_inf =~ GR01_01 + GR01_02 + GR01_03 
  grats_rel =~ GR01_04 + GR01_05 + GR01_06 
  grats_par =~ GR01_07 + GR01_08 + GR01_09
  grats_ide =~ GR01_10 + GR01_11 + GR01_12 
  grats_ext =~ GR01_13 + GR01_14 + GR01_15
  grats_spec =~ grats_inf + grats_rel + grats_par + grats_ide + grats_ext
  pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
  trust_gen =~ TR01_01 + TR01_05 + TR01_09
  trust_community =~ TR01_02 + TR01_03 + TR01_04
  trust_provider =~ TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12
  trust_spec =~ trust_community + trust_provider
  self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
    SE01_01 ~~ x*SE01_02
    SE01_03 ~~ x*SE01_04
  comm_log =~ COMM_log
  
 comm_log ~~ a1*pri_con + b1*grats_gen + c1*pri_delib + d1*self_eff + e1*trust_spec + f1*trust_gen + g1*grats_spec
"

fit_baseline <- lavaan::sem(model_baseline, data = d, missing = "ML")
summary(fit_baseline, standardized = TRUE, fit.measures = TRUE)
lavaan 0.6-8 ended normally after 179 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       180
  Number of equality constraints                     1
                                                      
  Number of observations                           559
  Number of missing patterns                         3
                                                      
Model Test User Model:
                                                      
  Test statistic                              3218.628
  Degrees of freedom                              1045
  P-value (Chi-square)                           0.000

Model Test Baseline Model:

  Test statistic                             22544.020
  Degrees of freedom                              1128
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.899
  Tucker-Lewis Index (TLI)                       0.890

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -37703.096
  Loglikelihood unrestricted model (H1)     -36093.783
                                                      
  Akaike (AIC)                               75764.193
  Bayesian (BIC)                             76538.574
  Sample-size adjusted Bayesian (BIC)        75970.341

Root Mean Square Error of Approximation:

  RMSEA                                          0.061
  90 Percent confidence interval - lower         0.059
  90 Percent confidence interval - upper         0.063
  P-value RMSEA <= 0.05                          0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.065

Parameter Estimates:

  Standard errors                             Standard
  Information                                 Observed
  Observed information based on                Hessian

Latent Variables:
                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con =~                                                              
    PC01_01             1.000                               1.602    0.929
    PC01_02             0.994    0.027   36.765    0.000    1.592    0.901
    PC01_04             0.977    0.027   35.599    0.000    1.565    0.892
    PC01_05             1.002    0.026   38.005    0.000    1.605    0.910
    PC01_06             0.855    0.032   26.996    0.000    1.369    0.798
    PC01_07             0.996    0.025   40.258    0.000    1.595    0.925
  grats_gen =~                                                            
    GR02_01             1.000                               1.130    0.842
    GR02_02             1.119    0.040   28.018    0.000    1.265    0.893
    GR02_03             1.029    0.040   25.981    0.000    1.163    0.869
    GR02_04             0.989    0.039   25.057    0.000    1.117    0.850
    GR02_05             1.071    0.042   25.331    0.000    1.211    0.845
  grats_inf =~                                                            
    GR01_01             1.000                               0.978    0.696
    GR01_02             1.017    0.062   16.518    0.000    0.996    0.816
    GR01_03             1.113    0.066   16.802    0.000    1.089    0.847
  grats_rel =~                                                            
    GR01_04             1.000                               1.175    0.891
    GR01_05             0.943    0.034   27.537    0.000    1.108    0.857
    GR01_06             0.878    0.046   19.093    0.000    1.032    0.698
  grats_par =~                                                            
    GR01_07             1.000                               1.192    0.819
    GR01_08             0.938    0.042   22.085    0.000    1.119    0.816
    GR01_09             0.961    0.043   22.317    0.000    1.146    0.819
  grats_ide =~                                                            
    GR01_10             1.000                               1.149    0.791
    GR01_11             0.999    0.043   23.253    0.000    1.148    0.884
    GR01_12             0.927    0.048   19.459    0.000    1.065    0.764
  grats_ext =~                                                            
    GR01_13             1.000                               0.851    0.519
    GR01_14             1.003    0.108    9.321    0.000    0.853    0.510
    GR01_15             1.526    0.144   10.609    0.000    1.298    0.850
  grats_spec =~                                                           
    grats_inf           1.000                               0.843    0.843
    grats_rel           1.314    0.089   14.744    0.000    0.922    0.922
    grats_par           1.379    0.097   14.187    0.000    0.954    0.954
    grats_ide           1.306    0.095   13.803    0.000    0.938    0.938
    grats_ext           0.806    0.088    9.173    0.000    0.781    0.781
  pri_delib =~                                                            
    PD01_01             1.000                               1.493    0.866
    PD01_02             0.676    0.041   16.551    0.000    1.010    0.658
    PD01_03             0.704    0.043   16.326    0.000    1.052    0.676
    PD01_04             0.848    0.044   19.138    0.000    1.267    0.743
    PD01_05             0.718    0.045   15.897    0.000    1.072    0.648
  trust_gen =~                                                            
    TR01_01             1.000                               0.824    0.715
    TR01_05             1.236    0.063   19.681    0.000    1.019    0.886
    TR01_09             1.331    0.066   20.020    0.000    1.097    0.908
  trust_community =~                                                      
    TR01_02             1.000                               1.020    0.805
    TR01_03             0.828    0.044   18.964    0.000    0.844    0.768
    TR01_04             0.938    0.045   21.037    0.000    0.957    0.830
  trust_provider =~                                                       
    TR01_06             1.000                               1.036    0.863
    TR01_07             0.861    0.038   22.577    0.000    0.892    0.770
    TR01_08             0.862    0.036   24.083    0.000    0.893    0.806
    TR01_10             0.802    0.040   19.829    0.000    0.831    0.706
    TR01_11             0.826    0.046   17.809    0.000    0.856    0.660
    TR01_12             1.105    0.041   26.805    0.000    1.145    0.852
  trust_spec =~                                                           
    trust_communty      1.000                               0.855    0.855
    trust_provider      1.157    0.062   18.791    0.000    0.974    0.974
  self_eff =~                                                             
    SE01_01             1.000                               1.135    0.822
    SE01_02             0.808    0.046   17.407    0.000    0.918    0.680
    SE01_03             0.923    0.048   19.105    0.000    1.048    0.781
    SE01_04             0.940    0.047   19.950    0.000    1.067    0.791
  comm_log =~                                                             
    COMM_log            1.000                               2.311    1.000

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .SE01_01 ~~                                                            
   .SE01_02    (x)    0.115    0.029    3.999    0.000    0.115    0.148
 .SE01_03 ~~                                                            
   .SE01_04    (x)    0.115    0.029    3.999    0.000    0.115    0.167
  pri_con ~~                                                            
    comm_log  (a1)   -0.559    0.161   -3.460    0.001   -0.151   -0.151
  grats_gen ~~                                                          
    comm_log  (b1)    0.298    0.115    2.588    0.010    0.114    0.114
  pri_delib ~~                                                          
    comm_log  (c1)   -0.653    0.160   -4.090    0.000   -0.189   -0.189
  self_eff ~~                                                           
    comm_log  (d1)    1.016    0.132    7.711    0.000    0.387    0.387
  trust_spec ~~                                                         
    comm_log  (e1)    0.346    0.093    3.737    0.000    0.172    0.172
  trust_gen ~~                                                          
    comm_log  (f1)    0.326    0.087    3.753    0.000    0.171    0.171
  grats_spec ~~                                                         
    comm_log  (g1)    0.426    0.089    4.770    0.000    0.224    0.224
  pri_con ~~                                                            
    grats_gen        -0.284    0.082   -3.460    0.001   -0.157   -0.157
    grats_spc        -0.109    0.060   -1.823    0.068   -0.083   -0.083
    pri_delib         1.356    0.131   10.331    0.000    0.567    0.567
    trust_gen        -0.555    0.069   -8.090    0.000   -0.420   -0.420
    trust_spc        -0.410    0.068   -6.006    0.000   -0.294   -0.294
    self_eff         -0.384    0.088   -4.351    0.000   -0.211   -0.211
  grats_gen ~~                                                          
    grats_spc         0.734    0.071   10.355    0.000    0.787    0.787
    pri_delib        -0.073    0.080   -0.912    0.362   -0.043   -0.043
    trust_gen         0.570    0.057    9.966    0.000    0.612    0.612
    trust_spc         0.761    0.068   11.193    0.000    0.772    0.772
    self_eff          0.464    0.066    6.997    0.000    0.362    0.362
  grats_spec ~~                                                         
    pri_delib         0.011    0.059    0.192    0.847    0.009    0.009
    trust_gen         0.448    0.050    9.021    0.000    0.659    0.659
    trust_spc         0.570    0.059    9.631    0.000    0.793    0.793
    self_eff          0.496    0.059    8.427    0.000    0.530    0.530
  pri_delib ~~                                                          
    trust_gen        -0.312    0.063   -4.952    0.000   -0.253   -0.253
    trust_spc        -0.132    0.064   -2.055    0.040   -0.101   -0.101
    self_eff         -0.335    0.087   -3.865    0.000   -0.197   -0.197
  trust_gen ~~                                                          
    trust_spc         0.686    0.062   11.135    0.000    0.955    0.955
    self_eff          0.493    0.056    8.859    0.000    0.527    0.527
  trust_spec ~~                                                         
    self_eff          0.538    0.059    9.058    0.000    0.544    0.544

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           3.293    0.073   45.160    0.000    3.293    1.910
   .PC01_02           3.327    0.075   44.525    0.000    3.327    1.883
   .PC01_04           3.222    0.074   43.395    0.000    3.222    1.835
   .PC01_05           3.263    0.075   43.748    0.000    3.263    1.850
   .PC01_06           3.004    0.073   41.410    0.000    3.004    1.751
   .PC01_07           3.224    0.073   44.188    0.000    3.224    1.869
   .GR02_01           4.281    0.057   75.413    0.000    4.281    3.190
   .GR02_02           4.596    0.060   76.742    0.000    4.596    3.246
   .GR02_03           5.131    0.057   90.627    0.000    5.131    3.833
   .GR02_04           5.089    0.056   91.559    0.000    5.089    3.873
   .GR02_05           4.692    0.061   77.446    0.000    4.692    3.276
   .GR01_01           4.878    0.059   82.009    0.000    4.878    3.469
   .GR01_02           5.436    0.052  105.390    0.000    5.436    4.458
   .GR01_03           5.283    0.054   97.076    0.000    5.283    4.106
   .GR01_04           4.925    0.056   88.264    0.000    4.925    3.733
   .GR01_05           5.086    0.055   93.032    0.000    5.086    3.935
   .GR01_06           4.660    0.063   74.538    0.000    4.660    3.153
   .GR01_07           4.682    0.062   76.077    0.000    4.682    3.218
   .GR01_08           5.066    0.058   87.374    0.000    5.066    3.696
   .GR01_09           4.841    0.059   81.781    0.000    4.841    3.459
   .GR01_10           4.547    0.061   74.048    0.000    4.547    3.132
   .GR01_11           4.964    0.055   90.449    0.000    4.964    3.826
   .GR01_12           4.760    0.059   80.678    0.000    4.760    3.412
   .GR01_13           4.079    0.069   58.780    0.000    4.079    2.486
   .GR01_14           3.039    0.071   42.918    0.000    3.039    1.815
   .GR01_15           4.410    0.065   68.283    0.000    4.410    2.888
   .PD01_01           3.658    0.073   50.136    0.000    3.658    2.121
   .PD01_02           3.352    0.065   51.628    0.000    3.352    2.184
   .PD01_03           4.191    0.066   63.662    0.000    4.191    2.693
   .PD01_04           4.081    0.072   56.578    0.000    4.081    2.393
   .PD01_05           4.351    0.070   62.149    0.000    4.351    2.629
   .TR01_01           4.846    0.049   99.398    0.000    4.846    4.204
   .TR01_05           5.383    0.049  110.607    0.000    5.383    4.678
   .TR01_09           5.390    0.051  105.542    0.000    5.390    4.464
   .TR01_02           4.764    0.054   88.923    0.000    4.764    3.761
   .TR01_03           4.844    0.046  104.195    0.000    4.844    4.407
   .TR01_04           4.615    0.049   94.568    0.000    4.615    4.000
   .TR01_06           5.403    0.051  106.478    0.000    5.403    4.504
   .TR01_07           5.200    0.049  106.180    0.000    5.200    4.491
   .TR01_08           5.129    0.047  109.404    0.000    5.129    4.627
   .TR01_10           5.725    0.050  114.939    0.000    5.725    4.864
   .TR01_11           4.834    0.055   88.152    0.000    4.834    3.728
   .TR01_12           5.179    0.057   91.088    0.000    5.179    3.853
   .SE01_01           5.277    0.058   90.261    0.000    5.277    3.820
   .SE01_02           5.523    0.057   96.672    0.000    5.523    4.092
   .SE01_03           5.224    0.057   92.031    0.000    5.224    3.895
   .SE01_04           5.138    0.057   89.909    0.000    5.138    3.805
   .COMM_log          1.834    0.098   18.765    0.000    1.834    0.794
    pri_con           0.000                               0.000    0.000
    grats_gen         0.000                               0.000    0.000
   .grats_inf         0.000                               0.000    0.000
   .grats_rel         0.000                               0.000    0.000
   .grats_par         0.000                               0.000    0.000
   .grats_ide         0.000                               0.000    0.000
   .grats_ext         0.000                               0.000    0.000
    grats_spec        0.000                               0.000    0.000
    pri_delib         0.000                               0.000    0.000
    trust_gen         0.000                               0.000    0.000
   .trust_communty    0.000                               0.000    0.000
   .trust_provider    0.000                               0.000    0.000
    trust_spec        0.000                               0.000    0.000
    self_eff          0.000                               0.000    0.000
    comm_log          0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           0.406    0.032   12.789    0.000    0.406    0.137
   .PC01_02           0.587    0.042   14.012    0.000    0.587    0.188
   .PC01_04           0.631    0.044   14.286    0.000    0.631    0.205
   .PC01_05           0.534    0.039   13.742    0.000    0.534    0.172
   .PC01_06           1.066    0.068   15.606    0.000    1.066    0.362
   .PC01_07           0.430    0.033   13.038    0.000    0.430    0.145
   .GR02_01           0.524    0.038   13.966    0.000    0.524    0.291
   .GR02_02           0.405    0.033   12.350    0.000    0.405    0.202
   .GR02_03           0.438    0.033   13.195    0.000    0.438    0.245
   .GR02_04           0.479    0.035   13.834    0.000    0.479    0.278
   .GR02_05           0.587    0.042   14.024    0.000    0.587    0.286
   .GR01_01           1.021    0.072   14.108    0.000    1.021    0.516
   .GR01_02           0.496    0.042   11.731    0.000    0.496    0.334
   .GR01_03           0.469    0.045   10.367    0.000    0.469    0.283
   .GR01_04           0.360    0.034   10.462    0.000    0.360    0.207
   .GR01_05           0.443    0.036   12.232    0.000    0.443    0.265
   .GR01_06           1.120    0.074   15.176    0.000    1.120    0.513
   .GR01_07           0.695    0.052   13.414    0.000    0.695    0.328
   .GR01_08           0.628    0.047   13.435    0.000    0.628    0.334
   .GR01_09           0.646    0.049   13.308    0.000    0.646    0.330
   .GR01_10           0.788    0.056   14.001    0.000    0.788    0.374
   .GR01_11           0.367    0.034   10.633    0.000    0.367    0.218
   .GR01_12           0.811    0.056   14.455    0.000    0.811    0.417
   .GR01_13           1.967    0.131   14.977    0.000    1.967    0.731
   .GR01_14           2.075    0.138   15.090    0.000    2.075    0.740
   .GR01_15           0.645    0.097    6.657    0.000    0.645    0.277
   .PD01_01           0.746    0.082    9.141    0.000    0.746    0.251
   .PD01_02           1.337    0.090   14.865    0.000    1.337    0.567
   .PD01_03           1.316    0.092   14.321    0.000    1.316    0.543
   .PD01_04           1.303    0.096   13.631    0.000    1.303    0.448
   .PD01_05           1.590    0.107   14.855    0.000    1.590    0.580
   .TR01_01           0.649    0.044   14.903    0.000    0.649    0.489
   .TR01_05           0.285    0.024   11.823    0.000    0.285    0.216
   .TR01_09           0.255    0.025   10.301    0.000    0.255    0.175
   .TR01_02           0.564    0.045   12.521    0.000    0.564    0.352
   .TR01_03           0.496    0.037   13.456    0.000    0.496    0.410
   .TR01_04           0.415    0.036   11.551    0.000    0.415    0.312
   .TR01_06           0.366    0.027   13.475    0.000    0.366    0.255
   .TR01_07           0.546    0.036   15.269    0.000    0.546    0.407
   .TR01_08           0.431    0.029   14.853    0.000    0.431    0.351
   .TR01_10           0.695    0.044   15.686    0.000    0.695    0.502
   .TR01_11           0.949    0.059   15.971    0.000    0.949    0.564
   .TR01_12           0.496    0.035   14.031    0.000    0.496    0.275
   .SE01_01           0.620    0.053   11.711    0.000    0.620    0.325
   .SE01_02           0.980    0.067   14.736    0.000    0.980    0.538
   .SE01_03           0.701    0.056   12.593    0.000    0.701    0.390
   .SE01_04           0.684    0.054   12.759    0.000    0.684    0.375
   .COMM_log          0.000                               0.000    0.000
    pri_con           2.567    0.177   14.474    0.000    1.000    1.000
    grats_gen         1.277    0.105   12.147    0.000    1.000    1.000
   .grats_inf         0.277    0.038    7.348    0.000    0.290    0.290
   .grats_rel         0.207    0.033    6.236    0.000    0.150    0.150
   .grats_par         0.129    0.031    4.099    0.000    0.091    0.091
   .grats_ide         0.159    0.031    5.125    0.000    0.121    0.121
   .grats_ext         0.282    0.054    5.181    0.000    0.389    0.389
    grats_spec        0.680    0.092    7.416    0.000    1.000    1.000
    pri_delib         2.230    0.185   12.030    0.000    1.000    1.000
    trust_gen         0.679    0.072    9.424    0.000    1.000    1.000
   .trust_communty    0.281    0.036    7.845    0.000    0.270    0.270
   .trust_provider    0.056    0.022    2.593    0.010    0.052    0.052
    trust_spec        0.760    0.082    9.226    0.000    1.000    1.000
    self_eff          1.289    0.116   11.141    0.000    1.000    1.000
    comm_log          5.341    0.319   16.718    0.000    1.000    1.000

Descriptive analyses

We first report the factor validity of all variables combined.

# extract model predicted values for items & calc means
d_fs <- lavPredict(fit_baseline, type = "ov") %>% as.data.frame() %>% mutate(version = d$version, grats_gen_fs = rowMeans(select(., 
    starts_with("GR02"))), grats_spec_fs = rowMeans(select(., starts_with("GR01"))), pri_con_fs = rowMeans(select(., starts_with("PC01"))), 
    trust_gen_fs = rowMeans(select(., TR01_01, TR01_05, TR01_09)), trust_spec_fs = rowMeans(select(., TR01_02:TR01_04, TR01_06:TR01_12)), 
    pri_del_fs = rowMeans(select(., starts_with("PD01"))), self_eff_fs = rowMeans(select(., starts_with("SE01")))) %>% select(version, 
    pri_con_fs, grats_gen_fs, grats_spec_fs, pri_del_fs, self_eff_fs, trust_gen_fs, trust_spec_fs, COMM_log)

# combine d with d factor scores
d %<>% cbind(select(d_fs, -version, -COMM_log))

# add centered predictors for interaction analyses later
d %<>% mutate(pri_con_fs_c = scale(pri_con_fs, scale = FALSE), grats_spec_fs_c = scale(grats_spec_fs, scale = FALSE), pri_del_fs_c = scale(pri_del_fs, 
    scale = FALSE), trust_gen_fs_c = scale(trust_gen_fs, scale = FALSE), self_eff_fs_c = scale(self_eff_fs, scale = FALSE), 
    con_x_del = pri_con_fs_c * pri_del_fs_c, grats_x_del = grats_spec_fs_c * pri_del_fs_c)

# rename for plotting
d_fs %<>% set_names(c("version", var_names_breaks))

# means of model predicted values
des <- rbind(des_pricon, des_grats_gen, des_grats_spec, des_pridel, des_selfeff, des_trust_gen, des_trust_spec)

factor_val_tab <- rbind(pricon_factor_val, grats_general_factor_val, grats_specific_factor_val, pridel_factor_val, selfeff_factor_val, 
    trust_gen_factor_val, trust_spec_factor_val) %$% cbind(des[-c(8), ], .) %>% set_rownames(var_names[-c(8)])

factor_val_tab %>% kable() %>% kable_styling("striped") %>% scroll_box(width = "100%")
m sd chisq df pvalue cfi tli rmsea srmr omega alpha ave
Privacy concerns 3.21 1.514 11.04 9 0.273 0.998 0.997 0.020 0.010 0.960 0.959 0.799
General gratifications 4.76 1.219 34.03 5 0.000 0.976 0.951 0.102 0.019 0.934 0.934 0.741
Specific gratifications 4.71 1.019 269.77 85 0.000 0.941 0.928 0.062 0.053 0.946 0.933 0.586
Privacy deliberation 3.93 1.285 15.55 5 0.008 0.980 0.960 0.061 0.024 0.848 0.843 0.532
Self-efficacy 5.25 1.118 3.23 1 0.072 0.993 0.957 0.063 0.014 0.833 0.862 0.592
General trust 5.21 1.039 2.07 1 0.150 0.998 0.993 0.044 0.012 0.873 0.864 0.701
Specific trust 5.08 0.942 99.48 26 0.000 0.958 0.942 0.071 0.037 0.931 0.921 0.620

In what follows, we report zero-order correlations, distributions, and scatterplots of the variables’ factor scores.

corr_plot <- ggpairs(select(d_fs, -version), upper = list(continuous = cor_plot), lower = list(continuous = wrap(td::scat_plot, 
    coords = c(1, 7, 0, 7)))) + theme_bw()
print(corr_plot)

ggsave("figures/results/cor_plot.png")

Power analyses

In what follows, we report power analyses for our study. Please note that we conduct a rudimentary power-analysis, assuming bivariate correlations. To explain, at the time we were not yet aware of the existence of power analyses for multivariate structural equation models.

We first estimate the sample size necessary to find small effects in 95% of all cases.

# estimate pwr-samplesize
n_desired <- pwr.r.test(r = r_sesoi, sig.level = alpha, power = power_desired, alternative = "greater") %T>% print %$% n %>% 
    round(0)

     approximate correlation power calculation (arctangh transformation) 

              n = 1077
              r = 0.1
      sig.level = 0.05
          power = 0.95
    alternative = greater

We then compute the power we have achieved with our finale sample size to detect small effects.

# compute pwr-achieved
power_achieved <- pwr.r.test(n = n_final, r = r_sesoi, sig.level = alpha, alternative = "greater") %T>% print %$% power %>% 
    round(2)

     approximate correlation power calculation (arctangh transformation) 

              n = 559
              r = 0.1
      sig.level = 0.05
          power = 0.765
    alternative = greater

We finally compute what effect size we are likely to find in 95% of all cases given our final sample size.

# estimate pwr-sensitivity
r_sensitive <- pwr.r.test(n = n_final, power = power_desired, sig.level = alpha, alternative = "greater") %T>% print %$% 
    r %>% round(2)

     approximate correlation power calculation (arctangh transformation) 

              n = 559
              r = 0.138
      sig.level = 0.05
          power = 0.95
    alternative = greater

Assumptions

Multivariate normal distribution

# create subset of data with all items that were used
d_sub <- d[, c("COMM", "GR02_01", "GR02_02", "GR02_03", "GR02_04", "GR02_05", "PC01_01", "PC01_02", "PC01_04", "PC01_05", 
    "PC01_06", "PC01_07", "TR01_02", "TR01_03", "TR01_04", "TR01_06", "TR01_07", "TR01_08", "TR01_10", "TR01_11", "TR01_12", 
    "PD01_01", "PD01_02", "PD01_03", "PD01_04", "PD01_05", "SE01_01", "SE01_02", "SE01_03", "SE01_04", "male", "age", "edu")]

# test multivariate normal distribution
mvn_result <- mvn(d_sub, mvnTest = "mardia")
mvn_result$multivariateNormality
             Test        Statistic p value Result
1 Mardia Skewness 23098.0657251329       0     NO
2 Mardia Kurtosis  102.62697121647       0     NO
3             MVN             <NA>    <NA>     NO

Shows that multivariate normal distribution is violated. We hence use maximum likelihood estimation with robust standard errors and a Satorra-Bentler scaled test statistic.

Influential cases

[Note: These lines stopped working after some time, potentially due to changes in package.]

In what follows we test for influential cases in the baseline model, to detect potentially corrupt data (e.g., people who provided response patterns). Specifically, we compute Cook’s distance.

cooks_dis <- gCD(d, model_baseline)
plot(cooks_dis)

The following ten cases have a particularly strong influence on the baseline model.

infl_cases <- invisible(rownames(print(cooks_dis)))

Let’s inspect these cases.

infl_cases_tokens <- d[infl_cases, "case_token"] %>% as_vector()
d %>% filter(case_token %in% infl_cases_tokens) %>% select(case_token, GR01_01:SE01_06, topics_entered:reactions, -SO01_01, 
    TIME_SUM_t1, TIME_SUM_t2) %>% kable() %>% kable_styling("striped") %>% scroll_box(width = "100%")

These data do not reveal potential cases of response patterns. Indeed, answer times suggest that respondents were diligent.

Results

Privacy calculus

Model “Peregistered”

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 
grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
  SE01_01 ~~ x*SE01_02
  SE01_03 ~~ x*SE01_04
trust_community =~ TR01_02 + TR01_03 + TR01_04
trust_provider =~ TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12
trust_spec =~ trust_community + trust_provider

COMM_log ~ a1*pri_con + b1*grats_gen + c1*pri_delib + d1*self_eff + e1*trust_spec

# Covariates
COMM_log + GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR01_02 + TR01_03 + TR01_04 + TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu

# Covariances
male ~~ age + edu
age ~~ edu
"
fit_prereg <- lavaan::sem(model, data = d, estimator = "MLR", missing = "ML")
summary(fit_prereg, fit = TRUE, std = TRUE)
lavaan 0.6-8 ended normally after 352 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       207
  Number of equality constraints                     1
                                                      
  Number of observations                           559
  Number of missing patterns                         4
                                                      
Model Test User Model:
                                               Standard      Robust
  Test Statistic                               1247.877     954.969
  Degrees of freedom                                388         388
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.307
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                             13379.428   10044.844
  Degrees of freedom                               528         528
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.332

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.933       0.940
  Tucker-Lewis Index (TLI)                       0.909       0.919
                                                                  
  Robust Comparative Fit Index (CFI)                         0.942
  Robust Tucker-Lewis Index (TLI)                            0.920

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -27313.967  -27313.967
  Scaling correction factor                                  1.239
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -26690.028  -26690.028
  Scaling correction factor                                  1.285
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               55039.934   55039.934
  Bayesian (BIC)                             55931.120   55931.120
  Sample-size adjusted Bayesian (BIC)        55277.177   55277.177

Root Mean Square Error of Approximation:

  RMSEA                                          0.063       0.051
  90 Percent confidence interval - lower         0.059       0.048
  90 Percent confidence interval - upper         0.067       0.055
  P-value RMSEA <= 0.05                          0.000       0.297
                                                                  
  Robust RMSEA                                               0.058
  90 Percent confidence interval - lower                     0.054
  90 Percent confidence interval - upper                     0.063

Standardized Root Mean Square Residual:

  SRMR                                           0.049       0.049

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con =~                                                              
    PC01_01             1.000                               1.597    0.926
    PC01_02             0.990    0.027   36.339    0.000    1.581    0.895
    PC01_04             0.972    0.027   35.765    0.000    1.551    0.884
    PC01_05             1.002    0.024   42.568    0.000    1.600    0.907
    PC01_06             0.855    0.038   22.736    0.000    1.364    0.796
    PC01_07             0.994    0.023   43.870    0.000    1.588    0.920
  grats_gen =~                                                            
    GR02_01             1.000                               1.133    0.844
    GR02_02             1.118    0.033   33.657    0.000    1.267    0.895
    GR02_03             1.019    0.047   21.496    0.000    1.154    0.862
    GR02_04             0.983    0.048   20.438    0.000    1.114    0.848
    GR02_05             1.072    0.040   27.046    0.000    1.214    0.848
  pri_delib =~                                                            
    PD01_01             1.000                               1.472    0.853
    PD01_02             0.669    0.048   13.884    0.000    0.986    0.642
    PD01_03             0.709    0.055   12.916    0.000    1.043    0.670
    PD01_04             0.842    0.047   17.843    0.000    1.240    0.727
    PD01_05             0.717    0.050   14.331    0.000    1.055    0.638
  self_eff =~                                                             
    SE01_01             1.000                               1.117    0.809
    SE01_02             0.812    0.057   14.328    0.000    0.907    0.672
    SE01_03             0.933    0.046   20.299    0.000    1.042    0.777
    SE01_04             0.952    0.043   22.312    0.000    1.064    0.788
  trust_community =~                                                      
    TR01_02             1.000                               1.022    0.807
    TR01_03             0.822    0.052   15.895    0.000    0.840    0.764
    TR01_04             0.920    0.047   19.759    0.000    0.940    0.815
  trust_provider =~                                                       
    TR01_06             1.000                               1.045    0.871
    TR01_07             0.857    0.039   21.960    0.000    0.896    0.773
    TR01_08             0.837    0.040   21.101    0.000    0.874    0.789
    TR01_10             0.790    0.038   20.866    0.000    0.825    0.701
    TR01_11             0.822    0.052   15.934    0.000    0.859    0.663
    TR01_12             1.099    0.038   28.688    0.000    1.148    0.854
  trust_spec =~                                                           
    trust_communty      1.000                               0.877    0.877
    trust_provider      1.112    0.078   14.281    0.000    0.954    0.954

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  COMM_log ~                                                            
    pri_con   (a1)   -0.052    0.080   -0.643    0.520   -0.083   -0.036
    grats_gen (b1)    0.080    0.169    0.473    0.636    0.090    0.039
    pri_delib (c1)   -0.156    0.093   -1.678    0.093   -0.230   -0.100
    self_eff  (d1)    0.809    0.150    5.380    0.000    0.904    0.391
    trust_spc (e1)   -0.255    0.276   -0.922    0.357   -0.228   -0.099
    male              0.020    0.199    0.098    0.922    0.020    0.004
    age               0.005    0.006    0.805    0.421    0.005    0.033
    edu               0.230    0.117    1.967    0.049    0.230    0.084
  GR02_01 ~                                                             
    male             -0.127    0.115   -1.098    0.272   -0.127   -0.047
    age               0.000    0.004    0.089    0.929    0.000    0.004
    edu               0.006    0.068    0.082    0.935    0.006    0.004
  GR02_02 ~                                                             
    male             -0.068    0.120   -0.564    0.573   -0.068   -0.024
    age               0.006    0.004    1.538    0.124    0.006    0.068
    edu              -0.078    0.071   -1.107    0.268   -0.078   -0.047
  GR02_03 ~                                                             
    male             -0.027    0.116   -0.230    0.818   -0.027   -0.010
    age               0.001    0.004    0.303    0.762    0.001    0.013
    edu              -0.080    0.067   -1.199    0.231   -0.080   -0.050
  GR02_04 ~                                                             
    male              0.027    0.113    0.240    0.811    0.027    0.010
    age               0.005    0.004    1.296    0.195    0.005    0.057
    edu              -0.070    0.067   -1.035    0.301   -0.070   -0.045
  GR02_05 ~                                                             
    male             -0.141    0.123   -1.140    0.254   -0.141   -0.049
    age              -0.004    0.004   -0.878    0.380   -0.004   -0.039
    edu               0.014    0.072    0.193    0.847    0.014    0.008
  PC01_01 ~                                                             
    male             -0.184    0.151   -1.218    0.223   -0.184   -0.053
    age              -0.004    0.005   -0.830    0.407   -0.004   -0.037
    edu               0.114    0.087    1.309    0.190    0.114    0.056
  PC01_02 ~                                                             
    male             -0.304    0.154   -1.976    0.048   -0.304   -0.086
    age              -0.008    0.005   -1.674    0.094   -0.008   -0.072
    edu               0.051    0.089    0.577    0.564    0.051    0.025
  PC01_04 ~                                                             
    male             -0.226    0.152   -1.486    0.137   -0.226   -0.064
    age              -0.010    0.005   -1.990    0.047   -0.010   -0.086
    edu               0.117    0.089    1.320    0.187    0.117    0.056
  PC01_05 ~                                                             
    male             -0.100    0.154   -0.649    0.516   -0.100   -0.028
    age              -0.006    0.005   -1.174    0.240   -0.006   -0.051
    edu               0.094    0.090    1.049    0.294    0.094    0.045
  PC01_06 ~                                                             
    male             -0.110    0.150   -0.734    0.463   -0.110   -0.032
    age              -0.005    0.005   -1.065    0.287   -0.005   -0.046
    edu               0.047    0.087    0.540    0.589    0.047    0.023
  PC01_07 ~                                                             
    male             -0.176    0.150   -1.172    0.241   -0.176   -0.051
    age              -0.007    0.005   -1.347    0.178   -0.007   -0.059
    edu               0.086    0.087    0.987    0.324    0.086    0.042
  TR01_02 ~                                                             
    male             -0.296    0.108   -2.742    0.006   -0.296   -0.117
    age              -0.004    0.004   -1.101    0.271   -0.004   -0.049
    edu               0.005    0.061    0.076    0.940    0.005    0.003
  TR01_03 ~                                                             
    male             -0.139    0.095   -1.464    0.143   -0.139   -0.063
    age              -0.002    0.003   -0.558    0.577   -0.002   -0.025
    edu               0.021    0.053    0.385    0.700    0.021    0.016
  TR01_04 ~                                                             
    male             -0.133    0.099   -1.343    0.179   -0.133   -0.058
    age              -0.004    0.003   -1.201    0.230   -0.004   -0.054
    edu              -0.006    0.060   -0.098    0.922   -0.006   -0.004
  TR01_06 ~                                                             
    male             -0.086    0.104   -0.825    0.409   -0.086   -0.036
    age               0.000    0.003    0.114    0.909    0.000    0.005
    edu              -0.053    0.058   -0.903    0.366   -0.053   -0.037
  TR01_07 ~                                                             
    male             -0.043    0.099   -0.429    0.668   -0.043   -0.018
    age               0.001    0.003    0.357    0.721    0.001    0.016
    edu               0.014    0.058    0.241    0.810    0.014    0.010
  TR01_08 ~                                                             
    male              0.048    0.096    0.497    0.619    0.048    0.021
    age              -0.004    0.003   -1.235    0.217   -0.004   -0.053
    edu               0.021    0.056    0.370    0.712    0.021    0.016
  TR01_10 ~                                                             
    male              0.093    0.100    0.925    0.355    0.093    0.039
    age              -0.004    0.003   -1.167    0.243   -0.004   -0.050
    edu              -0.058    0.058   -0.993    0.321   -0.058   -0.041
  TR01_11 ~                                                             
    male              0.028    0.112    0.255    0.799    0.028    0.011
    age               0.003    0.004    0.831    0.406    0.003    0.036
    edu              -0.096    0.065   -1.473    0.141   -0.096   -0.062
  TR01_12 ~                                                             
    male             -0.120    0.115   -1.039    0.299   -0.120   -0.045
    age              -0.002    0.004   -0.401    0.688   -0.002   -0.018
    edu              -0.148    0.068   -2.182    0.029   -0.148   -0.092
  PD01_01 ~                                                             
    male             -0.176    0.148   -1.194    0.232   -0.176   -0.051
    age              -0.015    0.005   -3.274    0.001   -0.015   -0.137
    edu              -0.027    0.085   -0.321    0.748   -0.027   -0.013
  PD01_02 ~                                                             
    male             -0.118    0.131   -0.900    0.368   -0.118   -0.038
    age              -0.014    0.004   -3.439    0.001   -0.014   -0.141
    edu               0.030    0.077    0.384    0.701    0.030    0.016
  PD01_03 ~                                                             
    male             -0.321    0.132   -2.425    0.015   -0.321   -0.103
    age              -0.004    0.004   -1.025    0.306   -0.004   -0.044
    edu               0.065    0.080    0.811    0.418    0.065    0.035
  PD01_04 ~                                                             
    male             -0.411    0.144   -2.846    0.004   -0.411   -0.120
    age              -0.009    0.005   -1.904    0.057   -0.009   -0.082
    edu               0.102    0.085    1.207    0.228    0.102    0.051
  PD01_05 ~                                                             
    male             -0.205    0.142   -1.441    0.150   -0.205   -0.062
    age              -0.012    0.004   -2.698    0.007   -0.012   -0.111
    edu              -0.002    0.084   -0.018    0.985   -0.002   -0.001
  SE01_01 ~                                                             
    male              0.121    0.118    1.024    0.306    0.121    0.044
    age               0.000    0.004    0.019    0.985    0.000    0.001
    edu               0.207    0.068    3.054    0.002    0.207    0.126
  SE01_02 ~                                                             
    male              0.060    0.112    0.541    0.589    0.060    0.022
    age              -0.013    0.004   -3.586    0.000   -0.013   -0.151
    edu               0.194    0.066    2.945    0.003    0.194    0.121
  SE01_03 ~                                                             
    male              0.196    0.114    1.709    0.088    0.196    0.073
    age               0.001    0.004    0.258    0.797    0.001    0.011
    edu               0.139    0.067    2.073    0.038    0.139    0.087
  SE01_04 ~                                                             
    male              0.055    0.115    0.477    0.633    0.055    0.020
    age               0.007    0.004    2.059    0.039    0.007    0.086
    edu               0.122    0.066    1.844    0.065    0.122    0.076

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .SE01_01 ~~                                                            
   .SE01_02    (x)    0.107    0.044    2.428    0.015    0.107    0.141
 .SE01_03 ~~                                                            
   .SE01_04    (x)    0.107    0.044    2.428    0.015    0.107    0.158
  male ~~                                                               
    age               0.757    0.328    2.312    0.021    0.757    0.097
    edu               0.052    0.018    2.966    0.003    0.052    0.125
  age ~~                                                                
    edu              -1.018    0.547   -1.862    0.063   -1.018   -0.078
  pri_con ~~                                                            
    grats_gen        -0.279    0.096   -2.912    0.004   -0.154   -0.154
    pri_delib         1.320    0.130   10.118    0.000    0.562    0.562
    self_eff         -0.383    0.091   -4.206    0.000   -0.215   -0.215
    trust_spec       -0.418    0.074   -5.647    0.000   -0.293   -0.293
  grats_gen ~~                                                          
    pri_delib        -0.068    0.103   -0.661    0.509   -0.041   -0.041
    self_eff          0.466    0.067    6.987    0.000    0.369    0.369
    trust_spec        0.798    0.086    9.328    0.000    0.786    0.786
  pri_delib ~~                                                          
    self_eff         -0.324    0.094   -3.442    0.001   -0.197   -0.197
    trust_spec       -0.139    0.085   -1.625    0.104   -0.105   -0.105
  self_eff ~~                                                           
    trust_spec        0.556    0.060    9.279    0.000    0.556    0.556

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           3.360    0.292   11.525    0.000    3.360    1.949
   .PC01_02           3.760    0.304   12.368    0.000    3.760    2.128
   .PC01_04           3.562    0.297   11.993    0.000    3.562    2.029
   .PC01_05           3.405    0.304   11.199    0.000    3.405    1.931
   .PC01_06           3.207    0.288   11.128    0.000    3.207    1.870
   .PC01_07           3.452    0.294   11.749    0.000    3.452    2.001
   .GR02_01           4.318    0.224   19.261    0.000    4.318    3.217
   .GR02_02           4.489    0.244   18.372    0.000    4.489    3.170
   .GR02_03           5.239    0.221   23.652    0.000    5.239    3.914
   .GR02_04           4.983    0.221   22.508    0.000    4.983    3.792
   .GR02_05           4.902    0.254   19.325    0.000    4.902    3.422
   .PD01_01           4.495    0.290   15.524    0.000    4.495    2.605
   .PD01_02           4.000    0.248   16.125    0.000    4.000    2.605
   .PD01_03           4.432    0.269   16.447    0.000    4.432    2.847
   .PD01_04           4.507    0.295   15.294    0.000    4.507    2.643
   .PD01_05           4.999    0.276   18.098    0.000    4.999    3.020
   .SE01_01           4.832    0.249   19.391    0.000    4.832    3.500
   .SE01_02           5.738    0.234   24.495    0.000    5.738    4.252
   .SE01_03           4.827    0.226   21.362    0.000    4.827    3.601
   .SE01_04           4.541    0.234   19.413    0.000    4.541    3.365
   .TR01_02           5.084    0.219   23.244    0.000    5.084    4.014
   .TR01_03           4.956    0.189   26.210    0.000    4.956    4.509
   .TR01_04           4.877    0.200   24.388    0.000    4.877    4.227
   .TR01_06           5.524    0.204   27.020    0.000    5.524    4.605
   .TR01_07           5.142    0.197   26.056    0.000    5.142    4.441
   .TR01_08           5.240    0.189   27.798    0.000    5.240    4.728
   .TR01_10           5.960    0.193   30.945    0.000    5.960    5.063
   .TR01_11           4.860    0.218   22.299    0.000    4.860    3.749
   .TR01_12           5.584    0.231   24.200    0.000    5.584    4.154
   .COMM_log          1.169    0.380    3.078    0.002    1.169    0.506
    male              0.493    0.021   23.296    0.000    0.493    0.986
    age              46.132    0.658   70.151    0.000   46.132    2.967
    edu               1.852    0.036   51.966    0.000    1.852    2.198
    pri_con           0.000                               0.000    0.000
    grats_gen         0.000                               0.000    0.000
    pri_delib         0.000                               0.000    0.000
    self_eff          0.000                               0.000    0.000
   .trust_communty    0.000                               0.000    0.000
   .trust_provider    0.000                               0.000    0.000
    trust_spec        0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           0.402    0.050    8.071    0.000    0.402    0.135
   .PC01_02           0.579    0.102    5.653    0.000    0.579    0.185
   .PC01_04           0.626    0.077    8.137    0.000    0.626    0.203
   .PC01_05           0.533    0.064    8.354    0.000    0.533    0.171
   .PC01_06           1.068    0.115    9.249    0.000    1.068    0.363
   .PC01_07           0.430    0.065    6.589    0.000    0.430    0.145
   .GR02_01           0.514    0.053    9.662    0.000    0.514    0.285
   .GR02_02           0.385    0.039    9.882    0.000    0.385    0.192
   .GR02_03           0.454    0.073    6.196    0.000    0.454    0.253
   .GR02_04           0.477    0.048    9.925    0.000    0.477    0.276
   .GR02_05           0.569    0.062    9.177    0.000    0.569    0.277
   .PD01_01           0.741    0.111    6.684    0.000    0.741    0.249
   .PD01_02           1.331    0.127   10.457    0.000    1.331    0.565
   .PD01_03           1.301    0.128   10.189    0.000    1.301    0.537
   .PD01_04           1.297    0.147    8.852    0.000    1.297    0.446
   .PD01_05           1.577    0.128   12.368    0.000    1.577    0.576
   .SE01_01           0.621    0.087    7.114    0.000    0.621    0.326
   .SE01_02           0.923    0.118    7.815    0.000    0.923    0.507
   .SE01_03           0.686    0.096    7.164    0.000    0.686    0.381
   .SE01_04           0.665    0.077    8.600    0.000    0.665    0.365
   .TR01_02           0.533    0.067    7.923    0.000    0.533    0.332
   .TR01_03           0.497    0.055    9.051    0.000    0.497    0.411
   .TR01_04           0.439    0.045    9.679    0.000    0.439    0.329
   .TR01_06           0.343    0.035    9.926    0.000    0.343    0.239
   .TR01_07           0.538    0.052   10.308    0.000    0.538    0.401
   .TR01_08           0.460    0.041   11.159    0.000    0.460    0.375
   .TR01_10           0.698    0.056   12.550    0.000    0.698    0.504
   .TR01_11           0.933    0.079   11.773    0.000    0.933    0.555
   .TR01_12           0.468    0.052    8.966    0.000    0.468    0.259
   .COMM_log          4.447    0.218   20.404    0.000    4.447    0.833
    male              0.250    0.000  817.007    0.000    0.250    1.000
    age             241.746    9.947   24.303    0.000  241.746    1.000
    edu               0.710    0.021   34.591    0.000    0.710    1.000
    pri_con           2.549    0.144   17.665    0.000    1.000    1.000
    grats_gen         1.283    0.114   11.243    0.000    1.000    1.000
    pri_delib         2.168    0.157   13.774    0.000    1.000    1.000
    self_eff          1.248    0.113   11.022    0.000    1.000    1.000
   .trust_communty    0.242    0.044    5.506    0.000    0.232    0.232
   .trust_provider    0.099    0.043    2.320    0.020    0.091    0.091
    trust_spec        0.802    0.099    8.113    0.000    1.000    1.000
rsquare_fit_prereg <- inspect(fit_prereg, what = "rsquare")["comm"]

Results show that there’s only one significant predictor of Communication, being self-efficacy. The other predictors are in the direction as planned, albeit not significant. Trust, however, shows the inverse relation as effect, that is, more trust, less communication.

Model “Adapted”

Building on the preregistered model, instead of general gratifications and specific trust, we now use specific gratifications and general trust.

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07
grats_inf =~ GR01_01 + GR01_02 + GR01_03 
grats_rel =~ GR01_04 + GR01_05 + GR01_06 
grats_par =~ GR01_07 + GR01_08 + GR01_09
grats_ide =~ GR01_10 + GR01_11 + GR01_12 
grats_ext =~ GR01_13 + GR01_14 + GR01_15
grats_spec =~ grats_inf + grats_rel + grats_par + grats_ide + grats_ext
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
  SE01_01 ~~ x*SE01_02
  SE01_03 ~~ x*SE01_04
trust_gen =~ TR01_01 + TR01_05 + TR01_09

COMM_log ~ a1*pri_con + b1*grats_spec + c1*pri_delib + d1*self_eff + e1*trust_gen

# Covariates
COMM_log + GR01_01 + GR01_02 + GR01_03 + GR01_04 + GR01_05 + GR01_06 + GR01_07 + GR01_08 + GR01_09 + GR01_10 + GR01_11 + GR01_12 + GR01_13 + GR01_14 + GR01_15 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 + TR01_01 + TR01_05 + TR01_09 ~ male + age + edu

# Covariances
male ~~ age + edu
age ~~ edu
"
fit_adapted <- lavaan::sem(model, data = d, estimator = "MLR", missing = "ML")
summary(fit_adapted, fit = TRUE, std = TRUE)
lavaan 0.6-8 ended normally after 369 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       234
  Number of equality constraints                     1
                                                      
  Number of observations                           559
  Number of missing patterns                         3
                                                      
Model Test User Model:
                                               Standard      Robust
  Test Statistic                               1495.146    1134.779
  Degrees of freedom                                507         507
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.318
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                             14374.964   10749.028
  Degrees of freedom                               666         666
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.337

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.928       0.938
  Tucker-Lewis Index (TLI)                       0.905       0.918
                                                                  
  Robust Comparative Fit Index (CFI)                         0.939
  Robust Tucker-Lewis Index (TLI)                            0.919

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -31468.591  -31468.591
  Scaling correction factor                                  1.247
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -30721.018  -30721.018
  Scaling correction factor                                  1.297
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               63403.182   63403.182
  Bayesian (BIC)                             64411.175   64411.175
  Sample-size adjusted Bayesian (BIC)        63671.521   63671.521

Root Mean Square Error of Approximation:

  RMSEA                                          0.059       0.047
  90 Percent confidence interval - lower         0.056       0.044
  90 Percent confidence interval - upper         0.063       0.050
  P-value RMSEA <= 0.05                          0.000       0.935
                                                                  
  Robust RMSEA                                               0.054
  90 Percent confidence interval - lower                     0.050
  90 Percent confidence interval - upper                     0.058

Standardized Root Mean Square Residual:

  SRMR                                           0.059       0.059

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con =~                                                            
    PC01_01           1.000                               1.596    0.926
    PC01_02           0.990    0.027   36.548    0.000    1.580    0.894
    PC01_04           0.972    0.027   36.027    0.000    1.551    0.884
    PC01_05           1.003    0.024   42.640    0.000    1.600    0.908
    PC01_06           0.855    0.037   22.830    0.000    1.365    0.796
    PC01_07           0.995    0.023   44.073    0.000    1.588    0.921
  grats_inf =~                                                          
    GR01_01           1.000                               0.954    0.679
    GR01_02           1.037    0.076   13.709    0.000    0.989    0.811
    GR01_03           1.134    0.078   14.538    0.000    1.082    0.841
  grats_rel =~                                                          
    GR01_04           1.000                               1.178    0.893
    GR01_05           0.939    0.038   24.935    0.000    1.106    0.855
    GR01_06           0.876    0.046   18.897    0.000    1.031    0.698
  grats_par =~                                                          
    GR01_07           1.000                               1.186    0.815
    GR01_08           0.941    0.039   23.839    0.000    1.116    0.814
    GR01_09           0.962    0.038   25.242    0.000    1.142    0.816
  grats_ide =~                                                          
    GR01_10           1.000                               1.142    0.786
    GR01_11           1.007    0.042   24.173    0.000    1.150    0.886
    GR01_12           0.928    0.041   22.520    0.000    1.060    0.760
  grats_ext =~                                                          
    GR01_13           1.000                               0.831    0.506
    GR01_14           1.020    0.103    9.920    0.000    0.847    0.506
    GR01_15           1.560    0.187    8.358    0.000    1.295    0.848
  grats_spec =~                                                         
    grats_inf         1.000                               0.846    0.846
    grats_rel         1.347    0.107   12.571    0.000    0.923    0.923
    grats_par         1.421    0.118   12.020    0.000    0.967    0.967
    grats_ide         1.311    0.108   12.116    0.000    0.927    0.927
    grats_ext         0.797    0.106    7.539    0.000    0.775    0.775
  pri_delib =~                                                          
    PD01_01           1.000                               1.481    0.858
    PD01_02           0.667    0.048   13.857    0.000    0.988    0.643
    PD01_03           0.699    0.054   12.830    0.000    1.035    0.665
    PD01_04           0.838    0.047   17.814    0.000    1.240    0.727
    PD01_05           0.707    0.050   14.185    0.000    1.046    0.632
  self_eff =~                                                           
    SE01_01           1.000                               1.121    0.811
    SE01_02           0.809    0.057   14.151    0.000    0.907    0.672
    SE01_03           0.926    0.045   20.547    0.000    1.038    0.774
    SE01_04           0.952    0.043   22.244    0.000    1.067    0.790
  trust_gen =~                                                          
    TR01_01           1.000                               0.770    0.668
    TR01_05           1.327    0.070   19.022    0.000    1.021    0.888
    TR01_09           1.453    0.080   18.113    0.000    1.118    0.926

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  COMM_log ~                                                            
    pri_con   (a1)   -0.091    0.081   -1.123    0.261   -0.146   -0.063
    grats_spc (b1)    0.396    0.202    1.959    0.050    0.320    0.138
    pri_delib (c1)   -0.196    0.094   -2.088    0.037   -0.291   -0.126
    self_eff  (d1)    0.721    0.144    4.987    0.000    0.807    0.349
    trust_gen (e1)   -0.483    0.224   -2.162    0.031   -0.372   -0.161
    male              0.018    0.199    0.092    0.927    0.018    0.004
    age               0.005    0.006    0.806    0.420    0.005    0.033
    edu               0.231    0.117    1.968    0.049    0.231    0.084
  GR01_01 ~                                                             
    male             -0.342    0.121   -2.832    0.005   -0.342   -0.121
    age              -0.005    0.004   -1.339    0.181   -0.005   -0.060
    edu               0.002    0.072    0.031    0.975    0.002    0.001
  GR01_02 ~                                                             
    male             -0.142    0.103   -1.378    0.168   -0.142   -0.058
    age              -0.007    0.003   -2.119    0.034   -0.007   -0.088
    edu              -0.034    0.060   -0.567    0.571   -0.034   -0.024
  GR01_03 ~                                                             
    male             -0.186    0.109   -1.704    0.088   -0.186   -0.072
    age              -0.006    0.004   -1.692    0.091   -0.006   -0.075
    edu              -0.080    0.063   -1.261    0.207   -0.080   -0.052
  GR01_04 ~                                                             
    male             -0.004    0.113   -0.038    0.970   -0.004   -0.002
    age               0.001    0.004    0.255    0.798    0.001    0.011
    edu              -0.019    0.066   -0.289    0.772   -0.019   -0.012
  GR01_05 ~                                                             
    male             -0.069    0.112   -0.614    0.539   -0.069   -0.027
    age              -0.001    0.004   -0.206    0.837   -0.001   -0.009
    edu               0.027    0.064    0.423    0.672    0.027    0.018
  GR01_06 ~                                                             
    male              0.030    0.124    0.241    0.810    0.030    0.010
    age              -0.011    0.004   -2.572    0.010   -0.011   -0.111
    edu              -0.086    0.074   -1.158    0.247   -0.086   -0.049
  GR01_07 ~                                                             
    male              0.075    0.124    0.602    0.547    0.075    0.026
    age              -0.006    0.004   -1.396    0.163   -0.006   -0.060
    edu               0.005    0.072    0.076    0.939    0.005    0.003
  GR01_08 ~                                                             
    male              0.006    0.116    0.051    0.960    0.006    0.002
    age              -0.005    0.004   -1.128    0.260   -0.005   -0.051
    edu               0.115    0.068    1.707    0.088    0.115    0.071
  GR01_09 ~                                                             
    male              0.090    0.119    0.756    0.449    0.090    0.032
    age              -0.004    0.004   -0.957    0.339   -0.004   -0.041
    edu               0.116    0.069    1.692    0.091    0.116    0.070
  GR01_10 ~                                                             
    male             -0.019    0.125   -0.156    0.876   -0.019   -0.007
    age              -0.008    0.004   -1.997    0.046   -0.008   -0.089
    edu              -0.019    0.074   -0.263    0.793   -0.019   -0.011
  GR01_11 ~                                                             
    male             -0.083    0.111   -0.749    0.454   -0.083   -0.032
    age              -0.001    0.004   -0.320    0.749   -0.001   -0.014
    edu              -0.051    0.064   -0.790    0.430   -0.051   -0.033
  GR01_12 ~                                                             
    male             -0.218    0.120   -1.820    0.069   -0.218   -0.078
    age              -0.004    0.004   -1.015    0.310   -0.004   -0.043
    edu              -0.047    0.071   -0.663    0.507   -0.047   -0.028
  GR01_13 ~                                                             
    male             -0.180    0.138   -1.310    0.190   -0.180   -0.055
    age              -0.023    0.004   -5.516    0.000   -0.023   -0.219
    edu               0.077    0.081    0.958    0.338    0.077    0.040
  GR01_14 ~                                                             
    male             -0.302    0.145   -2.089    0.037   -0.302   -0.090
    age              -0.007    0.005   -1.535    0.125   -0.007   -0.065
    edu               0.028    0.084    0.335    0.737    0.028    0.014
  GR01_15 ~                                                             
    male              0.047    0.132    0.360    0.719    0.047    0.016
    age              -0.005    0.004   -1.216    0.224   -0.005   -0.053
    edu               0.024    0.078    0.311    0.756    0.024    0.013
  PC01_01 ~                                                             
    male             -0.182    0.151   -1.207    0.227   -0.182   -0.053
    age              -0.004    0.005   -0.831    0.406   -0.004   -0.037
    edu               0.114    0.087    1.308    0.191    0.114    0.056
  PC01_02 ~                                                             
    male             -0.302    0.153   -1.967    0.049   -0.302   -0.085
    age              -0.008    0.005   -1.676    0.094   -0.008   -0.072
    edu               0.051    0.089    0.576    0.565    0.051    0.024
  PC01_04 ~                                                             
    male             -0.225    0.152   -1.476    0.140   -0.225   -0.064
    age              -0.010    0.005   -1.991    0.046   -0.010   -0.086
    edu               0.117    0.089    1.319    0.187    0.117    0.056
  PC01_05 ~                                                             
    male             -0.098    0.154   -0.639    0.523   -0.098   -0.028
    age              -0.006    0.005   -1.176    0.240   -0.006   -0.051
    edu               0.094    0.090    1.047    0.295    0.094    0.045
  PC01_06 ~                                                             
    male             -0.108    0.150   -0.724    0.469   -0.108   -0.032
    age              -0.005    0.005   -1.066    0.286   -0.005   -0.046
    edu               0.047    0.087    0.539    0.590    0.047    0.023
  PC01_07 ~                                                             
    male             -0.174    0.150   -1.161    0.245   -0.174   -0.050
    age              -0.007    0.005   -1.349    0.177   -0.007   -0.059
    edu               0.086    0.087    0.985    0.324    0.086    0.042
  PD01_01 ~                                                             
    male             -0.177    0.148   -1.196    0.232   -0.177   -0.051
    age              -0.015    0.005   -3.274    0.001   -0.015   -0.137
    edu              -0.027    0.085   -0.321    0.748   -0.027   -0.013
  PD01_02 ~                                                             
    male             -0.119    0.131   -0.904    0.366   -0.119   -0.039
    age              -0.014    0.004   -3.438    0.001   -0.014   -0.141
    edu               0.030    0.077    0.385    0.700    0.030    0.016
  PD01_03 ~                                                             
    male             -0.321    0.132   -2.425    0.015   -0.321   -0.103
    age              -0.004    0.004   -1.025    0.305   -0.004   -0.044
    edu               0.065    0.080    0.811    0.417    0.065    0.035
  PD01_04 ~                                                             
    male             -0.411    0.144   -2.846    0.004   -0.411   -0.120
    age              -0.009    0.005   -1.905    0.057   -0.009   -0.082
    edu               0.103    0.085    1.208    0.227    0.103    0.051
  PD01_05 ~                                                             
    male             -0.204    0.142   -1.439    0.150   -0.204   -0.062
    age              -0.012    0.004   -2.698    0.007   -0.012   -0.111
    edu              -0.002    0.084   -0.018    0.986   -0.002   -0.001
  SE01_01 ~                                                             
    male              0.118    0.118    1.000    0.317    0.118    0.043
    age               0.000    0.004    0.010    0.992    0.000    0.000
    edu               0.206    0.068    3.033    0.002    0.206    0.126
  SE01_02 ~                                                             
    male              0.058    0.112    0.520    0.603    0.058    0.022
    age              -0.013    0.004   -3.593    0.000   -0.013   -0.151
    edu               0.193    0.066    2.930    0.003    0.193    0.121
  SE01_03 ~                                                             
    male              0.193    0.114    1.686    0.092    0.193    0.072
    age               0.001    0.004    0.250    0.803    0.001    0.011
    edu               0.138    0.067    2.054    0.040    0.138    0.086
  SE01_04 ~                                                             
    male              0.052    0.115    0.453    0.650    0.052    0.019
    age               0.007    0.004    2.050    0.040    0.007    0.086
    edu               0.121    0.066    1.825    0.068    0.121    0.076
  TR01_01 ~                                                             
    male             -0.155    0.099   -1.565    0.117   -0.155   -0.067
    age              -0.003    0.003   -0.804    0.422   -0.003   -0.037
    edu               0.023    0.060    0.391    0.696    0.023    0.017
  TR01_05 ~                                                             
    male              0.076    0.100    0.763    0.445    0.076    0.033
    age              -0.004    0.003   -1.201    0.230   -0.004   -0.052
    edu               0.084    0.059    1.428    0.153    0.084    0.061
  TR01_09 ~                                                             
    male              0.065    0.104    0.621    0.535    0.065    0.027
    age              -0.007    0.004   -1.926    0.054   -0.007   -0.087
    edu              -0.021    0.060   -0.353    0.724   -0.021   -0.015

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .SE01_01 ~~                                                            
   .SE01_02    (x)    0.108    0.044    2.455    0.014    0.108    0.143
 .SE01_03 ~~                                                            
   .SE01_04    (x)    0.108    0.044    2.455    0.014    0.108    0.159
  male ~~                                                               
    age               0.757    0.328    2.309    0.021    0.757    0.097
    edu               0.053    0.018    2.976    0.003    0.053    0.125
  age ~~                                                                
    edu              -1.018    0.547   -1.862    0.063   -1.018   -0.078
  pri_con ~~                                                            
    grats_spec       -0.116    0.069   -1.693    0.090   -0.090   -0.090
    pri_delib         1.329    0.130   10.239    0.000    0.562    0.562
    self_eff         -0.387    0.091   -4.243    0.000   -0.217   -0.217
    trust_gen        -0.528    0.066   -8.022    0.000   -0.429   -0.429
  grats_spec ~~                                                         
    pri_delib        -0.006    0.074   -0.075    0.940   -0.005   -0.005
    self_eff          0.489    0.060    8.134    0.000    0.540    0.540
    trust_gen         0.403    0.058    6.912    0.000    0.648    0.648
  pri_delib ~~                                                          
    self_eff         -0.328    0.095   -3.459    0.001   -0.198   -0.198
    trust_gen        -0.314    0.072   -4.328    0.000   -0.275   -0.275
  self_eff ~~                                                           
    trust_gen         0.453    0.056    8.116    0.000    0.525    0.525

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           3.360    0.292   11.523    0.000    3.360    1.948
   .PC01_02           3.759    0.304   12.367    0.000    3.759    2.128
   .PC01_04           3.562    0.297   11.992    0.000    3.562    2.029
   .PC01_05           3.404    0.304   11.198    0.000    3.404    1.931
   .PC01_06           3.206    0.288   11.127    0.000    3.206    1.870
   .PC01_07           3.451    0.294   11.748    0.000    3.451    2.001
   .GR01_01           5.292    0.247   21.418    0.000    5.292    3.763
   .GR01_02           5.889    0.205   28.666    0.000    5.889    4.828
   .GR01_03           5.807    0.221   26.311    0.000    5.807    4.514
   .GR01_04           4.919    0.210   23.372    0.000    4.919    3.729
   .GR01_05           5.104    0.217   23.529    0.000    5.104    3.949
   .GR01_06           5.294    0.252   21.016    0.000    5.294    3.581
   .GR01_07           4.893    0.236   20.768    0.000    4.893    3.363
   .GR01_08           5.058    0.238   21.227    0.000    5.058    3.689
   .GR01_09           4.751    0.237   20.070    0.000    4.751    3.395
   .GR01_10           4.975    0.255   19.496    0.000    4.975    3.426
   .GR01_11           5.154    0.227   22.695    0.000    5.154    3.972
   .GR01_12           5.133    0.233   21.999    0.000    5.133    3.679
   .GR01_13           5.092    0.259   19.660    0.000    5.092    3.104
   .GR01_14           3.458    0.280   12.333    0.000    3.458    2.065
   .GR01_15           4.580    0.266   17.230    0.000    4.580    3.000
   .PD01_01           4.495    0.290   15.524    0.000    4.495    2.605
   .PD01_02           4.000    0.248   16.126    0.000    4.000    2.605
   .PD01_03           4.431    0.269   16.447    0.000    4.431    2.847
   .PD01_04           4.506    0.295   15.293    0.000    4.506    2.643
   .PD01_05           4.999    0.276   18.098    0.000    4.999    3.020
   .SE01_01           4.836    0.249   19.397    0.000    4.836    3.501
   .SE01_02           5.741    0.234   24.503    0.000    5.741    4.253
   .SE01_03           4.831    0.226   21.362    0.000    4.831    3.603
   .SE01_04           4.545    0.234   19.419    0.000    4.545    3.367
   .TR01_01           5.006    0.210   23.849    0.000    5.006    4.343
   .TR01_05           5.369    0.200   26.807    0.000    5.369    4.666
   .TR01_09           5.711    0.213   26.831    0.000    5.711    4.730
   .COMM_log          1.169    0.380    3.079    0.002    1.169    0.506
    male              0.493    0.021   23.285    0.000    0.493    0.986
    age              46.132    0.658   70.151    0.000   46.132    2.967
    edu               1.852    0.036   51.966    0.000    1.852    2.198
    pri_con           0.000                               0.000    0.000
   .grats_inf         0.000                               0.000    0.000
   .grats_rel         0.000                               0.000    0.000
   .grats_par         0.000                               0.000    0.000
   .grats_ide         0.000                               0.000    0.000
   .grats_ext         0.000                               0.000    0.000
    grats_spec        0.000                               0.000    0.000
    pri_delib         0.000                               0.000    0.000
    self_eff          0.000                               0.000    0.000
    trust_gen         0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           0.403    0.050    8.117    0.000    0.403    0.136
   .PC01_02           0.581    0.102    5.685    0.000    0.581    0.186
   .PC01_04           0.628    0.077    8.154    0.000    0.628    0.204
   .PC01_05           0.531    0.064    8.325    0.000    0.531    0.171
   .PC01_06           1.065    0.115    9.251    0.000    1.065    0.362
   .PC01_07           0.430    0.066    6.557    0.000    0.430    0.144
   .GR01_01           1.028    0.107    9.636    0.000    1.028    0.520
   .GR01_02           0.489    0.066    7.424    0.000    0.489    0.329
   .GR01_03           0.459    0.068    6.722    0.000    0.459    0.277
   .GR01_04           0.353    0.043    8.162    0.000    0.353    0.203
   .GR01_05           0.447    0.056    7.968    0.000    0.447    0.267
   .GR01_06           1.091    0.108   10.077    0.000    1.091    0.499
   .GR01_07           0.701    0.071    9.818    0.000    0.701    0.331
   .GR01_08           0.619    0.068    9.061    0.000    0.619    0.329
   .GR01_09           0.639    0.070    9.067    0.000    0.639    0.326
   .GR01_10           0.788    0.071   11.099    0.000    0.788    0.374
   .GR01_11           0.357    0.054    6.578    0.000    0.357    0.212
   .GR01_12           0.804    0.076   10.575    0.000    0.804    0.413
   .GR01_13           1.851    0.149   12.443    0.000    1.851    0.688
   .GR01_14           2.049    0.124   16.542    0.000    2.049    0.731
   .GR01_15           0.646    0.115    5.611    0.000    0.646    0.277
   .PD01_01           0.716    0.108    6.621    0.000    0.716    0.241
   .PD01_02           1.327    0.128   10.403    0.000    1.327    0.563
   .PD01_03           1.319    0.128   10.267    0.000    1.319    0.544
   .PD01_04           1.297    0.146    8.881    0.000    1.297    0.446
   .PD01_05           1.597    0.129   12.366    0.000    1.597    0.583
   .SE01_01           0.616    0.087    7.112    0.000    0.616    0.323
   .SE01_02           0.926    0.118    7.841    0.000    0.926    0.508
   .SE01_03           0.695    0.094    7.368    0.000    0.695    0.387
   .SE01_04           0.660    0.077    8.539    0.000    0.660    0.362
   .TR01_01           0.728    0.060   12.105    0.000    0.728    0.548
   .TR01_05           0.270    0.032    8.556    0.000    0.270    0.204
   .TR01_09           0.196    0.037    5.335    0.000    0.196    0.134
   .COMM_log          4.397    0.209   21.032    0.000    4.397    0.823
    male              0.250    0.000  809.584    0.000    0.250    1.000
    age             241.748    9.947   24.303    0.000  241.748    1.000
    edu               0.710    0.021   34.591    0.000    0.710    1.000
    pri_con           2.548    0.144   17.689    0.000    1.000    1.000
   .grats_inf         0.259    0.042    6.228    0.000    0.284    0.284
   .grats_rel         0.204    0.048    4.290    0.000    0.147    0.147
   .grats_par         0.090    0.049    1.834    0.067    0.064    0.064
   .grats_ide         0.183    0.046    3.967    0.000    0.140    0.140
   .grats_ext         0.276    0.070    3.965    0.000    0.400    0.400
    grats_spec        0.652    0.117    5.553    0.000    1.000    1.000
    pri_delib         2.192    0.157   14.000    0.000    1.000    1.000
    self_eff          1.256    0.113   11.133    0.000    1.000    1.000
    trust_gen         0.593    0.071    8.301    0.000    1.000    1.000
rsquare_fit_adapted <- inspect(fit_adapted, what = "rsquare")["comm"]

Effects become a bit larger and significant, which seems to make sense. However, this also includes trust, which is a significant negative predictor of communication.

Model “Interaction”

We now estimate an interaction model, as suggested by an anomymous reviewer. To estimate the interaction we’ll use factor scores.

model <- "
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
  SE01_01 ~~ x*SE01_02
  SE01_03 ~~ x*SE01_04
trust_gen =~ TR01_01 + TR01_05 + TR01_09

COMM_log ~ a1*pri_con_fs_c + b1*grats_spec_fs_c + c1*pri_del_fs_c + con_x_del + grats_x_del + d1*self_eff + e1*trust_gen

# Covariates
COMM_log + SE01_01 + SE01_02 + SE01_03 + SE01_04 + TR01_01 + TR01_05 + TR01_09 + pri_con_fs_c + grats_spec_fs_c + pri_del_fs_c + con_x_del ~ male + age + edu

# Covariances
pri_con_fs_c ~~ grats_spec_fs_c + pri_del_fs_c + con_x_del + grats_x_del + self_eff + trust_gen
grats_spec_fs_c ~~ pri_del_fs_c + con_x_del + grats_x_del + self_eff + trust_gen
pri_del_fs_c ~~ con_x_del + grats_x_del + self_eff + trust_gen
con_x_del ~~ grats_x_del + self_eff + trust_gen
grats_x_del ~~ self_eff + trust_gen
self_eff ~~ trust_gen
male ~~ age + edu
age ~~ edu
"

fit_inter <- lavaan::sem(model, data = d, estimator = "MLR", missing = "ML", missing = "ML")
summary(fit_inter, fit = TRUE, std = TRUE)
lavaan 0.6-8 ended normally after 171 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       108
  Number of equality constraints                     1
                                                      
  Number of observations                           559
  Number of missing patterns                         3
                                                      
Model Test User Model:
                                               Standard      Robust
  Test Statistic                                144.512     105.917
  Degrees of freedom                                 45          45
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.364
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                              3297.411    2304.500
  Degrees of freedom                               120         120
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.431

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.969       0.972
  Tucker-Lewis Index (TLI)                       0.916       0.926
                                                                  
  Robust Comparative Fit Index (CFI)                         0.973
  Robust Tucker-Lewis Index (TLI)                            0.929

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -14337.664  -14337.664
  Scaling correction factor                                  1.349
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -14265.407  -14265.407
  Scaling correction factor                                  1.363
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               28889.327   28889.327
  Bayesian (BIC)                             29352.225   29352.225
  Sample-size adjusted Bayesian (BIC)        29012.555   29012.555

Root Mean Square Error of Approximation:

  RMSEA                                          0.063       0.049
  90 Percent confidence interval - lower         0.052       0.039
  90 Percent confidence interval - upper         0.075       0.060
  P-value RMSEA <= 0.05                          0.031       0.533
                                                                  
  Robust RMSEA                                               0.057
  90 Percent confidence interval - lower                     0.043
  90 Percent confidence interval - upper                     0.072

Standardized Root Mean Square Residual:

  SRMR                                           0.025       0.025

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  self_eff =~                                                           
    SE01_01           1.000                               1.114    0.806
    SE01_02           0.824    0.057   14.339    0.000    0.918    0.680
    SE01_03           0.936    0.045   21.011    0.000    1.043    0.778
    SE01_04           0.955    0.042   22.888    0.000    1.063    0.788
  trust_gen =~                                                          
    TR01_01           1.000                               0.773    0.671
    TR01_05           1.319    0.069   19.022    0.000    1.020    0.887
    TR01_09           1.446    0.080   18.155    0.000    1.118    0.927

Regressions:
                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  COMM_log ~                                                             
    pr_cn_fs_ (a1)    -0.019    0.084   -0.220    0.826   -0.019   -0.012
    grts_sp__ (b1)     0.303    0.146    2.083    0.037    0.303    0.127
    pr_dl_fs_ (c1)    -0.321    0.108   -2.985    0.003   -0.321   -0.153
    con_x_del         -0.109    0.046   -2.354    0.019   -0.109   -0.089
    grts_x_dl         -0.154    0.064   -2.401    0.016   -0.154   -0.086
    self_eff  (d1)     0.745    0.142    5.247    0.000    0.830    0.359
    trust_gen (e1)    -0.389    0.224   -1.732    0.083   -0.300   -0.130
    male              -0.025    0.191   -0.132    0.895   -0.025   -0.005
    age                0.001    0.006    0.193    0.847    0.001    0.008
    edu                0.275    0.112    2.446    0.014    0.275    0.100
  SE01_01 ~                                                              
    male               0.122    0.118    1.032    0.302    0.122    0.044
    age               -0.000    0.004   -0.025    0.980   -0.000   -0.001
    edu                0.209    0.068    3.048    0.002    0.209    0.127
  SE01_02 ~                                                              
    male               0.061    0.112    0.546    0.585    0.061    0.023
    age               -0.013    0.004   -3.645    0.000   -0.013   -0.152
    edu                0.196    0.066    2.962    0.003    0.196    0.122
  SE01_03 ~                                                              
    male               0.196    0.114    1.716    0.086    0.196    0.073
    age                0.001    0.004    0.214    0.830    0.001    0.009
    edu                0.140    0.068    2.072    0.038    0.140    0.088
  SE01_04 ~                                                              
    male               0.056    0.115    0.484    0.628    0.056    0.021
    age                0.007    0.004    2.009    0.045    0.007    0.084
    edu                0.124    0.067    1.850    0.064    0.124    0.077
  TR01_01 ~                                                              
    male              -0.163    0.098   -1.655    0.098   -0.163   -0.071
    age               -0.002    0.003   -0.703    0.482   -0.002   -0.032
    edu                0.015    0.059    0.256    0.798    0.015    0.011
  TR01_05 ~                                                              
    male               0.066    0.100    0.659    0.510    0.066    0.029
    age               -0.003    0.003   -1.057    0.291   -0.003   -0.046
    edu                0.073    0.059    1.248    0.212    0.073    0.054
  TR01_09 ~                                                              
    male               0.053    0.104    0.511    0.609    0.053    0.022
    age               -0.006    0.003   -1.801    0.072   -0.006   -0.080
    edu               -0.033    0.060   -0.547    0.584   -0.033   -0.023
  pri_con_fs_c ~                                                         
    male              -0.188    0.133   -1.410    0.158   -0.188   -0.061
    age               -0.006    0.004   -1.394    0.163   -0.006   -0.061
    edu                0.078    0.078    0.998    0.318    0.078    0.043
  grats_spec_fs_c ~                                                      
    male              -0.067    0.082   -0.820    0.412   -0.067   -0.035
    age               -0.003    0.003   -1.365    0.172   -0.003   -0.055
    edu               -0.009    0.047   -0.190    0.850   -0.009   -0.008
  pri_del_fs_c ~                                                         
    male              -0.208    0.094   -2.212    0.027   -0.208   -0.094
    age               -0.009    0.003   -3.051    0.002   -0.009   -0.128
    edu                0.009    0.056    0.161    0.872    0.009    0.007
  con_x_del ~                                                            
    male              -0.123    0.167   -0.739    0.460   -0.123   -0.033
    age               -0.009    0.006   -1.544    0.123   -0.009   -0.070
    edu                0.169    0.099    1.702    0.089    0.169    0.075

Covariances:
                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .SE01_01 ~~                                                              
   .SE01_02    (x)      0.104    0.044    2.357    0.018    0.104    0.137
 .SE01_03 ~~                                                              
   .SE01_04    (x)      0.104    0.044    2.357    0.018    0.104    0.154
 .pri_con_fs_c ~~                                                         
   .grts_spc__         -0.121    0.072   -1.684    0.092   -0.121   -0.082
   .pr_dl_fs_c          1.006    0.078   12.865    0.000    1.006    0.609
   .con_x_del           0.457    0.183    2.500    0.012    0.457    0.161
    grats_x_dl          0.106    0.117    0.909    0.363    0.106    0.054
  self_eff ~~                                                             
   .pr_cn_fs_c         -0.371    0.084   -4.399    0.000   -0.333   -0.219
  trust_gen ~~                                                            
   .pr_cn_fs_c         -0.513    0.061   -8.377    0.000   -0.664   -0.437
 .grats_spec_fs_c ~~                                                      
   .pr_dl_fs_c          0.009    0.055    0.163    0.870    0.009    0.009
   .con_x_del           0.104    0.105    0.988    0.323    0.104    0.057
    grats_x_dl          0.167    0.121    1.384    0.166    0.167    0.135
  self_eff ~~                                                             
   .grts_spc__          0.561    0.056    9.938    0.000    0.504    0.522
  trust_gen ~~                                                            
   .grts_spc__          0.483    0.052    9.288    0.000    0.624    0.647
 .pri_del_fs_c ~~                                                         
   .con_x_del          -0.009    0.144   -0.064    0.949   -0.009   -0.005
    grats_x_dl          0.096    0.109    0.878    0.380    0.096    0.068
  self_eff ~~                                                             
   .pr_dl_fs_c         -0.254    0.063   -4.036    0.000   -0.228   -0.209
  trust_gen ~~                                                            
   .pr_dl_fs_c         -0.243    0.046   -5.296    0.000   -0.314   -0.289
 .con_x_del ~~                                                            
    grats_x_dl         -0.015    0.218   -0.069    0.945   -0.015   -0.006
  self_eff ~~                                                             
   .con_x_del           0.377    0.109    3.445    0.001    0.339    0.181
  trust_gen ~~                                                            
   .con_x_del           0.059    0.092    0.643    0.520    0.076    0.041
  self_eff ~~                                                             
    grats_x_dl         -0.049    0.084   -0.588    0.556   -0.044   -0.034
  trust_gen ~~                                                            
    grats_x_dl          0.141    0.084    1.675    0.094    0.182    0.141
  self_eff ~~                                                             
    trust_gen           0.452    0.056    8.073    0.000    0.525    0.525
  male ~~                                                                 
    age                 0.757    0.328    2.310    0.021    0.757    0.097
    edu                 0.053    0.018    2.971    0.003    0.053    0.125
  age ~~                                                                  
    edu                -1.018    0.547   -1.862    0.063   -1.018   -0.078

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .SE01_01           4.836    0.250   19.346    0.000    4.836    3.499
   .SE01_02           5.741    0.234   24.504    0.000    5.741    4.250
   .SE01_03           4.830    0.227   21.295    0.000    4.830    3.602
   .SE01_04           4.545    0.235   19.344    0.000    4.545    3.367
   .TR01_01           5.007    0.205   24.392    0.000    5.007    4.344
   .TR01_05           5.370    0.197   27.317    0.000    5.370    4.671
   .TR01_09           5.712    0.208   27.438    0.000    5.712    4.733
   .COMM_log          1.401    0.370    3.785    0.000    1.401    0.606
   .pri_con_fs_c      0.224    0.259    0.865    0.387    0.224    0.147
   .grats_spc_fs_c    0.208    0.153    1.355    0.175    0.208    0.215
   .pri_del_fs_c      0.504    0.183    2.753    0.006    0.504    0.457
   .con_x_del         1.174    0.334    3.512    0.000    1.174    0.623
    grats_x_del       0.022    0.055    0.397    0.691    0.022    0.017
    male              0.493    0.021   23.290    0.000    0.493    0.986
    age              46.132    0.658   70.151    0.000   46.132    2.967
    edu               1.852    0.036   51.966    0.000    1.852    2.198
    self_eff          0.000                               0.000    0.000
    trust_gen         0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .SE01_01           0.632    0.089    7.125    0.000    0.632    0.331
   .SE01_02           0.906    0.116    7.826    0.000    0.906    0.497
   .SE01_03           0.684    0.091    7.546    0.000    0.684    0.380
   .SE01_04           0.667    0.078    8.601    0.000    0.667    0.366
   .TR01_01           0.722    0.060   12.092    0.000    0.722    0.544
   .TR01_05           0.273    0.031    8.703    0.000    0.273    0.207
   .TR01_09           0.196    0.035    5.647    0.000    0.196    0.134
   .COMM_log          4.318    0.210   20.531    0.000    4.318    0.807
   .pri_con_fs_c      2.309    0.106   21.859    0.000    2.309    0.990
   .grats_spc_fs_c    0.930    0.067   13.839    0.000    0.930    0.995
   .pri_del_fs_c      1.184    0.066   17.947    0.000    1.184    0.972
   .con_x_del         3.512    0.301   11.685    0.000    3.512    0.988
    grats_x_del       1.663    0.241    6.889    0.000    1.663    1.000
    male              0.250    0.000  820.690    0.000    0.250    1.000
    age             241.746    9.947   24.303    0.000  241.746    1.000
    edu               0.710    0.021   34.591    0.000    0.710    1.000
    self_eff          1.240    0.113   10.994    0.000    1.000    1.000
    trust_gen         0.598    0.071    8.368    0.000    1.000    1.000
rsquare_fit_inter <- inspect(fit_inter, what = "rsquare")["comm"]

Results are interesting. Both interaction effects are significant. If Deliberation increases, the effect of concerns on communication increase (net effect). If Deliberation increases, the effect of gratifications on communication decrease. Hence, could imply that if people think more, concerns more relevant than benefits.

Model “Simple”

We now use only two variables, namely specific gratifications and privacy concerns.

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07  
grats_inf =~ GR01_01 + GR01_02 + GR01_03 
grats_rel =~ GR01_04 + GR01_05 + GR01_06 
grats_par =~ GR01_07 + GR01_08 + GR01_09
grats_ide =~ GR01_10 + GR01_11 + GR01_12 
grats_ext =~ GR01_13 + GR01_14 + GR01_15
grats_spec =~ grats_inf + grats_rel + grats_par + grats_ide + grats_ext

COMM_log ~ a1*pri_con + b1*grats_spec

# Covariates
COMM_log + GR01_01 + GR01_02 + GR01_03 + GR01_04 + GR01_05 + GR01_06 + GR01_07 + GR01_08 + GR01_09 + GR01_10 + GR01_11 + GR01_12 + GR01_13 + GR01_14 + GR01_15 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 ~ male + age + edu

# Covariances
male ~~ age + edu
age ~~ edu
"
fit_simple <- lavaan::sem(model, data = d, estimator = "MLR", missing = "ML")
summary(fit_simple, fit = TRUE, std = TRUE)
lavaan 0.6-8 ended normally after 280 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       148
                                                      
  Number of observations                           559
  Number of missing patterns                         2
                                                      
Model Test User Model:
                                               Standard      Robust
  Test Statistic                                710.652     490.297
  Degrees of freedom                                202         202
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.449
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                              9673.089    6763.541
  Degrees of freedom                               300         300
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.430

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.946       0.955
  Tucker-Lewis Index (TLI)                       0.919       0.934
                                                                  
  Robust Comparative Fit Index (CFI)                         0.955
  Robust Tucker-Lewis Index (TLI)                            0.933

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -21601.797  -21601.797
  Scaling correction factor                                  1.232
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -21246.471  -21246.471
  Scaling correction factor                                  1.358
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               43499.594   43499.594
  Bayesian (BIC)                             44139.865   44139.865
  Sample-size adjusted Bayesian (BIC)        43670.041   43670.041

Root Mean Square Error of Approximation:

  RMSEA                                          0.067       0.051
  90 Percent confidence interval - lower         0.062       0.046
  90 Percent confidence interval - upper         0.073       0.055
  P-value RMSEA <= 0.05                          0.000       0.419
                                                                  
  Robust RMSEA                                               0.061
  90 Percent confidence interval - lower                     0.054
  90 Percent confidence interval - upper                     0.068

Standardized Root Mean Square Residual:

  SRMR                                           0.051       0.051

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  pri_con =~                                                            
    PC01_01           1.000                               1.599    0.928
    PC01_02           0.988    0.027   36.201    0.000    1.581    0.895
    PC01_04           0.968    0.027   35.665    0.000    1.549    0.882
    PC01_05           0.999    0.023   42.571    0.000    1.598    0.906
    PC01_06           0.851    0.038   22.647    0.000    1.361    0.794
    PC01_07           0.994    0.023   43.615    0.000    1.590    0.922
  grats_inf =~                                                          
    GR01_01           1.000                               0.953    0.678
    GR01_02           1.038    0.077   13.405    0.000    0.989    0.811
    GR01_03           1.138    0.081   14.121    0.000    1.084    0.843
  grats_rel =~                                                          
    GR01_04           1.000                               1.180    0.894
    GR01_05           0.933    0.037   24.892    0.000    1.101    0.852
    GR01_06           0.878    0.047   18.820    0.000    1.035    0.700
  grats_par =~                                                          
    GR01_07           1.000                               1.196    0.822
    GR01_08           0.927    0.040   23.167    0.000    1.109    0.809
    GR01_09           0.952    0.039   24.544    0.000    1.139    0.814
  grats_ide =~                                                          
    GR01_10           1.000                               1.149    0.791
    GR01_11           0.998    0.042   23.538    0.000    1.147    0.884
    GR01_12           0.919    0.042   22.054    0.000    1.056    0.757
  grats_ext =~                                                          
    GR01_13           1.000                               0.821    0.500
    GR01_14           1.030    0.104    9.853    0.000    0.845    0.505
    GR01_15           1.587    0.188    8.442    0.000    1.302    0.853
  grats_spec =~                                                         
    grats_inf         1.000                               0.829    0.829
    grats_rel         1.379    0.115   12.031    0.000    0.923    0.923
    grats_par         1.472    0.131   11.234    0.000    0.972    0.972
    grats_ide         1.352    0.119   11.338    0.000    0.929    0.929
    grats_ext         0.818    0.111    7.384    0.000    0.787    0.787

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  COMM_log ~                                                            
    pri_con   (a1)   -0.193    0.061   -3.139    0.002   -0.309   -0.134
    grats_spc (b1)    0.633    0.145    4.367    0.000    0.500    0.216
    male              0.018    0.199    0.089    0.929    0.018    0.004
    age               0.005    0.006    0.806    0.420    0.005    0.033
    edu               0.231    0.117    1.968    0.049    0.231    0.084
  GR01_01 ~                                                             
    male             -0.342    0.121   -2.830    0.005   -0.342   -0.121
    age              -0.005    0.004   -1.339    0.180   -0.005   -0.060
    edu               0.002    0.072    0.031    0.975    0.002    0.001
  GR01_02 ~                                                             
    male             -0.141    0.103   -1.373    0.170   -0.141   -0.058
    age              -0.007    0.003   -2.119    0.034   -0.007   -0.088
    edu              -0.034    0.060   -0.567    0.571   -0.034   -0.024
  GR01_03 ~                                                             
    male             -0.186    0.109   -1.710    0.087   -0.186   -0.072
    age              -0.006    0.004   -1.691    0.091   -0.006   -0.075
    edu              -0.080    0.063   -1.261    0.207   -0.080   -0.052
  GR01_04 ~                                                             
    male             -0.004    0.113   -0.036    0.971   -0.004   -0.002
    age               0.001    0.004    0.255    0.799    0.001    0.011
    edu              -0.019    0.066   -0.290    0.772   -0.019   -0.012
  GR01_05 ~                                                             
    male             -0.068    0.112   -0.612    0.541   -0.068   -0.026
    age              -0.001    0.004   -0.206    0.837   -0.001   -0.009
    edu               0.027    0.064    0.423    0.672    0.027    0.018
  GR01_06 ~                                                             
    male              0.030    0.124    0.242    0.809    0.030    0.010
    age              -0.011    0.004   -2.572    0.010   -0.011   -0.111
    edu              -0.086    0.074   -1.158    0.247   -0.086   -0.049
  GR01_07 ~                                                             
    male              0.075    0.124    0.603    0.547    0.075    0.026
    age              -0.006    0.004   -1.396    0.163   -0.006   -0.060
    edu               0.005    0.072    0.076    0.940    0.005    0.003
  GR01_08 ~                                                             
    male              0.006    0.116    0.052    0.958    0.006    0.002
    age              -0.005    0.004   -1.128    0.259   -0.005   -0.051
    edu               0.115    0.068    1.707    0.088    0.115    0.071
  GR01_09 ~                                                             
    male              0.090    0.119    0.757    0.449    0.090    0.032
    age              -0.004    0.004   -0.957    0.339   -0.004   -0.041
    edu               0.116    0.069    1.692    0.091    0.116    0.070
  GR01_10 ~                                                             
    male             -0.019    0.125   -0.155    0.877   -0.019   -0.007
    age              -0.008    0.004   -1.997    0.046   -0.008   -0.089
    edu              -0.019    0.074   -0.263    0.793   -0.019   -0.011
  GR01_11 ~                                                             
    male             -0.083    0.111   -0.747    0.455   -0.083   -0.032
    age              -0.001    0.004   -0.320    0.749   -0.001   -0.014
    edu              -0.051    0.064   -0.790    0.430   -0.051   -0.033
  GR01_12 ~                                                             
    male             -0.218    0.120   -1.818    0.069   -0.218   -0.078
    age              -0.004    0.004   -1.016    0.310   -0.004   -0.043
    edu              -0.047    0.071   -0.663    0.507   -0.047   -0.028
  GR01_13 ~                                                             
    male             -0.180    0.138   -1.311    0.190   -0.180   -0.055
    age              -0.023    0.004   -5.516    0.000   -0.023   -0.219
    edu               0.077    0.081    0.958    0.338    0.077    0.040
  GR01_14 ~                                                             
    male             -0.303    0.145   -2.091    0.037   -0.303   -0.090
    age              -0.007    0.005   -1.534    0.125   -0.007   -0.065
    edu               0.028    0.084    0.336    0.737    0.028    0.014
  GR01_15 ~                                                             
    male              0.048    0.132    0.360    0.719    0.048    0.016
    age              -0.005    0.004   -1.216    0.224   -0.005   -0.053
    edu               0.024    0.078    0.311    0.756    0.024    0.013
  PC01_01 ~                                                             
    male             -0.181    0.151   -1.202    0.229   -0.181   -0.053
    age              -0.004    0.005   -0.832    0.405   -0.004   -0.037
    edu               0.114    0.087    1.307    0.191    0.114    0.056
  PC01_02 ~                                                             
    male             -0.301    0.154   -1.962    0.050   -0.301   -0.085
    age              -0.008    0.005   -1.676    0.094   -0.008   -0.072
    edu               0.051    0.089    0.575    0.565    0.051    0.024
  PC01_04 ~                                                             
    male             -0.224    0.152   -1.472    0.141   -0.224   -0.064
    age              -0.010    0.005   -1.992    0.046   -0.010   -0.086
    edu               0.117    0.089    1.319    0.187    0.117    0.056
  PC01_05 ~                                                             
    male             -0.097    0.154   -0.634    0.526   -0.097   -0.028
    age              -0.006    0.005   -1.176    0.239   -0.006   -0.051
    edu               0.094    0.090    1.047    0.295    0.094    0.045
  PC01_06 ~                                                             
    male             -0.108    0.150   -0.720    0.472   -0.108   -0.031
    age              -0.005    0.005   -1.066    0.286   -0.005   -0.046
    edu               0.047    0.087    0.538    0.590    0.047    0.023
  PC01_07 ~                                                             
    male             -0.173    0.150   -1.157    0.247   -0.173   -0.050
    age              -0.007    0.005   -1.349    0.177   -0.007   -0.059
    edu               0.086    0.087    0.985    0.325    0.086    0.042

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  male ~~                                                               
    age               0.756    0.328    2.308    0.021    0.756    0.097
    edu               0.053    0.018    2.979    0.003    0.053    0.125
  age ~~                                                                
    edu              -1.018    0.547   -1.862    0.063   -1.018   -0.078
  pri_con ~~                                                            
    grats_spec       -0.114    0.067   -1.688    0.091   -0.090   -0.090

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           3.359    0.292   11.523    0.000    3.359    1.948
   .PC01_02           3.759    0.304   12.367    0.000    3.759    2.128
   .PC01_04           3.562    0.297   11.991    0.000    3.562    2.029
   .PC01_05           3.404    0.304   11.198    0.000    3.404    1.930
   .PC01_06           3.206    0.288   11.127    0.000    3.206    1.870
   .PC01_07           3.451    0.294   11.748    0.000    3.451    2.001
   .GR01_01           5.292    0.247   21.418    0.000    5.292    3.763
   .GR01_02           5.888    0.205   28.666    0.000    5.888    4.828
   .GR01_03           5.807    0.221   26.311    0.000    5.807    4.514
   .GR01_04           4.919    0.210   23.372    0.000    4.919    3.729
   .GR01_05           5.104    0.217   23.529    0.000    5.104    3.949
   .GR01_06           5.294    0.252   21.017    0.000    5.294    3.581
   .GR01_07           4.893    0.236   20.768    0.000    4.893    3.363
   .GR01_08           5.057    0.238   21.227    0.000    5.057    3.689
   .GR01_09           4.751    0.237   20.071    0.000    4.751    3.395
   .GR01_10           4.975    0.255   19.496    0.000    4.975    3.426
   .GR01_11           5.154    0.227   22.696    0.000    5.154    3.972
   .GR01_12           5.133    0.233   21.999    0.000    5.133    3.679
   .GR01_13           5.092    0.259   19.660    0.000    5.092    3.104
   .GR01_14           3.458    0.280   12.333    0.000    3.458    2.065
   .GR01_15           4.580    0.266   17.230    0.000    4.580    3.000
   .COMM_log          1.169    0.380    3.080    0.002    1.169    0.506
    male              0.493    0.021   23.281    0.000    0.493    0.986
    age              46.132    0.658   70.151    0.000   46.132    2.967
    edu               1.852    0.036   51.966    0.000    1.852    2.198
    pri_con           0.000                               0.000    0.000
   .grats_inf         0.000                               0.000    0.000
   .grats_rel         0.000                               0.000    0.000
   .grats_par         0.000                               0.000    0.000
   .grats_ide         0.000                               0.000    0.000
   .grats_ext         0.000                               0.000    0.000
    grats_spec        0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .PC01_01           0.393    0.050    7.910    0.000    0.393    0.132
   .PC01_02           0.579    0.104    5.590    0.000    0.579    0.186
   .PC01_04           0.634    0.078    8.084    0.000    0.634    0.206
   .PC01_05           0.539    0.065    8.265    0.000    0.539    0.173
   .PC01_06           1.077    0.117    9.219    0.000    1.077    0.366
   .PC01_07           0.423    0.064    6.633    0.000    0.423    0.142
   .GR01_01           1.031    0.108    9.513    0.000    1.031    0.521
   .GR01_02           0.491    0.066    7.476    0.000    0.491    0.330
   .GR01_03           0.455    0.069    6.568    0.000    0.455    0.275
   .GR01_04           0.348    0.043    8.145    0.000    0.348    0.200
   .GR01_05           0.457    0.056    8.093    0.000    0.457    0.273
   .GR01_06           1.083    0.108   10.009    0.000    1.083    0.496
   .GR01_07           0.678    0.070    9.758    0.000    0.678    0.320
   .GR01_08           0.634    0.068    9.274    0.000    0.634    0.337
   .GR01_09           0.646    0.071    9.037    0.000    0.646    0.330
   .GR01_10           0.772    0.069   11.111    0.000    0.772    0.366
   .GR01_11           0.364    0.055    6.577    0.000    0.364    0.216
   .GR01_12           0.812    0.077   10.577    0.000    0.812    0.417
   .GR01_13           1.868    0.147   12.729    0.000    1.868    0.694
   .GR01_14           2.052    0.123   16.746    0.000    2.052    0.732
   .GR01_15           0.628    0.113    5.568    0.000    0.628    0.269
   .COMM_log          4.926    0.207   23.764    0.000    4.926    0.922
    male              0.250    0.000  815.894    0.000    0.250    1.000
    age             241.747    9.947   24.303    0.000  241.747    1.000
    edu               0.710    0.021   34.591    0.000    0.710    1.000
    pri_con           2.558    0.144   17.756    0.000    1.000    1.000
   .grats_inf         0.285    0.045    6.367    0.000    0.313    0.313
   .grats_rel         0.205    0.049    4.162    0.000    0.148    0.148
   .grats_par         0.080    0.052    1.538    0.124    0.056    0.056
   .grats_ide         0.181    0.047    3.828    0.000    0.137    0.137
   .grats_ext         0.256    0.065    3.915    0.000    0.380    0.380
    grats_spec        0.624    0.119    5.261    0.000    1.000    1.000
rsquare_fit_simple <- inspect(fit_simple, what = "rsquare")["comm"]

Works as hypothesized.

Comparison

model_comp_tab <- data.frame(preregistered = fitmeasures(fit_prereg, c("BIC", "AIC")), adapted = fitmeasures(fit_adapted, 
    c("BIC", "AIC")), simple = fitmeasures(fit_simple, c("BIC", "AIC"))) %>% t() %T>% print()
                bic   aic
preregistered 55931 55040
adapted       64411 63403
simple        44140 43500

Visualization

# extract coeffs
d_coeffs_baseline <- coeffs_tab(fit_baseline, c("a1", "b1", "c1", "d1", "e1", "f1", "g1")) %>% mutate(Model = rep("Bivariate\nrelations", 
    7), Predictor = c("Privacy\nconcern", "Grats.\ngeneral", "Privacy\ndelib.", "Self-\nefficacy", "Trust\nspecific", "Trust\ngeneral", 
    "Grats.\nspecific"))

d_coeffs_prereg <- coeffs_tab(fit_prereg, c("a1", "b1", "c1", "d1", "e1")) %>% mutate(Model = rep("Preregistered\nmodel", 
    5), Predictor = c("Privacy\nconcern", "Grats.\ngeneral", "Privacy\ndelib.", "Self-\nefficacy", "Trust\nspecific"))

d_coeffs_adapted <- coeffs_tab(fit_adapted, c("a1", "b1", "c1", "d1", "e1")) %>% mutate(Model = rep("Adapted\nmodel", 5), 
    Predictor = c("Privacy\nconcern", "Grats.\nspecific", "Privacy\ndelib.", "Self-\nefficacy", "Trust\ngeneral"))

d_coeffs_simple <- coeffs_tab(fit_simple, c("a1", "b1")) %>% mutate(Model = rep("Simple\nmodel", 2), Predictor = c("Privacy\nconcern", 
    "Grats.\nspecific"))

d_coeffs <- rbind(d_coeffs_baseline, d_coeffs_prereg, d_coeffs_adapted, d_coeffs_simple) %>% mutate(Predictor = factor(Predictor, 
    c("Trust\ngeneral", "Trust\nspecific", "Self-\nefficacy", "Privacy\ndelib.", "Privacy\nconcern", "Grats.\nspecific", 
        "Grats.\ngeneral")), Model = factor(Model, c("Bivariate\nrelations", "Preregistered\nmodel", "Adapted\nmodel", "Simple\nmodel")))

# plot coeffs
fig_coeffs <- ggplot(d_coeffs, aes(x = b, y = Predictor)) + geom_vline(xintercept = 0, lwd = 0.75, colour = "darkgrey") + 
    geom_point(size = 2) + geom_errorbarh(aes(xmin = ll, xmax = ul), lwd = 0.75, colour = "grey", height = 0.2) + geom_errorbarh(aes(xmin = ll, 
    xmax = ul), lwd = 0.75, colour = "black", height = 0.2) + facet_grid(~Model) + guides(color = FALSE, shape = FALSE) + 
    theme_bw() + theme(axis.title.x = element_blank(), axis.title.y = element_blank(), plot.title = element_text(hjust = 0.5), 
    panel.spacing = unit(0.9, "lines"), text = element_text(size = 12)) + coord_cartesian(xlim = c(-1.3, 1.3))
ggsave("figures/results/coeffs.png")
fig_coeffs

Model “BRMS”

Because the dependent variable is a zero-inflated Poisson distribution, we’ll also run Bayesian models, which can explicitly account for this distribution.

Adapted Model

fit_brms <- brm(COMM ~ pri_con_fs + grats_spec_fs + pri_del_fs + self_eff_fs + trust_gen_fs, data = d, family = zero_inflated_poisson())
Running /Library/Frameworks/R.framework/Resources/bin/R CMD SHLIB foo.c
clang -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/Rcpp/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/unsupported"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/BH/include" -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/src/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppParallel/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/rstan/include" -DEIGEN_NO_DEBUG  -DBOOST_DISABLE_ASSERTS  -DBOOST_PENDING_INTEGER_LOG2_HPP  -DSTAN_THREADS  -DBOOST_NO_AUTO_PTR  -include '/Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp'  -D_REENTRANT -DRCPP_PARALLEL_USE_TBB=1   -I/usr/local/include   -fPIC  -Wall -g -O2  -c foo.c -o foo.o
In file included from <built-in>:1:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp:13:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Dense:1:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Core:88:
/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/src/Core/util/Macros.h:628:1: error: unknown type name 'namespace'
namespace Eigen {
^
/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/src/Core/util/Macros.h:628:16: error: expected ';' after top level declarator
namespace Eigen {
               ^
               ;
In file included from <built-in>:1:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp:13:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Dense:1:
/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Core:96:10: fatal error: 'complex' file not found
#include <complex>
         ^~~~~~~~~
3 errors generated.
make: *** [foo.o] Error 1

SAMPLING FOR MODEL 'ff6dde114d7563d08a5c6ba5771bba58' NOW (CHAIN 1).
Chain 1: 
Chain 1: Gradient evaluation took 0.000214 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 2.14 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1: 
Chain 1: 
Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 1: 
Chain 1:  Elapsed Time: 1.50407 seconds (Warm-up)
Chain 1:                1.49011 seconds (Sampling)
Chain 1:                2.99418 seconds (Total)
Chain 1: 

SAMPLING FOR MODEL 'ff6dde114d7563d08a5c6ba5771bba58' NOW (CHAIN 2).
Chain 2: 
Chain 2: Gradient evaluation took 0.000108 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 1.08 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2: 
Chain 2: 
Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 2: 
Chain 2:  Elapsed Time: 1.57924 seconds (Warm-up)
Chain 2:                1.3394 seconds (Sampling)
Chain 2:                2.91864 seconds (Total)
Chain 2: 

SAMPLING FOR MODEL 'ff6dde114d7563d08a5c6ba5771bba58' NOW (CHAIN 3).
Chain 3: 
Chain 3: Gradient evaluation took 0.000105 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 1.05 seconds.
Chain 3: Adjust your expectations accordingly!
Chain 3: 
Chain 3: 
Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 3: 
Chain 3:  Elapsed Time: 1.58002 seconds (Warm-up)
Chain 3:                1.42571 seconds (Sampling)
Chain 3:                3.00573 seconds (Total)
Chain 3: 

SAMPLING FOR MODEL 'ff6dde114d7563d08a5c6ba5771bba58' NOW (CHAIN 4).
Chain 4: 
Chain 4: Gradient evaluation took 0.000106 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 1.06 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4: 
Chain 4: 
Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 4: 
Chain 4:  Elapsed Time: 1.37559 seconds (Warm-up)
Chain 4:                1.43627 seconds (Sampling)
Chain 4:                2.81186 seconds (Total)
Chain 4: 
d_predicted <- predict(fit_brms) %>% as.data.frame()
summary(fit_brms)
 Family: zero_inflated_poisson 
  Links: mu = log; zi = identity 
Formula: COMM ~ pri_con_fs + grats_spec_fs + pri_del_fs + self_eff_fs + trust_gen_fs 
   Data: d (Number of observations: 559) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup samples = 4000

Population-Level Effects: 
              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept         2.35      0.06     2.24     2.47 1.00     3840     3247
pri_con_fs       -0.03      0.00    -0.04    -0.02 1.00     3648     2773
grats_spec_fs     0.39      0.01     0.37     0.40 1.00     3124     3149
pri_del_fs       -0.15      0.01    -0.16    -0.14 1.00     4018     3254
self_eff_fs       0.81      0.01     0.80     0.83 1.00     3115     2748
trust_gen_fs     -0.61      0.01    -0.63    -0.59 1.00     3063     2612

Family Specific Parameters: 
   Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
zi     0.58      0.02     0.54     0.62 1.00     4150     2548

Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Shows very similar results compared to SEM. Again, trust a negative predictor.

Plot predicted values

Let’s also look at how values are predicted to see how model performs.

d_predicted <- predict(fit_brms) %>% as.data.frame()
ggplot(d_predicted, aes(Estimate)) + geom_density()

Let’s also plot actual values.

# plot actual values
ggplot(d, aes(COMM)) + geom_density()

Model-predicted values don’t closely match actual values.

Without Trust

Because trust has a negative coefficient, which seems generally implausible, we also run a model without trust.

fit_brms <- brm(COMM ~ pri_con_fs + grats_spec_fs + pri_del_fs + self_eff_fs, data = d, family = zero_inflated_poisson())
Running /Library/Frameworks/R.framework/Resources/bin/R CMD SHLIB foo.c
clang -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/Rcpp/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/unsupported"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/BH/include" -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/src/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppParallel/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/rstan/include" -DEIGEN_NO_DEBUG  -DBOOST_DISABLE_ASSERTS  -DBOOST_PENDING_INTEGER_LOG2_HPP  -DSTAN_THREADS  -DBOOST_NO_AUTO_PTR  -include '/Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp'  -D_REENTRANT -DRCPP_PARALLEL_USE_TBB=1   -I/usr/local/include   -fPIC  -Wall -g -O2  -c foo.c -o foo.o
In file included from <built-in>:1:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp:13:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Dense:1:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Core:88:
/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/src/Core/util/Macros.h:628:1: error: unknown type name 'namespace'
namespace Eigen {
^
/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/src/Core/util/Macros.h:628:16: error: expected ';' after top level declarator
namespace Eigen {
               ^
               ;
In file included from <built-in>:1:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp:13:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Dense:1:
/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Core:96:10: fatal error: 'complex' file not found
#include <complex>
         ^~~~~~~~~
3 errors generated.
make: *** [foo.o] Error 1

SAMPLING FOR MODEL 'ff6dde114d7563d08a5c6ba5771bba58' NOW (CHAIN 1).
Chain 1: 
Chain 1: Gradient evaluation took 0.000161 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 1.61 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1: 
Chain 1: 
Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 1: 
Chain 1:  Elapsed Time: 1.28726 seconds (Warm-up)
Chain 1:                1.17511 seconds (Sampling)
Chain 1:                2.46236 seconds (Total)
Chain 1: 

SAMPLING FOR MODEL 'ff6dde114d7563d08a5c6ba5771bba58' NOW (CHAIN 2).
Chain 2: 
Chain 2: Gradient evaluation took 0.000106 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 1.06 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2: 
Chain 2: 
Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 2: 
Chain 2:  Elapsed Time: 1.30972 seconds (Warm-up)
Chain 2:                1.31789 seconds (Sampling)
Chain 2:                2.62761 seconds (Total)
Chain 2: 

SAMPLING FOR MODEL 'ff6dde114d7563d08a5c6ba5771bba58' NOW (CHAIN 3).
Chain 3: 
Chain 3: Gradient evaluation took 0.000107 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 1.07 seconds.
Chain 3: Adjust your expectations accordingly!
Chain 3: 
Chain 3: 
Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 3: 
Chain 3:  Elapsed Time: 1.26721 seconds (Warm-up)
Chain 3:                1.09984 seconds (Sampling)
Chain 3:                2.36705 seconds (Total)
Chain 3: 

SAMPLING FOR MODEL 'ff6dde114d7563d08a5c6ba5771bba58' NOW (CHAIN 4).
Chain 4: 
Chain 4: Gradient evaluation took 0.000106 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 1.06 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4: 
Chain 4: 
Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 4: 
Chain 4:  Elapsed Time: 1.20946 seconds (Warm-up)
Chain 4:                1.2012 seconds (Sampling)
Chain 4:                2.41066 seconds (Total)
Chain 4: 
d_predicted <- predict(fit_brms) %>% as.data.frame()
summary(fit_brms)
 Family: zero_inflated_poisson 
  Links: mu = log; zi = identity 
Formula: COMM ~ pri_con_fs + grats_spec_fs + pri_del_fs + self_eff_fs 
   Data: d (Number of observations: 559) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup samples = 4000

Population-Level Effects: 
              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept         1.19      0.06     1.09     1.30 1.00     3364     3033
pri_con_fs        0.10      0.00     0.09     0.11 1.00     3877     3009
grats_spec_fs     0.05      0.01     0.03     0.06 1.00     3377     2924
pri_del_fs       -0.15      0.01    -0.16    -0.14 1.00     3583     2565
self_eff_fs       0.67      0.01     0.66     0.69 1.00     2578     2287

Family Specific Parameters: 
   Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
zi     0.58      0.02     0.54     0.62 1.00     3175     2854

Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Seems to make sense. Self-Efficacy a strong predictor of behavior.

Simple model

fit_brms_simple <- brm(COMM ~ pri_con_fs + grats_spec_fs, data = d, family = zero_inflated_poisson())
Running /Library/Frameworks/R.framework/Resources/bin/R CMD SHLIB foo.c
clang -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/Rcpp/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/unsupported"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/BH/include" -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/src/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppParallel/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/rstan/include" -DEIGEN_NO_DEBUG  -DBOOST_DISABLE_ASSERTS  -DBOOST_PENDING_INTEGER_LOG2_HPP  -DSTAN_THREADS  -DBOOST_NO_AUTO_PTR  -include '/Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp'  -D_REENTRANT -DRCPP_PARALLEL_USE_TBB=1   -I/usr/local/include   -fPIC  -Wall -g -O2  -c foo.c -o foo.o
In file included from <built-in>:1:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp:13:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Dense:1:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Core:88:
/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/src/Core/util/Macros.h:628:1: error: unknown type name 'namespace'
namespace Eigen {
^
/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/src/Core/util/Macros.h:628:16: error: expected ';' after top level declarator
namespace Eigen {
               ^
               ;
In file included from <built-in>:1:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp:13:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Dense:1:
/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Core:96:10: fatal error: 'complex' file not found
#include <complex>
         ^~~~~~~~~
3 errors generated.
make: *** [foo.o] Error 1

SAMPLING FOR MODEL 'ff6dde114d7563d08a5c6ba5771bba58' NOW (CHAIN 1).
Chain 1: 
Chain 1: Gradient evaluation took 0.000152 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 1.52 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1: 
Chain 1: 
Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 1: 
Chain 1:  Elapsed Time: 0.842434 seconds (Warm-up)
Chain 1:                0.658347 seconds (Sampling)
Chain 1:                1.50078 seconds (Total)
Chain 1: 

SAMPLING FOR MODEL 'ff6dde114d7563d08a5c6ba5771bba58' NOW (CHAIN 2).
Chain 2: 
Chain 2: Gradient evaluation took 0.000113 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 1.13 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2: 
Chain 2: 
Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 2: 
Chain 2:  Elapsed Time: 0.891613 seconds (Warm-up)
Chain 2:                0.605925 seconds (Sampling)
Chain 2:                1.49754 seconds (Total)
Chain 2: 

SAMPLING FOR MODEL 'ff6dde114d7563d08a5c6ba5771bba58' NOW (CHAIN 3).
Chain 3: 
Chain 3: Gradient evaluation took 0.000127 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 1.27 seconds.
Chain 3: Adjust your expectations accordingly!
Chain 3: 
Chain 3: 
Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 3: 
Chain 3:  Elapsed Time: 0.82963 seconds (Warm-up)
Chain 3:                0.694818 seconds (Sampling)
Chain 3:                1.52445 seconds (Total)
Chain 3: 

SAMPLING FOR MODEL 'ff6dde114d7563d08a5c6ba5771bba58' NOW (CHAIN 4).
Chain 4: 
Chain 4: Gradient evaluation took 0.000101 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 1.01 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4: 
Chain 4: 
Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 4: 
Chain 4:  Elapsed Time: 0.806962 seconds (Warm-up)
Chain 4:                0.69919 seconds (Sampling)
Chain 4:                1.50615 seconds (Total)
Chain 4: 
summary(fit_brms_simple)
 Family: zero_inflated_poisson 
  Links: mu = log; zi = identity 
Formula: COMM ~ pri_con_fs + grats_spec_fs 
   Data: d (Number of observations: 559) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup samples = 4000

Population-Level Effects: 
              Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept         3.65      0.03     3.59     3.72 1.00     3458     2616
pri_con_fs       -0.07      0.00    -0.08    -0.07 1.00     4456     2940
grats_spec_fs     0.35      0.01     0.34     0.36 1.00     3464     2914

Family Specific Parameters: 
   Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
zi     0.58      0.02     0.54     0.62 1.00     3304     2552

Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Also works, showing somewhat stronger effects.

Simple hurdle model

fit_brms_simple_hurdle <- brm(bf(COMM ~ pri_con_fs + grats_spec_fs, hu ~ pri_con_fs + grats_spec_fs), data = d, family = hurdle_poisson())
Running /Library/Frameworks/R.framework/Resources/bin/R CMD SHLIB foo.c
clang -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/Rcpp/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/unsupported"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/BH/include" -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/src/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppParallel/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/rstan/include" -DEIGEN_NO_DEBUG  -DBOOST_DISABLE_ASSERTS  -DBOOST_PENDING_INTEGER_LOG2_HPP  -DSTAN_THREADS  -DBOOST_NO_AUTO_PTR  -include '/Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp'  -D_REENTRANT -DRCPP_PARALLEL_USE_TBB=1   -I/usr/local/include   -fPIC  -Wall -g -O2  -c foo.c -o foo.o
In file included from <built-in>:1:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp:13:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Dense:1:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Core:88:
/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/src/Core/util/Macros.h:628:1: error: unknown type name 'namespace'
namespace Eigen {
^
/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/src/Core/util/Macros.h:628:16: error: expected ';' after top level declarator
namespace Eigen {
               ^
               ;
In file included from <built-in>:1:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp:13:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Dense:1:
/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Core:96:10: fatal error: 'complex' file not found
#include <complex>
         ^~~~~~~~~
3 errors generated.
make: *** [foo.o] Error 1

SAMPLING FOR MODEL 'f157c8fb1c22051058d62ec8076651f8' NOW (CHAIN 1).
Chain 1: 
Chain 1: Gradient evaluation took 0.000211 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 2.11 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1: 
Chain 1: 
Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 1: 
Chain 1:  Elapsed Time: 1.43322 seconds (Warm-up)
Chain 1:                0.778388 seconds (Sampling)
Chain 1:                2.21161 seconds (Total)
Chain 1: 

SAMPLING FOR MODEL 'f157c8fb1c22051058d62ec8076651f8' NOW (CHAIN 2).
Chain 2: 
Chain 2: Gradient evaluation took 0.000269 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 2.69 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2: 
Chain 2: 
Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 2: 
Chain 2:  Elapsed Time: 1.54255 seconds (Warm-up)
Chain 2:                0.768876 seconds (Sampling)
Chain 2:                2.31143 seconds (Total)
Chain 2: 

SAMPLING FOR MODEL 'f157c8fb1c22051058d62ec8076651f8' NOW (CHAIN 3).
Chain 3: 
Chain 3: Gradient evaluation took 0.000109 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 1.09 seconds.
Chain 3: Adjust your expectations accordingly!
Chain 3: 
Chain 3: 
Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 3: 
Chain 3:  Elapsed Time: 1.4029 seconds (Warm-up)
Chain 3:                0.772516 seconds (Sampling)
Chain 3:                2.17541 seconds (Total)
Chain 3: 

SAMPLING FOR MODEL 'f157c8fb1c22051058d62ec8076651f8' NOW (CHAIN 4).
Chain 4: 
Chain 4: Gradient evaluation took 0.000119 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 1.19 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4: 
Chain 4: 
Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 4: 
Chain 4:  Elapsed Time: 1.29125 seconds (Warm-up)
Chain 4:                0.729754 seconds (Sampling)
Chain 4:                2.02101 seconds (Total)
Chain 4: 
summary(fit_brms_simple_hurdle)
 Family: hurdle_poisson 
  Links: mu = log; hu = logit 
Formula: COMM ~ pri_con_fs + grats_spec_fs 
         hu ~ pri_con_fs + grats_spec_fs
   Data: d (Number of observations: 559) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup samples = 4000

Population-Level Effects: 
                 Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept            3.65      0.03     3.59     3.72 1.00     5066     3035
hu_Intercept         1.74      0.51     0.75     2.74 1.00     5213     2956
pri_con_fs          -0.07      0.00    -0.08    -0.07 1.00     5869     3235
grats_spec_fs        0.35      0.01     0.34     0.36 1.00     4991     2972
hu_pri_con_fs        0.18      0.06     0.06     0.30 1.00     5775     3010
hu_grats_spec_fs    -0.42      0.10    -0.61    -0.23 1.00     5452     3165

Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Results don’t differ markedly.

Interaction model

fit_brms <- brm(COMM ~ pri_con_fs_c * grats_spec_fs_c, data = d, family = zero_inflated_poisson())
Running /Library/Frameworks/R.framework/Resources/bin/R CMD SHLIB foo.c
clang -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/Rcpp/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/unsupported"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/BH/include" -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/src/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppParallel/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/rstan/include" -DEIGEN_NO_DEBUG  -DBOOST_DISABLE_ASSERTS  -DBOOST_PENDING_INTEGER_LOG2_HPP  -DSTAN_THREADS  -DBOOST_NO_AUTO_PTR  -include '/Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp'  -D_REENTRANT -DRCPP_PARALLEL_USE_TBB=1   -I/usr/local/include   -fPIC  -Wall -g -O2  -c foo.c -o foo.o
In file included from <built-in>:1:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp:13:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Dense:1:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Core:88:
/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/src/Core/util/Macros.h:628:1: error: unknown type name 'namespace'
namespace Eigen {
^
/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/src/Core/util/Macros.h:628:16: error: expected ';' after top level declarator
namespace Eigen {
               ^
               ;
In file included from <built-in>:1:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp:13:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Dense:1:
/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Core:96:10: fatal error: 'complex' file not found
#include <complex>
         ^~~~~~~~~
3 errors generated.
make: *** [foo.o] Error 1

SAMPLING FOR MODEL 'ff6dde114d7563d08a5c6ba5771bba58' NOW (CHAIN 1).
Chain 1: 
Chain 1: Gradient evaluation took 0.000163 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 1.63 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1: 
Chain 1: 
Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 1: 
Chain 1:  Elapsed Time: 0.96897 seconds (Warm-up)
Chain 1:                0.757595 seconds (Sampling)
Chain 1:                1.72656 seconds (Total)
Chain 1: 

SAMPLING FOR MODEL 'ff6dde114d7563d08a5c6ba5771bba58' NOW (CHAIN 2).
Chain 2: 
Chain 2: Gradient evaluation took 0.000126 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 1.26 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2: 
Chain 2: 
Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 2: 
Chain 2:  Elapsed Time: 1.0374 seconds (Warm-up)
Chain 2:                0.780917 seconds (Sampling)
Chain 2:                1.81832 seconds (Total)
Chain 2: 

SAMPLING FOR MODEL 'ff6dde114d7563d08a5c6ba5771bba58' NOW (CHAIN 3).
Chain 3: 
Chain 3: Gradient evaluation took 0.000135 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 1.35 seconds.
Chain 3: Adjust your expectations accordingly!
Chain 3: 
Chain 3: 
Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 3: 
Chain 3:  Elapsed Time: 0.994952 seconds (Warm-up)
Chain 3:                0.843577 seconds (Sampling)
Chain 3:                1.83853 seconds (Total)
Chain 3: 

SAMPLING FOR MODEL 'ff6dde114d7563d08a5c6ba5771bba58' NOW (CHAIN 4).
Chain 4: 
Chain 4: Gradient evaluation took 0.000109 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 1.09 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4: 
Chain 4: 
Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 4: 
Chain 4:  Elapsed Time: 1.04481 seconds (Warm-up)
Chain 4:                0.767348 seconds (Sampling)
Chain 4:                1.81216 seconds (Total)
Chain 4: 
summary(fit_brms)
 Family: zero_inflated_poisson 
  Links: mu = log; zi = identity 
Formula: COMM ~ pri_con_fs_c * grats_spec_fs_c 
   Data: d (Number of observations: 559) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup samples = 4000

Population-Level Effects: 
                             Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept                        5.04      0.01     5.03     5.05 1.00     3049     2657
pri_con_fs_c                    -0.11      0.00    -0.12    -0.10 1.00     3422     2812
grats_spec_fs_c                  0.38      0.01     0.37     0.39 1.00     2991     2666
pri_con_fs_c:grats_spec_fs_c     0.07      0.00     0.06     0.08 1.00     3366     3106

Family Specific Parameters: 
   Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
zi     0.58      0.02     0.54     0.62 1.00     3565     2835

Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

The effect of concerns on communication become weaker if gratifications increase.

Interaction model including deliberation

fit_brms <- brm(COMM ~ pri_con_fs_c * grats_spec_fs_c + pri_con_fs_c * pri_del_fs_c + grats_spec_fs_c * pri_del_fs_c, data = d, 
    family = zero_inflated_poisson())
Running /Library/Frameworks/R.framework/Resources/bin/R CMD SHLIB foo.c
clang -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/Rcpp/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/unsupported"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/BH/include" -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/src/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppParallel/include/"  -I"/Library/Frameworks/R.framework/Versions/4.0/Resources/library/rstan/include" -DEIGEN_NO_DEBUG  -DBOOST_DISABLE_ASSERTS  -DBOOST_PENDING_INTEGER_LOG2_HPP  -DSTAN_THREADS  -DBOOST_NO_AUTO_PTR  -include '/Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp'  -D_REENTRANT -DRCPP_PARALLEL_USE_TBB=1   -I/usr/local/include   -fPIC  -Wall -g -O2  -c foo.c -o foo.o
In file included from <built-in>:1:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp:13:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Dense:1:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Core:88:
/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/src/Core/util/Macros.h:628:1: error: unknown type name 'namespace'
namespace Eigen {
^
/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/src/Core/util/Macros.h:628:16: error: expected ';' after top level declarator
namespace Eigen {
               ^
               ;
In file included from <built-in>:1:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/StanHeaders/include/stan/math/prim/mat/fun/Eigen.hpp:13:
In file included from /Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Dense:1:
/Library/Frameworks/R.framework/Versions/4.0/Resources/library/RcppEigen/include/Eigen/Core:96:10: fatal error: 'complex' file not found
#include <complex>
         ^~~~~~~~~
3 errors generated.
make: *** [foo.o] Error 1

SAMPLING FOR MODEL 'ff6dde114d7563d08a5c6ba5771bba58' NOW (CHAIN 1).
Chain 1: 
Chain 1: Gradient evaluation took 0.000248 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 2.48 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1: 
Chain 1: 
Chain 1: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 1: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 1: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 1: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 1: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 1: 
Chain 1:  Elapsed Time: 1.35146 seconds (Warm-up)
Chain 1:                1.12228 seconds (Sampling)
Chain 1:                2.47375 seconds (Total)
Chain 1: 

SAMPLING FOR MODEL 'ff6dde114d7563d08a5c6ba5771bba58' NOW (CHAIN 2).
Chain 2: 
Chain 2: Gradient evaluation took 0.000109 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 1.09 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2: 
Chain 2: 
Chain 2: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 2: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 2: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 2: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 2: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 2: 
Chain 2:  Elapsed Time: 1.1744 seconds (Warm-up)
Chain 2:                1.12764 seconds (Sampling)
Chain 2:                2.30204 seconds (Total)
Chain 2: 

SAMPLING FOR MODEL 'ff6dde114d7563d08a5c6ba5771bba58' NOW (CHAIN 3).
Chain 3: 
Chain 3: Gradient evaluation took 0.000105 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 1.05 seconds.
Chain 3: Adjust your expectations accordingly!
Chain 3: 
Chain 3: 
Chain 3: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 3: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 3: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 3: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 3: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 3: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 3: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 3: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 3: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 3: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 3: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 3: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 3: 
Chain 3:  Elapsed Time: 1.32097 seconds (Warm-up)
Chain 3:                1.09047 seconds (Sampling)
Chain 3:                2.41144 seconds (Total)
Chain 3: 

SAMPLING FOR MODEL 'ff6dde114d7563d08a5c6ba5771bba58' NOW (CHAIN 4).
Chain 4: 
Chain 4: Gradient evaluation took 0.000111 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 1.11 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4: 
Chain 4: 
Chain 4: Iteration:    1 / 2000 [  0%]  (Warmup)
Chain 4: Iteration:  200 / 2000 [ 10%]  (Warmup)
Chain 4: Iteration:  400 / 2000 [ 20%]  (Warmup)
Chain 4: Iteration:  600 / 2000 [ 30%]  (Warmup)
Chain 4: Iteration:  800 / 2000 [ 40%]  (Warmup)
Chain 4: Iteration: 1000 / 2000 [ 50%]  (Warmup)
Chain 4: Iteration: 1001 / 2000 [ 50%]  (Sampling)
Chain 4: Iteration: 1200 / 2000 [ 60%]  (Sampling)
Chain 4: Iteration: 1400 / 2000 [ 70%]  (Sampling)
Chain 4: Iteration: 1600 / 2000 [ 80%]  (Sampling)
Chain 4: Iteration: 1800 / 2000 [ 90%]  (Sampling)
Chain 4: Iteration: 2000 / 2000 [100%]  (Sampling)
Chain 4: 
Chain 4:  Elapsed Time: 1.27213 seconds (Warm-up)
Chain 4:                1.17112 seconds (Sampling)
Chain 4:                2.44325 seconds (Total)
Chain 4: 
summary(fit_brms)
 Family: zero_inflated_poisson 
  Links: mu = log; zi = identity 
Formula: COMM ~ pri_con_fs_c * grats_spec_fs_c + pri_con_fs_c * pri_del_fs_c + grats_spec_fs_c * pri_del_fs_c 
   Data: d (Number of observations: 559) 
Samples: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
         total post-warmup samples = 4000

Population-Level Effects: 
                             Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept                        4.98      0.01     4.97     4.99 1.00     3258     3306
pri_con_fs_c                     0.00      0.00    -0.01     0.01 1.00     3111     3175
grats_spec_fs_c                  0.39      0.01     0.38     0.40 1.00     2779     2681
pri_del_fs_c                    -0.24      0.01    -0.25    -0.23 1.00     2957     3005
pri_con_fs_c:grats_spec_fs_c     0.08      0.00     0.07     0.09 1.00     2908     3145
pri_con_fs_c:pri_del_fs_c        0.01      0.00     0.00     0.01 1.00     5018     3327
grats_spec_fs_c:pri_del_fs_c    -0.03      0.01    -0.04    -0.02 1.00     3129     2964

Family Specific Parameters: 
   Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
zi     0.58      0.02     0.54     0.62 1.00     3215     2821

Samples were drawn using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

Effects of popularity cues

Visualisation

The easiest way to assess the effect of the experimental manipulation on the variables is by visualizing their means. If 83% confidence intervals don’t overlap, the variables differ significantly across the conditions. One can quickly see that there aren’t any major effects.

# violin plot
fig_fs_m <- ggplot(
  gather(d_fs, variable, value, -version) %>% 
    mutate(variable = factor(variable, levels = var_names_breaks)),
  aes(x = version, y = value, fill = version)) +
  geom_violin(trim = TRUE) +
  stat_summary(fun.y = mean, geom = "point") +
  #  stat_summary(aes(label = round(..y.., 2)), fun.y = mean, geom = "text", 
  #              vjust = 0, size = 3
  #              ) +
  #  stat_summary(fun.data = mean_cl_normal, geom = "errorbar", width = .5) +
  stat_summary(fun.data = mean_se, fun.args = list(mult = 1.39), geom = "errorbar", width = .5) + 
  facet_wrap(~ variable, nrow = 2) + 
  theme_bw() +
  theme(axis.title.y = element_blank(),
        axis.title.x = element_blank(),
        # axis.text.x = element_blank(),
        plot.title = element_text(hjust = .5),
        panel.spacing = unit(.9, "lines"),
        text = element_text(size = 12),
        legend.position="none",
        legend.title = element_blank()) +
  coord_cartesian(ylim = c(0, 7)) +
  scale_fill_brewer(palette = "Greys")
ggsave("figures/results/violin_plot.png")
fig_fs_m

# barplot
# fig_fs_m <- ggplot(
#   gather(d_fs, variable, value, -version) %>% 
#     mutate(variable = factor(variable, levels = var_names_breaks)),
#   aes(x = version, y = value, fill = version)) +
#   stat_summary(fun.y = mean, geom = "bar") +
#   stat_summary(aes(label=round(..y.., 2)), fun.y = mean, geom = "text", 
#                vjust = 2, size = 3) +
#   stat_summary(fun.data = mean_cl_normal, geom = "errorbar", width = .75) +
#   facet_wrap(~ variable, nrow = 2) + 
#   theme_bw() +
#   theme(axis.title.y = element_blank(),
#         axis.title.x = element_blank(),
#         axis.text.x = element_blank(),
#         plot.title = element_text(hjust = .5),
#         panel.spacing = unit(.9, "lines"),
#         text = element_text(size = 12),
#         legend.position="bottom",
#         legend.title = element_blank()) +
#   coord_cartesian(ylim = c(0, 7)) +
#   scale_fill_brewer(palette="Greys")
# fig_fs_m

Preregistered

In what follows, we also report explicit statistical tests of the differences between the conditions using contrasts.

Like & Like-Dislike vs. Control

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07
grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
  SE01_01 ~~ x*SE01_02
  SE01_03 ~~ x*SE01_04
trust_community =~ TR01_02 + TR01_03 + TR01_04
trust_provider =~ TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12
trust_spec =~ trust_community + trust_provider

pri_con + grats_gen + pri_delib + self_eff + trust_spec + COMM ~ like + likedislike

# pri_con + grats_gen + pri_delib + self_eff + trust_spec ~ like + likedislike
# COMM ~ a*pri_con + b*grats_gen + c*pri_delib + d*self_eff + e*trust_spec + f*like + g*likedislike

# Covariates
# COMM + GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR01_02 + TR01_03 + TR01_04 + TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu
"
fit_lik_ctrl <- lavaan::sem(model = model, data = d, estimator = "MLR", missing = "ML")
summary(fit_lik_ctrl, fit = TRUE, std = TRUE)
lavaan 0.6-8 ended normally after 256 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       120
  Number of equality constraints                     1
                                                      
  Number of observations                           559
  Number of missing patterns                         3
                                                      
Model Test User Model:
                                               Standard      Robust
  Test Statistic                               1281.392    1011.389
  Degrees of freedom                                436         436
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.267
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                             13166.886    9798.237
  Degrees of freedom                               495         495
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.344

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.933       0.938
  Tucker-Lewis Index (TLI)                       0.924       0.930
                                                                  
  Robust Comparative Fit Index (CFI)                         0.942
  Robust Tucker-Lewis Index (TLI)                            0.934

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -26626.204  -26626.204
  Scaling correction factor                                  1.765
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -25985.507  -25985.507
  Scaling correction factor                                  1.377
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               53490.407   53490.407
  Bayesian (BIC)                             54005.219   54005.219
  Sample-size adjusted Bayesian (BIC)        53627.455   53627.455

Root Mean Square Error of Approximation:

  RMSEA                                          0.059       0.049
  90 Percent confidence interval - lower         0.055       0.045
  90 Percent confidence interval - upper         0.063       0.052
  P-value RMSEA <= 0.05                          0.000       0.744
                                                                  
  Robust RMSEA                                               0.055
  90 Percent confidence interval - lower                     0.050
  90 Percent confidence interval - upper                     0.059

Standardized Root Mean Square Residual:

  SRMR                                           0.051       0.051

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                     Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
  pri_con =~                                                                 
    PC01_01              1.000                                 1.602    0.929
    PC01_02              0.994     0.027   36.158    0.000     1.592    0.901
    PC01_04              0.977     0.027   35.602    0.000     1.566    0.892
    PC01_05              1.001     0.024   41.978    0.000     1.604    0.910
    PC01_06              0.854     0.038   22.418    0.000     1.368    0.798
    PC01_07              0.996     0.022   44.887    0.000     1.595    0.925
  grats_gen =~                                                               
    GR02_01              1.000                                 1.133    0.844
    GR02_02              1.121     0.034   33.405    0.000     1.269    0.896
    GR02_03              1.022     0.048   21.377    0.000     1.157    0.865
    GR02_04              0.986     0.049   20.322    0.000     1.116    0.849
    GR02_05              1.069     0.040   26.518    0.000     1.211    0.845
  pri_delib =~                                                               
    PD01_01              1.000                                 1.494    0.866
    PD01_02              0.673     0.047   14.349    0.000     1.006    0.655
    PD01_03              0.703     0.053   13.149    0.000     1.051    0.675
    PD01_04              0.847     0.047   18.074    0.000     1.266    0.742
    PD01_05              0.721     0.048   14.914    0.000     1.077    0.651
  self_eff =~                                                                
    SE01_01              1.000                                 1.132    0.821
    SE01_02              0.804     0.059   13.603    0.000     0.911    0.675
    SE01_03              0.927     0.045   20.695    0.000     1.050    0.783
    SE01_04              0.945     0.043   21.823    0.000     1.070    0.792
  trust_community =~                                                         
    TR01_02              1.000                                 1.031    0.814
    TR01_03              0.819     0.051   16.025    0.000     0.844    0.768
    TR01_04              0.918     0.046   19.897    0.000     0.946    0.820
  trust_provider =~                                                          
    TR01_06              1.000                                 1.047    0.873
    TR01_07              0.854     0.039   21.684    0.000     0.895    0.773
    TR01_08              0.832     0.041   20.203    0.000     0.871    0.786
    TR01_10              0.788     0.039   20.455    0.000     0.825    0.701
    TR01_11              0.821     0.052   15.888    0.000     0.860    0.663
    TR01_12              1.100     0.039   28.248    0.000     1.152    0.857
  trust_spec =~                                                              
    trust_communty       1.000                                 0.871    0.871
    trust_provider       1.115     0.078   14.330    0.000     0.955    0.955

Regressions:
                   Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
  pri_con ~                                                                
    like               0.026     0.163    0.160    0.873     0.016    0.008
    likedislike        0.182     0.171    1.066    0.286     0.114    0.053
  grats_gen ~                                                              
    like              -0.165     0.119   -1.386    0.166    -0.145   -0.069
    likedislike       -0.210     0.120   -1.744    0.081    -0.186   -0.086
  pri_delib ~                                                              
    like              -0.020     0.164   -0.125    0.901    -0.014   -0.006
    likedislike       -0.063     0.172   -0.366    0.714    -0.042   -0.020
  self_eff ~                                                               
    like              -0.078     0.127   -0.616    0.538    -0.069   -0.033
    likedislike       -0.087     0.130   -0.671    0.502    -0.077   -0.036
  trust_spec ~                                                             
    like              -0.166     0.098   -1.691    0.091    -0.185   -0.088
    likedislike       -0.133     0.102   -1.302    0.193    -0.148   -0.069
  COMM ~                                                                   
    like             -33.448    28.568   -1.171    0.242   -33.448   -0.064
    likedislike      -44.040    28.124   -1.566    0.117   -44.040   -0.082

Covariances:
                   Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
 .SE01_01 ~~                                                               
   .SE01_02    (x)     0.116     0.046    2.534    0.011     0.116    0.147
 .SE01_03 ~~                                                               
   .SE01_04    (x)     0.116     0.046    2.534    0.011     0.116    0.168
 .pri_con ~~                                                               
   .grats_gen         -0.277     0.096   -2.888    0.004    -0.153   -0.153
   .pri_delib          1.359     0.132   10.303    0.000     0.568    0.568
   .self_eff          -0.379     0.092   -4.122    0.000    -0.209   -0.209
   .trust_spec        -0.413     0.075   -5.519    0.000    -0.288   -0.288
   .COMM             -34.213    14.239   -2.403    0.016   -21.379   -0.086
 .grats_gen ~~                                                             
   .pri_delib         -0.075     0.102   -0.732    0.464    -0.044   -0.044
   .self_eff           0.458     0.068    6.742    0.000     0.359    0.359
   .trust_spec         0.792     0.085    9.273    0.000     0.785    0.785
   .COMM              29.236    14.515    2.014    0.044    25.897    0.104
 .pri_delib ~~                                                             
   .self_eff          -0.336     0.094   -3.588    0.000    -0.199   -0.199
   .trust_spec        -0.130     0.085   -1.529    0.126    -0.097   -0.097
   .COMM             -52.151    16.079   -3.243    0.001   -34.903   -0.140
 .self_eff ~~                                                              
   .trust_spec         0.548     0.059    9.224    0.000     0.542    0.542
   .COMM              72.409    15.216    4.759    0.000    63.982    0.257
 .trust_spec ~~                                                            
   .COMM              24.007    10.569    2.271    0.023    26.841    0.108

Intercepts:
                   Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
   .PC01_01            3.227     0.116   27.890    0.000     3.227    1.872
   .PC01_02            3.261     0.115   28.344    0.000     3.261    1.846
   .PC01_04            3.157     0.115   27.542    0.000     3.157    1.798
   .PC01_05            3.197     0.115   27.733    0.000     3.197    1.813
   .PC01_06            2.947     0.103   28.703    0.000     2.947    1.718
   .PC01_07            3.158     0.115   27.550    0.000     3.158    1.831
   .GR02_01            4.404     0.086   51.375    0.000     4.404    3.281
   .GR02_02            4.734     0.094   50.398    0.000     4.734    3.343
   .GR02_03            5.257     0.087   60.221    0.000     5.257    3.927
   .GR02_04            5.211     0.085   61.217    0.000     5.211    3.965
   .GR02_05            4.824     0.091   53.046    0.000     4.824    3.368
   .PD01_01            3.685     0.120   30.795    0.000     3.685    2.136
   .PD01_02            3.371     0.091   37.015    0.000     3.371    2.195
   .PD01_03            4.210     0.096   43.638    0.000     4.210    2.705
   .PD01_04            4.103     0.111   37.117    0.000     4.103    2.406
   .PD01_05            4.370     0.101   43.096    0.000     4.370    2.640
   .SE01_01            5.333     0.094   56.765    0.000     5.333    3.864
   .SE01_02            5.568     0.081   68.919    0.000     5.568    4.130
   .SE01_03            5.275     0.089   59.039    0.000     5.275    3.932
   .SE01_04            5.190     0.090   57.378    0.000     5.190    3.843
   .TR01_02            4.863     0.079   61.317    0.000     4.863    3.840
   .TR01_03            4.926     0.064   76.433    0.000     4.926    4.481
   .TR01_04            4.707     0.072   65.561    0.000     4.707    4.079
   .TR01_06            5.513     0.080   69.040    0.000     5.513    4.596
   .TR01_07            5.295     0.072   73.664    0.000     5.295    4.573
   .TR01_08            5.221     0.071   73.874    0.000     5.221    4.711
   .TR01_10            5.812     0.070   83.126    0.000     5.812    4.938
   .TR01_11            4.925     0.075   65.508    0.000     4.925    3.799
   .TR01_12            5.301     0.088   60.174    0.000     5.301    3.943
   .COMM             102.007    24.926    4.092    0.000   102.007    0.408
   .pri_con            0.000                                 0.000    0.000
   .grats_gen          0.000                                 0.000    0.000
   .pri_delib          0.000                                 0.000    0.000
   .self_eff           0.000                                 0.000    0.000
   .trust_communty     0.000                                 0.000    0.000
   .trust_provider     0.000                                 0.000    0.000
   .trust_spec         0.000                                 0.000    0.000

Variances:
                   Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
   .PC01_01            0.406     0.050    8.072    0.000     0.406    0.137
   .PC01_02            0.586     0.103    5.669    0.000     0.586    0.188
   .PC01_04            0.630     0.077    8.204    0.000     0.630    0.204
   .PC01_05            0.536     0.065    8.271    0.000     0.536    0.172
   .PC01_06            1.068     0.116    9.190    0.000     1.068    0.363
   .PC01_07            0.430     0.065    6.597    0.000     0.430    0.144
   .GR02_01            0.519     0.055    9.509    0.000     0.519    0.288
   .GR02_02            0.394     0.041    9.678    0.000     0.394    0.196
   .GR02_03            0.452     0.072    6.263    0.000     0.452    0.252
   .GR02_04            0.481     0.049    9.906    0.000     0.481    0.279
   .GR02_05            0.586     0.066    8.919    0.000     0.586    0.286
   .PD01_01            0.743     0.111    6.689    0.000     0.743    0.250
   .PD01_02            1.345     0.130   10.360    0.000     1.345    0.570
   .PD01_03            1.319     0.130   10.176    0.000     1.319    0.544
   .PD01_04            1.305     0.147    8.873    0.000     1.305    0.449
   .PD01_05            1.579     0.129   12.262    0.000     1.579    0.576
   .SE01_01            0.622     0.090    6.938    0.000     0.622    0.327
   .SE01_02            0.989     0.131    7.571    0.000     0.989    0.544
   .SE01_03            0.697     0.097    7.160    0.000     0.697    0.387
   .SE01_04            0.679     0.080    8.451    0.000     0.679    0.372
   .TR01_02            0.542     0.070    7.752    0.000     0.542    0.338
   .TR01_03            0.496     0.055    9.033    0.000     0.496    0.410
   .TR01_04            0.436     0.045    9.743    0.000     0.436    0.327
   .TR01_06            0.342     0.035    9.823    0.000     0.342    0.238
   .TR01_07            0.540     0.053   10.261    0.000     0.540    0.403
   .TR01_08            0.469     0.043   10.853    0.000     0.469    0.382
   .TR01_10            0.705     0.058   12.255    0.000     0.705    0.509
   .TR01_11            0.942     0.079   11.950    0.000     0.942    0.560
   .TR01_12            0.480     0.053    8.993    0.000     0.480    0.266
   .COMM           62213.819 24229.300    2.568    0.010 62213.819    0.994
   .pri_con            2.561     0.146   17.512    0.000     0.998    0.998
   .grats_gen          1.275     0.114   11.161    0.000     0.994    0.994
   .pri_delib          2.233     0.158   14.102    0.000     1.000    1.000
   .self_eff           1.281     0.115   11.131    0.000     0.999    0.999
   .trust_communty     0.257     0.046    5.601    0.000     0.242    0.242
   .trust_provider     0.096     0.044    2.185    0.029     0.087    0.087
   .trust_spec         0.800     0.099    8.114    0.000     0.993    0.993

No significant effects of popularity cues on privacy calculus.

Like-Dislike & Control vs. Like

model <- "
pri_con =~ PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07
grats_gen =~ GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05
pri_delib =~ PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05
self_eff =~ SE01_01 + SE01_02 + SE01_03 + SE01_04
  SE01_01 ~~ x*SE01_02
  SE01_03 ~~ x*SE01_04
trust_community =~ TR01_02 + TR01_03 + TR01_04
trust_provider =~ TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12
trust_spec =~ trust_community + trust_provider

pri_con + grats_gen + pri_delib + self_eff + trust_spec + COMM ~ likedislike + control

# pri_con + grats_gen + pri_delib + self_eff + trust_spec ~ like + likedislike
# COMM ~ a*pri_con + b*grats_gen + c*pri_delib + d*self_eff + e*trust_spec + f*like + g*likedislike

# Covariates
# COMM + GR02_01 + GR02_02 + GR02_03 + GR02_04 + GR02_05 + PC01_01 + PC01_02 + PC01_04 + PC01_05 + PC01_06 + PC01_07 + TR01_02 + TR01_03 + TR01_04 + TR01_06 + TR01_07 + TR01_08 + TR01_10 + TR01_11 + TR01_12 + PD01_01 + PD01_02 + PD01_03 + PD01_04 + PD01_05 + SE01_01 + SE01_02 + SE01_03 + SE01_04 ~ male + age + edu
"
fit_lik_ctrl <- lavaan::sem(model = model, data = d, estimator = "MLR", missing = "ML")
summary(fit_lik_ctrl, fit = TRUE, std = TRUE)
lavaan 0.6-8 ended normally after 245 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                       120
  Number of equality constraints                     1
                                                      
  Number of observations                           559
  Number of missing patterns                         3
                                                      
Model Test User Model:
                                               Standard      Robust
  Test Statistic                               1281.412    1011.407
  Degrees of freedom                                436         436
  P-value (Chi-square)                            0.000       0.000
  Scaling correction factor                                   1.267
       Yuan-Bentler correction (Mplus variant)                     

Model Test Baseline Model:

  Test statistic                             13166.886    9798.237
  Degrees of freedom                               495         495
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.344

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.933       0.938
  Tucker-Lewis Index (TLI)                       0.924       0.930
                                                                  
  Robust Comparative Fit Index (CFI)                         0.942
  Robust Tucker-Lewis Index (TLI)                            0.934

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)             -26626.214  -26626.214
  Scaling correction factor                                  1.765
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)     -25985.507  -25985.507
  Scaling correction factor                                  1.377
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               53490.427   53490.427
  Bayesian (BIC)                             54005.239   54005.239
  Sample-size adjusted Bayesian (BIC)        53627.476   53627.476

Root Mean Square Error of Approximation:

  RMSEA                                          0.059       0.049
  90 Percent confidence interval - lower         0.055       0.045
  90 Percent confidence interval - upper         0.063       0.052
  P-value RMSEA <= 0.05                          0.000       0.744
                                                                  
  Robust RMSEA                                               0.055
  90 Percent confidence interval - lower                     0.050
  90 Percent confidence interval - upper                     0.059

Standardized Root Mean Square Residual:

  SRMR                                           0.051       0.051

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                     Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
  pri_con =~                                                                 
    PC01_01              1.000                                 1.602    0.929
    PC01_02              0.994     0.027   36.158    0.000     1.592    0.901
    PC01_04              0.977     0.027   35.602    0.000     1.566    0.892
    PC01_05              1.001     0.024   41.978    0.000     1.604    0.910
    PC01_06              0.854     0.038   22.418    0.000     1.368    0.798
    PC01_07              0.996     0.022   44.887    0.000     1.595    0.925
  grats_gen =~                                                               
    GR02_01              1.000                                 1.132    0.844
    GR02_02              1.121     0.034   33.403    0.000     1.269    0.896
    GR02_03              1.022     0.048   21.375    0.000     1.157    0.865
    GR02_04              0.986     0.049   20.321    0.000     1.116    0.849
    GR02_05              1.069     0.040   26.518    0.000     1.211    0.845
  pri_delib =~                                                               
    PD01_01              1.000                                 1.495    0.866
    PD01_02              0.673     0.047   14.350    0.000     1.006    0.655
    PD01_03              0.703     0.053   13.149    0.000     1.051    0.675
    PD01_04              0.847     0.047   18.075    0.000     1.266    0.742
    PD01_05              0.721     0.048   14.915    0.000     1.077    0.651
  self_eff =~                                                                
    SE01_01              1.000                                 1.132    0.820
    SE01_02              0.804     0.059   13.603    0.000     0.910    0.675
    SE01_03              0.927     0.045   20.692    0.000     1.050    0.783
    SE01_04              0.945     0.043   21.820    0.000     1.070    0.792
  trust_community =~                                                         
    TR01_02              1.000                                 1.030    0.814
    TR01_03              0.819     0.051   16.025    0.000     0.844    0.768
    TR01_04              0.918     0.046   19.897    0.000     0.946    0.820
  trust_provider =~                                                          
    TR01_06              1.000                                 1.047    0.873
    TR01_07              0.854     0.039   21.684    0.000     0.895    0.773
    TR01_08              0.832     0.041   20.203    0.000     0.871    0.786
    TR01_10              0.788     0.039   20.455    0.000     0.825    0.701
    TR01_11              0.821     0.052   15.888    0.000     0.860    0.663
    TR01_12              1.100     0.039   28.248    0.000     1.152    0.857
  trust_spec =~                                                              
    trust_communty       1.000                                 0.871    0.871
    trust_provider       1.115     0.078   14.329    0.000     0.955    0.955

Regressions:
                   Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
  pri_con ~                                                                
    likedislike        0.158     0.175    0.906    0.365     0.099    0.046
    control           -0.025     0.163   -0.151    0.880    -0.015   -0.007
  grats_gen ~                                                              
    likedislike       -0.047     0.124   -0.383    0.702    -0.042   -0.019
    control            0.163     0.119    1.376    0.169     0.144    0.068
  pri_delib ~                                                              
    likedislike       -0.039     0.167   -0.233    0.816    -0.026   -0.012
    control            0.022     0.164    0.137    0.891     0.015    0.007
  self_eff ~                                                               
    likedislike       -0.014     0.129   -0.105    0.917    -0.012   -0.006
    control            0.075     0.127    0.593    0.553     0.067    0.032
  trust_spec ~                                                             
    likedislike        0.032     0.101    0.320    0.749     0.036    0.017
    control            0.165     0.098    1.681    0.093     0.184    0.087
  COMM ~                                                                   
    likedislike      -14.796    19.180   -0.771    0.440   -14.796   -0.027
    control           30.960    27.920    1.109    0.267    30.960    0.059

Covariances:
                   Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
 .SE01_01 ~~                                                               
   .SE01_02    (x)     0.116     0.046    2.534    0.011     0.116    0.147
 .SE01_03 ~~                                                               
   .SE01_04    (x)     0.116     0.046    2.534    0.011     0.116    0.168
 .pri_con ~~                                                               
   .grats_gen         -0.277     0.096   -2.887    0.004    -0.153   -0.153
   .pri_delib          1.359     0.132   10.303    0.000     0.568    0.568
   .self_eff          -0.379     0.092   -4.123    0.000    -0.209   -0.209
   .trust_spec        -0.412     0.075   -5.518    0.000    -0.288   -0.288
   .COMM             -34.285    14.244   -2.407    0.016   -21.424   -0.086
 .grats_gen ~~                                                             
   .pri_delib         -0.074     0.102   -0.731    0.465    -0.044   -0.044
   .self_eff           0.458     0.068    6.740    0.000     0.358    0.358
   .trust_spec         0.792     0.085    9.273    0.000     0.785    0.785
   .COMM              28.966    14.445    2.005    0.045    25.661    0.103
 .pri_delib ~~                                                             
   .self_eff          -0.336     0.094   -3.590    0.000    -0.199   -0.199
   .trust_spec        -0.130     0.085   -1.528    0.127    -0.097   -0.097
   .COMM             -52.434    16.156   -3.246    0.001   -35.088   -0.141
 .self_eff ~~                                                              
   .trust_spec         0.548     0.059    9.223    0.000     0.542    0.542
   .COMM              72.194    15.143    4.767    0.000    63.807    0.256
 .trust_spec ~~                                                            
   .COMM              23.789    10.503    2.265    0.024    26.601    0.107

Intercepts:
                   Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
   .PC01_01            3.252     0.120   27.035    0.000     3.252    1.886
   .PC01_02            3.286     0.122   26.915    0.000     3.286    1.860
   .PC01_04            3.181     0.119   26.786    0.000     3.181    1.812
   .PC01_05            3.221     0.122   26.346    0.000     3.221    1.827
   .PC01_06            2.968     0.107   27.618    0.000     2.968    1.731
   .PC01_07            3.182     0.119   26.692    0.000     3.182    1.845
   .GR02_01            4.241     0.091   46.470    0.000     4.241    3.160
   .GR02_02            4.551     0.100   45.573    0.000     4.551    3.214
   .GR02_03            5.089     0.092   55.150    0.000     5.089    3.803
   .GR02_04            5.050     0.088   57.197    0.000     5.050    3.843
   .GR02_05            4.649     0.098   47.408    0.000     4.649    3.246
   .PD01_01            3.663     0.117   31.364    0.000     3.663    2.123
   .PD01_02            3.356     0.089   37.915    0.000     3.356    2.186
   .PD01_03            4.195     0.091   46.075    0.000     4.195    2.695
   .PD01_04            4.084     0.103   39.821    0.000     4.084    2.395
   .PD01_05            4.354     0.096   45.180    0.000     4.354    2.631
   .SE01_01            5.257     0.093   56.264    0.000     5.257    3.810
   .SE01_02            5.507     0.082   67.530    0.000     5.507    4.085
   .SE01_03            5.205     0.087   59.612    0.000     5.205    3.880
   .SE01_04            5.118     0.089   57.832    0.000     5.118    3.791
   .TR01_02            4.698     0.076   61.473    0.000     4.698    3.709
   .TR01_03            4.790     0.066   72.535    0.000     4.790    4.358
   .TR01_04            4.555     0.068   66.528    0.000     4.555    3.947
   .TR01_06            5.329     0.082   65.122    0.000     5.329    4.442
   .TR01_07            5.137     0.073   70.528    0.000     5.137    4.437
   .TR01_08            5.068     0.069   73.432    0.000     5.068    4.572
   .TR01_10            5.667     0.069   82.599    0.000     5.667    4.815
   .TR01_11            4.773     0.075   63.273    0.000     4.773    3.682
   .TR01_12            5.098     0.091   56.219    0.000     5.098    3.793
   .COMM              70.724    13.971    5.062    0.000    70.724    0.283
   .pri_con            0.000                                 0.000    0.000
   .grats_gen          0.000                                 0.000    0.000
   .pri_delib          0.000                                 0.000    0.000
   .self_eff           0.000                                 0.000    0.000
   .trust_communty     0.000                                 0.000    0.000
   .trust_provider     0.000                                 0.000    0.000
   .trust_spec         0.000                                 0.000    0.000

Variances:
                   Estimate   Std.Err   z-value  P(>|z|)   Std.lv   Std.all
   .PC01_01            0.406     0.050    8.072    0.000     0.406    0.136
   .PC01_02            0.586     0.103    5.669    0.000     0.586    0.188
   .PC01_04            0.630     0.077    8.204    0.000     0.630    0.204
   .PC01_05            0.536     0.065    8.271    0.000     0.536    0.172
   .PC01_06            1.068     0.116    9.190    0.000     1.068    0.363
   .PC01_07            0.430     0.065    6.597    0.000     0.430    0.144
   .GR02_01            0.519     0.055    9.509    0.000     0.519    0.288
   .GR02_02            0.394     0.041    9.678    0.000     0.394    0.196
   .GR02_03            0.452     0.072    6.263    0.000     0.452    0.253
   .GR02_04            0.481     0.049    9.906    0.000     0.481    0.279
   .GR02_05            0.586     0.066    8.919    0.000     0.586    0.286
   .PD01_01            0.743     0.111    6.689    0.000     0.743    0.250
   .PD01_02            1.345     0.130   10.360    0.000     1.345    0.570
   .PD01_03            1.319     0.130   10.176    0.000     1.319    0.544
   .PD01_04            1.305     0.147    8.873    0.000     1.305    0.449
   .PD01_05            1.579     0.129   12.262    0.000     1.579    0.576
   .SE01_01            0.622     0.090    6.938    0.000     0.622    0.327
   .SE01_02            0.989     0.131    7.571    0.000     0.989    0.544
   .SE01_03            0.697     0.097    7.160    0.000     0.697    0.387
   .SE01_04            0.679     0.080    8.450    0.000     0.679    0.372
   .TR01_02            0.542     0.070    7.752    0.000     0.542    0.338
   .TR01_03            0.496     0.055    9.032    0.000     0.496    0.410
   .TR01_04            0.436     0.045    9.743    0.000     0.436    0.328
   .TR01_06            0.342     0.035    9.823    0.000     0.342    0.238
   .TR01_07            0.540     0.053   10.261    0.000     0.540    0.403
   .TR01_08            0.469     0.043   10.853    0.000     0.469    0.382
   .TR01_10            0.705     0.058   12.255    0.000     0.705    0.509
   .TR01_11            0.942     0.079   11.950    0.000     0.942    0.560
   .TR01_12            0.480     0.053    8.993    0.000     0.480    0.266
   .COMM           62204.675 24223.401    2.568    0.010 62204.675    0.994
   .pri_con            2.561     0.146   17.511    0.000     0.998    0.998
   .grats_gen          1.274     0.114   11.162    0.000     0.994    0.994
   .pri_delib          2.233     0.158   14.103    0.000     1.000    1.000
   .self_eff           1.280     0.115   11.129    0.000     0.999    0.999
   .trust_communty     0.257     0.046    5.601    0.000     0.242    0.242
   .trust_provider     0.096     0.044    2.185    0.029     0.087    0.087
   .trust_spec         0.800     0.099    8.113    0.000     0.994    0.994

No significant effects of popularity cues on privacy calculus.