Load packages.
# install packages
# devtools::install_github("https://github.com/tdienlin/td@v.0.0.2.5")
# define packages
library(broom.mixed)
library(brms)
library(devtools)
library(GGally)
library(ggplot2)
library(gridExtra)
library(kableExtra)
library(knitr)
library(lavaan)
library(lme4)
library(magrittr)
library(mice)
library(mvnormalTest)
library(PerFit)
library(psych)
library(quanteda.textstats)
library(semTools)
library(tidyverse)
library(td)
# load workspace
load("data/workspace_2.RData")
These models include additional covariates that weren’t preregistered and that weren’t included, mainly because they are likely to be mediators. These are:
Trust in ORF
Trust in police
Trust in parliament
Trust in health sector
Trust in government
Trust in army
Media use: Kronen Zeitung oder www.krone.at
Media use: Der Standard oder derstandard.at
Media use: Die Presse oder diepresse.com
Media use: Oesterreich oder oe24.at
Media use: Kurier oder kurier.at
Media use: Salzburger Nachrichten oder salzburg.at
Media use: Sonstige oesterreichische Tageszeitungen
Media use: ORF (Nachrichten)
Media use: Privatfernsehen (Nachrichten)
Satisfaction with democracy
model_life_sat_lmer_add <- "
life_sat ~
(1 | id) + (1 | wave) +
soc_med_read_w + soc_med_like_share_w + soc_med_post_w +
soc_med_fb_w + soc_med_ig_w + soc_med_wa_w + soc_med_yt_w + soc_med_tw_w +
soc_med_read_b + soc_med_like_share_b + soc_med_post_b +
soc_med_fb_b + soc_med_ig_b + soc_med_wa_b + soc_med_yt_b + soc_med_tw_b +
age + male + born_aus + born_aus_prnts + edu_fac + employment_fac +
res_vienna + acc_bal + acc_gar + home_sqm +
corona_pos_b + corona_pos_w +
work_h_b + work_h_w +
work_homeoff_b + work_homeoff_w +
hh_income_b + hh_income_w +
hh_adults + hh_child18 + hh_child17 + hh_child14 + hh_child5 + hh_child2 +
hh_oldfam + hh_outfam + hh_partner +
home_owner +
med_txt_kro_b + med_txt_sta_b + med_txt_pre_b + med_txt_oes_b + med_txt_kur_b + med_txt_slz_b + med_txt_son_b +
med_vid_orf_b + med_vid_pri_b +
med_txt_kro_w + med_txt_sta_w + med_txt_pre_w + med_txt_oes_w + med_txt_kur_w + med_txt_slz_w + med_txt_son_w +
med_vid_orf_w + med_vid_pri_w +
risk_prop_b + risk_prop_w +
act_wrk_w + act_spo_w + act_frn_w + act_sho_w + act_pet_w +
act_wrk_b + act_spo_b + act_frn_b + act_sho_b + act_pet_b +
sat_dem_w + sat_dem_b +
health_w + health_b +
loc_cntrl_int_m_w + loc_cntrl_int_m_b +
trst_media_w + trst_police_w + trst_media_w + trst_hlthsec_w + trst_gov_w + trst_army_w +
trst_media_b + trst_police_b + trst_media_b + trst_hlthsec_b + trst_gov_b + trst_army_b
"
fit_life_sat_lmer_add <- with(d_long_100_mim_mice,
exp = lmerTest::lmer(model_life_sat_lmer_add))
fit_life_sat_lmer_add <- summary(pool(fit_life_sat_lmer_add), conf.int = TRUE)
print_res(fit_life_sat_lmer_add)
term <fct> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
(Intercept) | -6.17892 | -7.14023 | -5.2176 | < .001 |
soc_med_read_w | 0.00682 | -0.03627 | 0.0499 | .746 |
soc_med_like_share_w | -0.02415 | -0.05997 | 0.0117 | .178 |
soc_med_post_w | -0.03265 | -0.07150 | 0.0062 | .096 |
soc_med_fb_w | -0.00506 | -0.03593 | 0.0258 | .738 |
soc_med_ig_w | 0.01209 | -0.02831 | 0.0525 | .541 |
soc_med_wa_w | -0.01074 | -0.04872 | 0.0272 | .563 |
soc_med_yt_w | 0.02834 | -0.00780 | 0.0645 | .119 |
soc_med_tw_w | -0.01951 | -0.06144 | 0.0224 | .347 |
soc_med_read_b | 0.00154 | -0.25516 | 0.2582 | .991 |
model_aff_pos_lmer_add <- "
aff_pos_m ~
(1 | id) + (1 | wave) +
soc_med_read_w + soc_med_like_share_w + soc_med_post_w +
soc_med_fb_w + soc_med_ig_w + soc_med_wa_w + soc_med_yt_w + soc_med_tw_w +
soc_med_read_b + soc_med_like_share_b + soc_med_post_b +
soc_med_fb_b + soc_med_ig_b + soc_med_wa_b + soc_med_yt_b + soc_med_tw_b +
age + male + born_aus + born_aus_prnts + edu_fac + employment_fac +
res_vienna + acc_bal + acc_gar + home_sqm +
corona_pos_b + corona_pos_w +
work_h_b + work_h_w +
work_homeoff_b + work_homeoff_w +
hh_income_b + hh_income_w +
hh_adults + hh_child18 + hh_child17 + hh_child14 + hh_child5 + hh_child2 +
hh_oldfam + hh_outfam + hh_partner +
home_owner +
med_txt_kro_b + med_txt_sta_b + med_txt_pre_b + med_txt_oes_b + med_txt_kur_b + med_txt_slz_b + med_txt_son_b +
med_vid_orf_b + med_vid_pri_b +
med_txt_kro_w + med_txt_sta_w + med_txt_pre_w + med_txt_oes_w + med_txt_kur_w + med_txt_slz_w + med_txt_son_w +
med_vid_orf_w + med_vid_pri_w +
risk_prop_b + risk_prop_w +
act_wrk_w + act_spo_w + act_frn_w + act_sho_w + act_pet_w +
act_wrk_b + act_spo_b + act_frn_b + act_sho_b + act_pet_b +
sat_dem_w + sat_dem_b +
health_w + health_b +
loc_cntrl_int_m_w + loc_cntrl_int_m_b +
trst_media_w + trst_police_w + trst_media_w + trst_hlthsec_w + trst_gov_w + trst_army_w +
trst_media_b + trst_police_b + trst_media_b + trst_hlthsec_b + trst_gov_b + trst_army_b
"
fit_aff_pos_lmer_add <- with(d_long_100_mim_mice,
exp = lmerTest::lmer(model_aff_pos_lmer_add))
fit_aff_pos_lmer_add <- summary(pool(fit_aff_pos_lmer_add), conf.int = TRUE)
print_res(fit_aff_pos_lmer_add)
term <fct> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
(Intercept) | -3.60153 | -4.06175 | -3.14130 | < .001 |
soc_med_read_w | -0.03281 | -0.04877 | -0.01684 | < .001 |
soc_med_like_share_w | 0.00496 | -0.01178 | 0.02171 | .547 |
soc_med_post_w | 0.01966 | 0.00291 | 0.03641 | .023 |
soc_med_fb_w | -0.00095 | -0.01328 | 0.01138 | .875 |
soc_med_ig_w | -0.00866 | -0.02295 | 0.00564 | .223 |
soc_med_wa_w | 0.00382 | -0.01003 | 0.01766 | .574 |
soc_med_yt_w | 0.00596 | -0.00964 | 0.02156 | .438 |
soc_med_tw_w | 0.00956 | -0.00841 | 0.02753 | .284 |
soc_med_read_b | -0.62570 | -0.74118 | -0.51021 | < .001 |
model_aff_neg_lmer_add <- "
aff_neg_m ~
(1 | id) + (1 | wave) +
soc_med_read_w + soc_med_like_share_w + soc_med_post_w +
soc_med_fb_w + soc_med_ig_w + soc_med_wa_w + soc_med_yt_w + soc_med_tw_w +
soc_med_read_b + soc_med_like_share_b + soc_med_post_b +
soc_med_fb_b + soc_med_ig_b + soc_med_wa_b + soc_med_yt_b + soc_med_tw_b +
age + male + born_aus + born_aus_prnts + edu_fac + employment_fac +
res_vienna + acc_bal + acc_gar + home_sqm +
corona_pos_b + corona_pos_w +
work_h_b + work_h_w +
work_homeoff_b + work_homeoff_w +
hh_income_b + hh_income_w +
hh_adults + hh_child18 + hh_child17 + hh_child14 + hh_child5 + hh_child2 +
hh_oldfam + hh_outfam + hh_partner +
home_owner +
med_txt_kro_b + med_txt_sta_b + med_txt_pre_b + med_txt_oes_b + med_txt_kur_b + med_txt_slz_b + med_txt_son_b +
med_vid_orf_b + med_vid_pri_b +
med_txt_kro_w + med_txt_sta_w + med_txt_pre_w + med_txt_oes_w + med_txt_kur_w + med_txt_slz_w + med_txt_son_w +
med_vid_orf_w + med_vid_pri_w +
risk_prop_b + risk_prop_w +
act_wrk_w + act_spo_w + act_frn_w + act_sho_w + act_pet_w +
act_wrk_b + act_spo_b + act_frn_b + act_sho_b + act_pet_b +
sat_dem_w + sat_dem_b +
health_w + health_b +
loc_cntrl_int_m_w + loc_cntrl_int_m_b +
trst_media_w + trst_police_w + trst_media_w + trst_hlthsec_w + trst_gov_w + trst_army_w +
trst_media_b + trst_police_b + trst_media_b + trst_hlthsec_b + trst_gov_b + trst_army_b
"
fit_aff_neg_lmer_add <- with(d_long_100_mim_mice,
exp = lmerTest::lmer(model_aff_neg_lmer_add))
fit_aff_neg_lmer_add <- summary(pool(fit_aff_neg_lmer_add), conf.int = TRUE)
print_res(fit_aff_neg_lmer_add)
term <fct> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
(Intercept) | 3.81453 | 3.51941 | 4.109648 | < .001 |
soc_med_read_w | 0.00083 | -0.01223 | 0.013897 | .896 |
soc_med_like_share_w | 0.01905 | 0.00244 | 0.035673 | .027 |
soc_med_post_w | 0.04300 | 0.02599 | 0.060001 | < .001 |
soc_med_fb_w | -0.00221 | -0.01417 | 0.009752 | .705 |
soc_med_ig_w | -0.00197 | -0.01386 | 0.009924 | .735 |
soc_med_wa_w | 0.00364 | -0.00564 | 0.012914 | .426 |
soc_med_yt_w | 0.01124 | 0.00052 | 0.021948 | .041 |
soc_med_tw_w | 0.01792 | 0.00095 | 0.034901 | .039 |
soc_med_read_b | 0.07606 | -0.00199 | 0.154106 | .056 |
Let’s inspect how results change when control variables are omitted.
model_life_sat_lmer_nco <- "
life_sat ~
(1 | id) + (1 | wave) +
soc_med_read_w + soc_med_like_share_w + soc_med_post_w +
soc_med_fb_w + soc_med_ig_w + soc_med_wa_w + soc_med_yt_w + soc_med_tw_w +
soc_med_read_b + soc_med_like_share_b + soc_med_post_b +
soc_med_fb_b + soc_med_ig_b + soc_med_wa_b + soc_med_yt_b + soc_med_tw_b
"
fit_life_sat_lmer_nco <- with(d_long_100_mim_mice, exp = lmerTest::lmer(model_life_sat_lmer_nco))
fit_life_sat_lmer_nco <- summary(pool(fit_life_sat_lmer_nco), conf.int = TRUE)
print_res(fit_life_sat_lmer_nco)
term <fct> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
(Intercept) | 7.92884 | 7.500 | 8.35758 | < .001 |
soc_med_read_w | 0.01379 | -0.030 | 0.05730 | .518 |
soc_med_like_share_w | -0.02904 | -0.069 | 0.01107 | .149 |
soc_med_post_w | -0.13611 | -0.173 | -0.09911 | < .001 |
soc_med_fb_w | 0.00065 | -0.026 | 0.02779 | .961 |
soc_med_ig_w | 0.05562 | 0.016 | 0.09513 | .008 |
soc_med_wa_w | -0.00283 | -0.036 | 0.02996 | .860 |
soc_med_yt_w | -0.02043 | -0.057 | 0.01583 | .257 |
soc_med_tw_w | -0.03579 | -0.073 | 0.00095 | .056 |
soc_med_read_b | -0.17067 | -0.438 | 0.09703 | .211 |
model_aff_pos_lmer_nco <- "
aff_pos_m ~
(1 | id) + (1 | wave) +
soc_med_read_w + soc_med_like_share_w + soc_med_post_w +
soc_med_fb_w + soc_med_ig_w + soc_med_wa_w + soc_med_yt_w + soc_med_tw_w +
soc_med_read_b + soc_med_like_share_b + soc_med_post_b +
soc_med_fb_b + soc_med_ig_b + soc_med_wa_b + soc_med_yt_b + soc_med_tw_b
"
fit_aff_pos_lmer_nco <- with(d_long_100_mim_mice, exp = lmerTest::lmer(model_aff_pos_lmer_nco))
fit_aff_pos_lmer_nco <- summary(pool(fit_aff_pos_lmer_nco), conf.int = TRUE)
print_res(fit_aff_pos_lmer_nco)
term <fct> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
(Intercept) | 3.9987 | 3.788067 | 4.2094 | < .001 |
soc_med_read_w | -0.0452 | -0.060507 | -0.0298 | < .001 |
soc_med_like_share_w | 0.0060 | -0.012087 | 0.0241 | .501 |
soc_med_post_w | 0.0175 | -0.000091 | 0.0352 | .051 |
soc_med_fb_w | 0.0031 | -0.008259 | 0.0144 | .584 |
soc_med_ig_w | 0.0038 | -0.008120 | 0.0157 | .520 |
soc_med_wa_w | 0.0130 | 0.002596 | 0.0234 | .016 |
soc_med_yt_w | -0.0011 | -0.011846 | 0.0097 | .841 |
soc_med_tw_w | 0.0123 | -0.002210 | 0.0268 | .094 |
soc_med_read_b | -0.4415 | -0.576849 | -0.3061 | < .001 |
model_aff_neg_lmer_nco <- "
aff_neg_m ~
(1 | id) + (1 | wave) +
soc_med_read_w + soc_med_like_share_w + soc_med_post_w +
soc_med_fb_w + soc_med_ig_w + soc_med_wa_w + soc_med_yt_w + soc_med_tw_w +
soc_med_read_b + soc_med_like_share_b + soc_med_post_b +
soc_med_fb_b + soc_med_ig_b + soc_med_wa_b + soc_med_yt_b + soc_med_tw_b
"
fit_aff_neg_lmer_nco <- with(d_long_100_mim_mice, exp = lmerTest::lmer(model_aff_neg_lmer_nco))
fit_aff_neg_lmer_nco <- summary(pool(fit_aff_neg_lmer_nco), conf.int = TRUE)
print_res(fit_aff_neg_lmer_nco)
term <fct> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
(Intercept) | -0.0932 | -0.21844 | 0.03202 | .145 |
soc_med_read_w | -0.0047 | -0.01494 | 0.00557 | .356 |
soc_med_like_share_w | 0.0256 | 0.00835 | 0.04289 | .006 |
soc_med_post_w | 0.1082 | 0.09070 | 0.12572 | < .001 |
soc_med_fb_w | -0.0095 | -0.01976 | 0.00078 | .069 |
soc_med_ig_w | -0.0098 | -0.02282 | 0.00322 | .133 |
soc_med_wa_w | 0.0100 | -0.00047 | 0.02040 | .060 |
soc_med_yt_w | 0.0256 | 0.01284 | 0.03833 | < .001 |
soc_med_tw_w | 0.0379 | 0.02228 | 0.05354 | < .001 |
soc_med_read_b | 0.2375 | 0.15550 | 0.31955 | < .001 |
Some changes were introduced because of feedback from colleagues (multiple imputation, imputation of all participants, inclusion of all variables). In what follows, please find the results as originally planned (but with some necessary deviations; for example not all preregistered variables could be included).
Note that because here no multiple imputation was used, output looks differently.
model_life_sat_lmer_pre <- "
life_sat ~
(1 | id) + (1 | wave) +
soc_med_read_w + soc_med_like_share_w + soc_med_post_w +
soc_med_fb_w + soc_med_ig_w + soc_med_wa_w + soc_med_yt_w + soc_med_tw_w +
soc_med_read_b + soc_med_like_share_b + soc_med_post_b +
soc_med_fb_b + soc_med_ig_b + soc_med_wa_b + soc_med_yt_b + soc_med_tw_b +
age + male + born_aus + born_aus_prnts + edu_fac + employment_fac +
res_vienna + acc_bal + acc_gar + home_sqm +
work_h_b + work_h_w +
work_homeoff_b + work_homeoff_w +
hh_income_b + hh_income_w +
hh_adults + hh_child18 + hh_child17 + hh_child14 + hh_child5 + hh_child2 +
hh_oldfam + hh_outfam + hh_partner +
home_owner +
med_txt_kro_b + med_txt_sta_b + med_txt_pre_b + med_txt_oes_b + med_txt_kur_b + med_txt_slz_b + med_txt_son_b +
med_vid_orf_b + med_vid_pri_b +
med_txt_kro_w + med_txt_sta_w + med_txt_pre_w + med_txt_oes_w + med_txt_kur_w + med_txt_slz_w + med_txt_son_w +
med_vid_orf_w + med_vid_pri_w +
risk_prop_b + risk_prop_w +
act_wrk_w + act_spo_w + act_frn_w + act_sho_w + act_pet_w +
act_wrk_b + act_spo_b + act_frn_b + act_sho_b + act_pet_b +
sat_dem_w + sat_dem_b +
health_w + health_b +
loc_cntrl_int_m_w + loc_cntrl_int_m_b
"
fit_life_sat_lmer_pre <- lmerTest::lmer(model_life_sat_lmer_pre, data = d_long_50_imp)
print_res(broom.mixed::tidy(fit_life_sat_lmer_pre, conf.int = T), imputation = FALSE)
term <chr> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
(Intercept) | -4.44509 | -5.15524 | -3.7349 | < .001 |
soc_med_read_w | 0.02833 | 0.01279 | 0.0439 | < .001 |
soc_med_like_share_w | -0.00628 | -0.02619 | 0.0136 | .537 |
soc_med_post_w | -0.01483 | -0.03964 | 0.0100 | .241 |
soc_med_fb_w | 0.00620 | -0.00613 | 0.0185 | .324 |
soc_med_ig_w | -0.01092 | -0.02555 | 0.0037 | .143 |
soc_med_wa_w | -0.01555 | -0.02712 | -0.0040 | .008 |
soc_med_yt_w | 0.03084 | 0.01515 | 0.0465 | < .001 |
soc_med_tw_w | -0.01331 | -0.03386 | 0.0073 | .205 |
soc_med_read_b | 0.07906 | -0.01935 | 0.1775 | .115 |
model_aff_pos_lmer_pre <- "
aff_pos_fs ~
(1 | id) + (1 | wave) +
soc_med_read_w + soc_med_like_share_w + soc_med_post_w +
soc_med_fb_w + soc_med_ig_w + soc_med_wa_w + soc_med_yt_w + soc_med_tw_w +
soc_med_read_b + soc_med_like_share_b + soc_med_post_b +
soc_med_fb_b + soc_med_ig_b + soc_med_wa_b + soc_med_yt_b + soc_med_tw_b +
age + male + born_aus + born_aus_prnts + edu_fac + employment_fac +
res_vienna + acc_bal + acc_gar + home_sqm +
work_h_b + work_h_w +
work_homeoff_b + work_homeoff_w +
hh_income_b + hh_income_w +
hh_adults + hh_child18 + hh_child17 + hh_child14 + hh_child5 + hh_child2 +
hh_oldfam + hh_outfam + hh_partner +
home_owner +
med_txt_kro_b + med_txt_sta_b + med_txt_pre_b + med_txt_oes_b + med_txt_kur_b + med_txt_slz_b + med_txt_son_b +
med_vid_orf_b + med_vid_pri_b +
med_txt_kro_w + med_txt_sta_w + med_txt_pre_w + med_txt_oes_w + med_txt_kur_w + med_txt_slz_w + med_txt_son_w +
med_vid_orf_w + med_vid_pri_w +
risk_prop_b + risk_prop_w +
act_wrk_w + act_spo_w + act_frn_w + act_sho_w + act_pet_w +
act_wrk_b + act_spo_b + act_frn_b + act_sho_b + act_pet_b +
sat_dem_w + sat_dem_b +
health_w + health_b +
loc_cntrl_int_m_w + loc_cntrl_int_m_b
"
fit_aff_pos_lmer_pre <- lmerTest::lmer(model_aff_pos_lmer_pre, data = d_long_50_imp)
print_res(broom.mixed::tidy(fit_aff_pos_lmer_pre, conf.int = T), imputation = FALSE)
term <chr> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
(Intercept) | -1.42372 | -1.715059 | -1.13239 | < .001 |
soc_med_read_w | -0.00669 | -0.011336 | -0.00205 | .005 |
soc_med_like_share_w | -0.00047 | -0.006419 | 0.00547 | .876 |
soc_med_post_w | 0.00924 | 0.001837 | 0.01665 | .014 |
soc_med_fb_w | -0.00045 | -0.004127 | 0.00324 | .812 |
soc_med_ig_w | -0.00547 | -0.009835 | -0.00110 | .014 |
soc_med_wa_w | 0.00396 | 0.000507 | 0.00742 | .025 |
soc_med_yt_w | 0.00166 | -0.003028 | 0.00634 | .488 |
soc_med_tw_w | 0.00247 | -0.003668 | 0.00861 | .430 |
soc_med_read_b | -0.10942 | -0.148364 | -0.07048 | < .001 |
model_aff_neg_lmer_pre <- "
aff_neg_fs ~
(1 | id) + (1 | wave) +
soc_med_read_w + soc_med_like_share_w + soc_med_post_w +
soc_med_fb_w + soc_med_ig_w + soc_med_wa_w + soc_med_yt_w + soc_med_tw_w +
soc_med_read_b + soc_med_like_share_b + soc_med_post_b +
soc_med_fb_b + soc_med_ig_b + soc_med_wa_b + soc_med_yt_b + soc_med_tw_b +
age + male + born_aus + born_aus_prnts + edu_fac + employment_fac +
res_vienna + acc_bal + acc_gar + home_sqm +
work_h_b + work_h_w +
work_homeoff_b + work_homeoff_w +
hh_income_b + hh_income_w +
hh_adults + hh_child18 + hh_child17 + hh_child14 + hh_child5 + hh_child2 +
hh_oldfam + hh_outfam + hh_partner +
home_owner +
med_txt_kro_b + med_txt_sta_b + med_txt_pre_b + med_txt_oes_b + med_txt_kur_b + med_txt_slz_b + med_txt_son_b +
med_vid_orf_b + med_vid_pri_b +
med_txt_kro_w + med_txt_sta_w + med_txt_pre_w + med_txt_oes_w + med_txt_kur_w + med_txt_slz_w + med_txt_son_w +
med_vid_orf_w + med_vid_pri_w +
risk_prop_b + risk_prop_w +
act_wrk_w + act_spo_w + act_frn_w + act_sho_w + act_pet_w +
act_wrk_b + act_spo_b + act_frn_b + act_sho_b + act_pet_b +
sat_dem_w + sat_dem_b +
health_w + health_b +
loc_cntrl_int_m_w + loc_cntrl_int_m_b
"
fit_aff_neg_lmer_pre <- lmerTest::lmer(model_aff_neg_lmer_pre, data = d_long_50_imp)
print_res(broom.mixed::tidy(fit_aff_neg_lmer_pre, conf.int = T), imputation = FALSE)
term <chr> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
(Intercept) | 4.45798 | 4.26388 | 4.652067 | < .001 |
soc_med_read_w | -0.00285 | -0.00617 | 0.000463 | .092 |
soc_med_like_share_w | 0.01037 | 0.00613 | 0.014614 | < .001 |
soc_med_post_w | 0.01919 | 0.01390 | 0.024472 | < .001 |
soc_med_fb_w | -0.00112 | -0.00375 | 0.001504 | .402 |
soc_med_ig_w | -0.00179 | -0.00491 | 0.001325 | .260 |
soc_med_wa_w | 0.00133 | -0.00114 | 0.003793 | .291 |
soc_med_yt_w | 0.00378 | 0.00043 | 0.007119 | .027 |
soc_med_tw_w | 0.01869 | 0.01431 | 0.023069 | < .001 |
soc_med_read_b | 0.00438 | -0.02167 | 0.030437 | .742 |
Final analysis, but now don’t use any imputed data whatsoever. Was preregistered as additional analysis to provide comparison.
model_life_sat_lmer_noi <- "
life_sat ~
(1 | id) + (1 | wave) +
soc_med_read_w + soc_med_like_share_w + soc_med_post_w +
soc_med_fb_w + soc_med_ig_w + soc_med_wa_w + soc_med_yt_w + soc_med_tw_w +
soc_med_read_b + soc_med_like_share_b + soc_med_post_b +
soc_med_fb_b + soc_med_ig_b + soc_med_wa_b + soc_med_yt_b + soc_med_tw_b +
age + male + born_aus + born_aus_prnts + edu_fac + employment_fac +
res_vienna + acc_bal + acc_gar + home_sqm +
corona_pos_b + corona_pos_w +
work_h_b + work_h_w +
work_homeoff_b + work_homeoff_w +
hh_income_b + hh_income_w +
hh_adults + hh_child18 + hh_child17 + hh_child14 + hh_child5 + hh_child2 +
hh_oldfam + hh_outfam + hh_partner +
home_owner +
risk_prop_b + risk_prop_w +
act_wrk_w + act_spo_w + act_frn_w + act_sho_w + act_pet_w +
act_wrk_b + act_spo_b + act_frn_b + act_sho_b + act_pet_b +
health_w + health_b +
loc_cntrl_int_m_w + loc_cntrl_int_m_b
"
fit_life_sat_lmer_noi <- lmerTest::lmer(model_life_sat_lmer_noi, data = d_long_50)
print_res(broom.mixed::tidy(fit_life_sat_lmer_noi, conf.int = T), imputation = FALSE)
term <chr> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
(Intercept) | -2.3402 | -6.4512 | 1.7707 | .264 |
soc_med_read_w | 0.0502 | -0.1781 | 0.2785 | .666 |
soc_med_like_share_w | -0.1443 | -0.4365 | 0.1479 | .332 |
soc_med_post_w | 0.2097 | -0.1578 | 0.5773 | .263 |
soc_med_fb_w | -0.0015 | -0.2529 | 0.2499 | .991 |
soc_med_ig_w | 0.3859 | 0.0840 | 0.6878 | .012 |
soc_med_wa_w | -0.0623 | -0.2794 | 0.1548 | .573 |
soc_med_yt_w | 0.0569 | -0.2480 | 0.3619 | .714 |
soc_med_tw_w | -0.1805 | -0.5326 | 0.1715 | .314 |
soc_med_read_b | -0.0991 | -0.3517 | 0.1536 | .441 |
model_aff_pos_lmer_noi <- "
aff_pos_fs ~
(1 | id) + (1 | wave) +
soc_med_read_w + soc_med_like_share_w + soc_med_post_w +
soc_med_fb_w + soc_med_ig_w + soc_med_wa_w + soc_med_yt_w + soc_med_tw_w +
soc_med_read_b + soc_med_like_share_b + soc_med_post_b +
soc_med_fb_b + soc_med_ig_b + soc_med_wa_b + soc_med_yt_b + soc_med_tw_b +
age + male + born_aus + born_aus_prnts + edu_fac + employment_fac +
res_vienna + acc_bal + acc_gar + home_sqm +
corona_pos_b + corona_pos_w +
work_h_b + work_h_w +
work_homeoff_b + work_homeoff_w +
hh_income_b + hh_income_w +
hh_adults + hh_child18 + hh_child17 + hh_child14 + hh_child5 + hh_child2 +
hh_oldfam + hh_outfam + hh_partner +
home_owner +
risk_prop_b + risk_prop_w +
act_wrk_w + act_spo_w + act_frn_w + act_sho_w + act_pet_w +
act_wrk_b + act_spo_b + act_frn_b + act_sho_b + act_pet_b +
health_w + health_b +
loc_cntrl_int_m_w + loc_cntrl_int_m_b
"
fit_aff_pos_lmer_noi <- lmerTest::lmer(model_aff_pos_lmer_noi, data = d_long_50)
print_res(broom.mixed::tidy(fit_aff_pos_lmer_noi, conf.int = T), imputation = FALSE)
term <chr> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
(Intercept) | 1.30096 | -0.04768 | 2.6496 | .059 |
soc_med_read_w | 0.03038 | -0.04578 | 0.1065 | .433 |
soc_med_like_share_w | -0.01717 | -0.11435 | 0.0800 | .729 |
soc_med_post_w | 0.01504 | -0.11071 | 0.1408 | .814 |
soc_med_fb_w | 0.06078 | -0.02271 | 0.1443 | .153 |
soc_med_ig_w | 0.06648 | -0.03704 | 0.1700 | .208 |
soc_med_wa_w | -0.01701 | -0.08998 | 0.0560 | .647 |
soc_med_yt_w | 0.03025 | -0.07293 | 0.1334 | .565 |
soc_med_tw_w | -0.05334 | -0.17979 | 0.0731 | .408 |
soc_med_read_b | 0.01023 | -0.07488 | 0.0953 | .813 |
model_aff_neg_lmer_noi <- "
aff_neg_fs ~
(1 | id) + (1 | wave) +
soc_med_read_w + soc_med_like_share_w + soc_med_post_w +
soc_med_fb_w + soc_med_ig_w + soc_med_wa_w + soc_med_yt_w + soc_med_tw_w +
soc_med_read_b + soc_med_like_share_b + soc_med_post_b +
soc_med_fb_b + soc_med_ig_b + soc_med_wa_b + soc_med_yt_b + soc_med_tw_b +
age + male + born_aus + born_aus_prnts + edu_fac + employment_fac +
res_vienna + acc_bal + acc_gar + home_sqm +
corona_pos_b + corona_pos_w +
work_h_b + work_h_w +
work_homeoff_b + work_homeoff_w +
hh_income_b + hh_income_w +
hh_adults + hh_child18 + hh_child17 + hh_child14 + hh_child5 + hh_child2 +
hh_oldfam + hh_outfam + hh_partner +
home_owner +
risk_prop_b + risk_prop_w +
act_wrk_w + act_spo_w + act_frn_w + act_sho_w + act_pet_w +
act_wrk_b + act_spo_b + act_frn_b + act_sho_b + act_pet_b +
health_w + health_b +
loc_cntrl_int_m_w + loc_cntrl_int_m_b
"
fit_aff_neg_lmer_noi <- lmerTest::lmer(model_aff_neg_lmer_noi, data = d_long_50)
print_res(broom.mixed::tidy(fit_aff_neg_lmer_noi, conf.int = T), imputation = FALSE)
term <chr> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
(Intercept) | 3.57161 | 2.5985 | 4.54468 | < .001 |
soc_med_read_w | -0.02205 | -0.0779 | 0.03383 | .438 |
soc_med_like_share_w | -0.01022 | -0.0818 | 0.06135 | .779 |
soc_med_post_w | 0.01552 | -0.0746 | 0.10569 | .735 |
soc_med_fb_w | -0.05933 | -0.1208 | 0.00212 | .058 |
soc_med_ig_w | 0.01081 | -0.0639 | 0.08554 | .776 |
soc_med_wa_w | -0.00911 | -0.0619 | 0.04368 | .735 |
soc_med_yt_w | -0.02892 | -0.1032 | 0.04538 | .445 |
soc_med_tw_w | 0.05290 | -0.0364 | 0.14226 | .245 |
soc_med_read_b | 0.03219 | -0.0294 | 0.09374 | .305 |
# get data
dat_fig_results_activity_pub <- get_dat_res(
fit_aff_neg_lmer_pub, fit_aff_pos_lmer_pub, fit_life_sat_lmer_pub,
type = "Activity", analysis = "1. Final, preferred", variance = "within")
dat_fig_results_channel_pub <- get_dat_res(
fit_aff_neg_lmer_pub, fit_aff_pos_lmer_pub, fit_life_sat_lmer_pub,
type = "Channels", analysis = "1. Final, preferred", variance = "within")
dat_fig_results_activity_add <- get_dat_res(
fit_aff_neg_lmer_add, fit_aff_pos_lmer_add, fit_life_sat_lmer_add,
type = "Activity", analysis = "2. Additional covariates", variance = "within")
dat_fig_results_channel_add <- get_dat_res(
fit_aff_neg_lmer_add, fit_aff_pos_lmer_add, fit_life_sat_lmer_add,
type = "Channels", analysis = "2. Additional covariates", variance = "within")
dat_fig_results_activity_nco <- get_dat_res(
fit_aff_neg_lmer_nco, fit_aff_pos_lmer_nco, fit_life_sat_lmer_nco,
type = "Activity", analysis = "3. No covariates", variance = "within")
dat_fig_results_channel_nco <- get_dat_res(
fit_aff_neg_lmer_nco, fit_aff_pos_lmer_nco, fit_life_sat_lmer_nco,
type = "Channels", analysis = "3. No covariates", variance = "within")
dat_fig_results_activity_pre <- get_dat_res(
fit_aff_neg_lmer_pre, fit_aff_pos_lmer_pre, fit_life_sat_lmer_pre,
type = "Activity", analysis = "4. As preregistered", variance = "within")
dat_fig_results_channel_pre <- get_dat_res(
fit_aff_neg_lmer_pre, fit_aff_pos_lmer_pre, fit_life_sat_lmer_pre,
type = "Channels", analysis = "4. As preregistered", variance = "within")
dat_fig_results_activity_noi <- get_dat_res(
fit_aff_neg_lmer_noi, fit_aff_pos_lmer_noi, fit_life_sat_lmer_noi,
type = "Activity", analysis = "5. No imputation", variance = "within")
dat_fig_results_channel_noi <- get_dat_res(
fit_aff_neg_lmer_noi, fit_aff_pos_lmer_noi, fit_life_sat_lmer_noi,
type = "Channels", analysis = "5. No imputation", variance = "within")
dat_fig_results_comp <- rbind(
dat_fig_results_activity_pub,
dat_fig_results_channel_pub,
dat_fig_results_activity_nco,
dat_fig_results_channel_nco,
dat_fig_results_activity_add,
dat_fig_results_channel_add,
dat_fig_results_activity_pre,
dat_fig_results_channel_pre,
dat_fig_results_activity_noi,
dat_fig_results_channel_noi
)
# make figure
fig_results_comp <- make_graph_res(
dat_fig_results_comp,
sesoi = "est",
facet = "type"
)
fig_results_comp
# safe figure
ggsave("figures/fig_results_comp.png",
width = 7, height = 7,
plot = fig_results_comp)
Let’s now inspect effects of media use on well-being some time later (i.e., 1 month or 4 months). This is especially relevant for life-satisfaction, which is more stable.
Let’s first format data to introduce lags.
# define waves with 1 month lag to well-being
waves_predictors_1m <- c(5, 11, 18, 24, 29)
# define waves where media use was measured
waves_media_use <- c(1, 8, 17, 23, 28)
waves_include_1m <- c(waves_media_use, waves_predictors_1m)
d_long_100_mim_mice_1m <-
d_long_100_mim_mice %>%
complete(
'long',
include = TRUE
) %>%
filter(
wave %in% waves_include_1m
) %>%
group_by(id) %>%
mutate(
life_sat = lead(life_sat, n = 1, default = NA),
aff_pos_m = lead(aff_pos_m, n = 1, default = NA),
aff_neg_m = lead(aff_neg_m, n = 1, default = NA),
) %>%
ungroup() %>%
as.mids() %>%
# select waves used for analyses
filter(
wave %in% waves_predictors_1m
)
waves_predictors_4m <- c(13, 15, 21, 25, 32)
waves_include_4m <- c(waves_media_use, waves_predictors_4m)
d_long_100_mim_mice_4m <-
d_long_100_mim_mice %>%
complete(
'long',
include = TRUE
) %>%
filter(
wave %in% waves_include_4m
) %>%
group_by(id) %>%
mutate(
life_sat = lead(life_sat, n = 1, default = NA),
aff_pos_m = lead(aff_pos_m, n = 1, default = NA),
aff_neg_m = lead(aff_neg_m, n = 1, default = NA),
) %>%
ungroup() %>%
as.mids() %>%
# select waves used for analyses
filter(
wave %in% waves_predictors_4m
)
fit_life_sat_lmer_1m <- with(d_long_100_mim_mice_1m, exp = lmerTest::lmer(model_life_sat_lmer_pub))
fit_life_sat_lmer_1m <- summary(pool(fit_life_sat_lmer_1m), conf.int = TRUE)
print_res(fit_life_sat_lmer_1m)
term <fct> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
(Intercept) | -4.971977 | -6.41458 | -3.5294 | < .001 |
soc_med_read_w | -0.003723 | -0.05184 | 0.0444 | .877 |
soc_med_like_share_w | -0.001137 | -0.05954 | 0.0573 | .969 |
soc_med_post_w | -0.004651 | -0.07330 | 0.0640 | .893 |
soc_med_fb_w | -0.003714 | -0.04252 | 0.0351 | .849 |
soc_med_ig_w | 0.006358 | -0.03673 | 0.0494 | .769 |
soc_med_wa_w | 0.006504 | -0.03276 | 0.0458 | .742 |
soc_med_yt_w | -0.006680 | -0.05636 | 0.0430 | .789 |
soc_med_tw_w | 0.013799 | -0.05286 | 0.0805 | .680 |
soc_med_read_b | 0.000117 | -0.43491 | 0.4351 | 1.000 |
We find no significant effects.
fit_aff_pos_lmer_1m <- with(d_long_100_mim_mice_1m, exp = lmerTest::lmer(model_aff_pos_lmer_pub))
fit_aff_pos_lmer_1m <- summary(pool(fit_aff_pos_lmer_1m), conf.int = TRUE)
print_res(fit_aff_pos_lmer_1m)
term <fct> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
(Intercept) | -3.426678 | -4.08133 | -2.7720 | < .001 |
soc_med_read_w | -0.004061 | -0.02246 | 0.0143 | .662 |
soc_med_like_share_w | 0.002131 | -0.02109 | 0.0254 | .856 |
soc_med_post_w | 0.001574 | -0.02513 | 0.0283 | .907 |
soc_med_fb_w | -0.002916 | -0.01957 | 0.0137 | .728 |
soc_med_ig_w | 0.000586 | -0.01761 | 0.0188 | .949 |
soc_med_wa_w | 0.004705 | -0.01083 | 0.0202 | .549 |
soc_med_yt_w | -0.001127 | -0.02124 | 0.0190 | .912 |
soc_med_tw_w | 0.000261 | -0.02707 | 0.0276 | .985 |
soc_med_read_b | -0.609276 | -0.80704 | -0.4115 | < .001 |
We find no significant effects.
fit_aff_neg_lmer_1m <- with(d_long_100_mim_mice_1m, exp = lmerTest::lmer(model_aff_neg_lmer_pub))
fit_aff_neg_lmer_1m <- summary(pool(fit_aff_neg_lmer_1m), conf.int = TRUE)
print_res(fit_aff_neg_lmer_1m)
term <fct> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
(Intercept) | 4.12504 | 3.67275 | 4.57733 | < .001 |
soc_med_read_w | -0.00038 | -0.01706 | 0.01630 | .963 |
soc_med_like_share_w | 0.00099 | -0.01943 | 0.02142 | .923 |
soc_med_post_w | 0.00423 | -0.02026 | 0.02872 | .731 |
soc_med_fb_w | 0.00152 | -0.01098 | 0.01403 | .809 |
soc_med_ig_w | -0.00057 | -0.01272 | 0.01157 | .926 |
soc_med_wa_w | -0.00129 | -0.01275 | 0.01017 | .824 |
soc_med_yt_w | 0.00236 | -0.01390 | 0.01863 | .772 |
soc_med_tw_w | -0.00189 | -0.02072 | 0.01694 | .842 |
soc_med_read_b | 0.18622 | 0.04140 | 0.33103 | .012 |
We find no significant effects.
Let’s not see if we find effects looking at longer intervals.
fit_life_sat_lmer_4m <- with(d_long_100_mim_mice_4m, exp = lmerTest::lmer(model_life_sat_lmer_pub))
fit_life_sat_lmer_4m <- summary(pool(fit_life_sat_lmer_4m), conf.int = TRUE)
print_res(fit_life_sat_lmer_4m)
term <fct> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
(Intercept) | -5.033698 | -6.56205 | -3.5053 | < .001 |
soc_med_read_w | -0.000542 | -0.04476 | 0.0437 | .981 |
soc_med_like_share_w | -0.003085 | -0.06643 | 0.0603 | .923 |
soc_med_post_w | -0.003511 | -0.09115 | 0.0841 | .936 |
soc_med_fb_w | -0.001299 | -0.03895 | 0.0363 | .945 |
soc_med_ig_w | 0.006173 | -0.03693 | 0.0493 | .776 |
soc_med_wa_w | 0.005399 | -0.03395 | 0.0448 | .785 |
soc_med_yt_w | -0.001855 | -0.05170 | 0.0480 | .941 |
soc_med_tw_w | 0.003809 | -0.05472 | 0.0623 | .897 |
soc_med_read_b | 0.070380 | -0.39804 | 0.5388 | .767 |
We find no significant effects.
fit_aff_pos_lmer_4m <- with(d_long_100_mim_mice_4m, exp = lmerTest::lmer(model_aff_pos_lmer_pub))
fit_aff_pos_lmer_4m <- summary(pool(fit_aff_pos_lmer_4m), conf.int = TRUE)
print_res(fit_aff_pos_lmer_4m)
term <fct> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
(Intercept) | -3.50120 | -4.15990 | -2.84251 | < .001 |
soc_med_read_w | -0.00535 | -0.02668 | 0.01598 | .618 |
soc_med_like_share_w | 0.00187 | -0.02277 | 0.02652 | .880 |
soc_med_post_w | 0.00514 | -0.02382 | 0.03410 | .725 |
soc_med_fb_w | 0.00071 | -0.01487 | 0.01629 | .928 |
soc_med_ig_w | 0.00120 | -0.01656 | 0.01896 | .894 |
soc_med_wa_w | -0.00115 | -0.01776 | 0.01547 | .891 |
soc_med_yt_w | 0.00163 | -0.01918 | 0.02245 | .876 |
soc_med_tw_w | -0.00132 | -0.02827 | 0.02562 | .922 |
soc_med_read_b | -0.58979 | -0.78982 | -0.38976 | < .001 |
We find no significant effects.
fit_aff_neg_lmer_4m <- with(d_long_100_mim_mice_4m, exp = lmerTest::lmer(model_aff_neg_lmer_pub))
fit_aff_neg_lmer_4m <- summary(pool(fit_aff_neg_lmer_4m), conf.int = TRUE)
print_res(fit_aff_neg_lmer_4m)
term <fct> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
(Intercept) | 4.056442 | 3.59278 | 4.52010 | < .001 |
soc_med_read_w | 0.000299 | -0.01720 | 0.01780 | .973 |
soc_med_like_share_w | 0.001078 | -0.01915 | 0.02131 | .915 |
soc_med_post_w | 0.003885 | -0.02763 | 0.03540 | .804 |
soc_med_fb_w | 0.001352 | -0.01056 | 0.01326 | .822 |
soc_med_ig_w | -0.001998 | -0.01524 | 0.01124 | .765 |
soc_med_wa_w | 0.001246 | -0.00883 | 0.01132 | .807 |
soc_med_yt_w | -0.002123 | -0.01858 | 0.01434 | .797 |
soc_med_tw_w | 0.002872 | -0.01401 | 0.01975 | .737 |
soc_med_read_b | 0.172830 | 0.02012 | 0.32554 | .027 |
We find no significant effects.
Let’s next see if effects differ for males and females.
model_life_sat_lmer_male <- "
life_sat ~
(1 | id) + (1 | wave) +
soc_med_read_w * male + soc_med_like_share_w * male + soc_med_post_w * male +
soc_med_fb_w * male + soc_med_ig_w * male + soc_med_wa_w * male + soc_med_yt_w * male + soc_med_tw_w * male +
soc_med_read_b + soc_med_like_share_b + soc_med_post_b +
soc_med_fb_b + soc_med_ig_b + soc_med_wa_b + soc_med_yt_b + soc_med_tw_b +
age + born_aus + born_aus_prnts + edu_fac + employment_fac +
res_vienna + acc_bal + acc_gar + home_sqm +
corona_pos_b + corona_pos_w +
work_h_b + work_h_w +
work_homeoff_b + work_homeoff_w +
hh_income_b + hh_income_w +
hh_adults + hh_child18 + hh_child17 + hh_child14 + hh_child5 + hh_child2 +
hh_oldfam + hh_outfam + hh_partner +
home_owner +
risk_prop_b + risk_prop_w +
act_wrk_w + act_spo_w + act_frn_w + act_sho_w + act_pet_w +
act_wrk_b + act_spo_b + act_frn_b + act_sho_b + act_pet_b +
health_w + health_b +
loc_cntrl_int_m_w + loc_cntrl_int_m_b
"
fit_life_sat_lmer_male <- with(d_long_100_mim_mice, exp = lmerTest::lmer(model_life_sat_lmer_male))
fit_life_sat_lmer_male <- summary(pool(fit_life_sat_lmer_male), conf.int = TRUE)
print_res(fit_life_sat_lmer_male)
term <fct> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
(Intercept) | -4.62678 | -5.53276 | -3.7208 | < .001 |
soc_med_read_w | 0.00871 | -0.03742 | 0.0548 | .700 |
male | -0.09937 | -0.20175 | 0.0030 | .057 |
soc_med_like_share_w | -0.02048 | -0.05837 | 0.0174 | .280 |
soc_med_post_w | -0.04123 | -0.08994 | 0.0075 | .095 |
soc_med_fb_w | -0.01212 | -0.04492 | 0.0207 | .455 |
soc_med_ig_w | 0.03070 | -0.00933 | 0.0707 | .127 |
soc_med_wa_w | -0.00289 | -0.04219 | 0.0364 | .881 |
soc_med_yt_w | 0.00345 | -0.03263 | 0.0395 | .847 |
soc_med_tw_w | -0.01729 | -0.05787 | 0.0233 | .394 |
Interaction effects are insignificant, showing that effects don’t differ across genders.
model_aff_pos_lmer_male <- "
aff_pos_m ~
(1 | id) + (1 | wave) +
soc_med_read_w * male + soc_med_like_share_w * male + soc_med_post_w * male +
soc_med_fb_w * male + soc_med_ig_w * male + soc_med_wa_w * male + soc_med_yt_w * male + soc_med_tw_w * male +
soc_med_read_b + soc_med_like_share_b + soc_med_post_b +
soc_med_fb_b + soc_med_ig_b + soc_med_wa_b + soc_med_yt_b + soc_med_tw_b +
age + born_aus + born_aus_prnts + edu_fac + employment_fac +
res_vienna + acc_bal + acc_gar + home_sqm +
corona_pos_b + corona_pos_w +
work_h_b + work_h_w +
work_homeoff_b + work_homeoff_w +
hh_income_b + hh_income_w +
hh_adults + hh_child18 + hh_child17 + hh_child14 + hh_child5 + hh_child2 +
hh_oldfam + hh_outfam + hh_partner +
home_owner +
risk_prop_b + risk_prop_w +
act_wrk_w + act_spo_w + act_frn_w + act_sho_w + act_pet_w +
act_wrk_b + act_spo_b + act_frn_b + act_sho_b + act_pet_b +
health_w + health_b +
loc_cntrl_int_m_w + loc_cntrl_int_m_b
"
fit_aff_pos_lmer_male <- with(d_long_100_mim_mice, exp = lmerTest::lmer(model_aff_pos_lmer_male))
fit_aff_pos_lmer_male <- summary(pool(fit_aff_pos_lmer_male), conf.int = TRUE)
print_res(fit_aff_pos_lmer_male)
term <fct> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
(Intercept) | -3.405713 | -3.8122 | -2.999255 | < .001 |
soc_med_read_w | -0.031820 | -0.0493 | -0.014359 | < .001 |
male | 0.075624 | 0.0223 | 0.128954 | .006 |
soc_med_like_share_w | 0.004729 | -0.0157 | 0.025139 | .638 |
soc_med_post_w | 0.026158 | 0.0061 | 0.046182 | .012 |
soc_med_fb_w | -0.003179 | -0.0165 | 0.010119 | .628 |
soc_med_ig_w | -0.006689 | -0.0215 | 0.008107 | .362 |
soc_med_wa_w | 0.005986 | -0.0090 | 0.020971 | .419 |
soc_med_yt_w | 0.001774 | -0.0154 | 0.018967 | .834 |
soc_med_tw_w | 0.013572 | -0.0043 | 0.031416 | .132 |
Interaction effects are insignificant, showing that effects don’t differ across genders.
model_aff_neg_lmer_male <- "
aff_neg_m ~
(1 | id) + (1 | wave) +
soc_med_read_w * male + soc_med_like_share_w * male + soc_med_post_w * male +
soc_med_fb_w * male + soc_med_ig_w * male + soc_med_wa_w * male + soc_med_yt_w * male + soc_med_tw_w * male +
soc_med_read_b + soc_med_like_share_b + soc_med_post_b +
soc_med_fb_b + soc_med_ig_b + soc_med_wa_b + soc_med_yt_b + soc_med_tw_b +
age + born_aus + born_aus_prnts + edu_fac + employment_fac +
res_vienna + acc_bal + acc_gar + home_sqm +
corona_pos_b + corona_pos_w +
work_h_b + work_h_w +
work_homeoff_b + work_homeoff_w +
hh_income_b + hh_income_w +
hh_adults + hh_child18 + hh_child17 + hh_child14 + hh_child5 + hh_child2 +
hh_oldfam + hh_outfam + hh_partner +
home_owner +
risk_prop_b + risk_prop_w +
act_wrk_w + act_spo_w + act_frn_w + act_sho_w + act_pet_w +
act_wrk_b + act_spo_b + act_frn_b + act_sho_b + act_pet_b +
health_w + health_b +
loc_cntrl_int_m_w + loc_cntrl_int_m_b
"
fit_aff_neg_lmer_male <- with(d_long_100_mim_mice, exp = lmerTest::lmer(model_aff_neg_lmer_male))
fit_aff_neg_lmer_male <- summary(pool(fit_aff_neg_lmer_male), conf.int = TRUE)
print_res(fit_aff_neg_lmer_male)
term <fct> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
(Intercept) | 4.08303 | 3.82029 | 4.3457565 | < .001 |
soc_med_read_w | 0.00368 | -0.01019 | 0.0175583 | .589 |
male | -0.04708 | -0.08013 | -0.0140206 | .005 |
soc_med_like_share_w | 0.01860 | -0.00056 | 0.0377629 | .057 |
soc_med_post_w | 0.05187 | 0.03205 | 0.0716908 | < .001 |
soc_med_fb_w | -0.00250 | -0.01457 | 0.0095652 | .672 |
soc_med_ig_w | -0.00257 | -0.01679 | 0.0116474 | .712 |
soc_med_wa_w | 0.00387 | -0.00506 | 0.0128012 | .383 |
soc_med_yt_w | 0.01603 | 0.00447 | 0.0275836 | .008 |
soc_med_tw_w | 0.02696 | 0.00746 | 0.0464507 | .009 |
Interaction effects are insignificant, showing that effects don’t differ across genders.
Let’s next inspect if effects differ across age. We’ll look at generations (Gen Z, Gen Y, …). Let’s first transform data to make age categories.
d_long_100_mim_mice <-
d_long_100_mim_mice %>%
complete(
'long',
include = TRUE
) %>%
mutate(
age_gen = ifelse(
age > 2022 - 1946,
"Silent",
ifelse(
age > 2022 - 1965,
"Boomer",
ifelse(
age > 2022 - 1981,
"Gen X",
ifelse(
age > 2022 - 1997,
"Gen Y",
"Gen Z"
)
)
)
)
) %>%
mutate(
age_gen = factor(
age_gen,
c("Gen X", "Gen Z", "Gen Y", "Boomer", "Silent")
)
) %>%
as.mids()
d_long_100_mim_mice %>%
complete(
'long',
include = TRUE
) %>%
select(age_gen) %>%
table()
## age_gen
## Gen X Gen Z Gen Y Boomer Silent
## 595476 721854 763980 469812 48552
model_life_sat_lmer_age <- "
life_sat ~
(1 | id) + (1 | wave) +
soc_med_read_w * age_gen + soc_med_like_share_w * age_gen + soc_med_post_w * age_gen +
soc_med_fb_w * age_gen + soc_med_ig_w * age_gen + soc_med_wa_w * age_gen + soc_med_yt_w * age_gen + soc_med_tw_w * age_gen +
soc_med_read_b + soc_med_like_share_b + soc_med_post_b +
soc_med_fb_b + soc_med_ig_b + soc_med_wa_b + soc_med_yt_b + soc_med_tw_b +
male + born_aus + born_aus_prnts + edu_fac + employment_fac +
res_vienna + acc_bal + acc_gar + home_sqm +
corona_pos_b + corona_pos_w +
work_h_b + work_h_w +
work_homeoff_b + work_homeoff_w +
hh_income_b + hh_income_w +
hh_adults + hh_child18 + hh_child17 + hh_child14 + hh_child5 + hh_child2 +
hh_oldfam + hh_outfam + hh_partner +
home_owner +
risk_prop_b + risk_prop_w +
act_wrk_w + act_spo_w + act_frn_w + act_sho_w + act_pet_w +
act_wrk_b + act_spo_b + act_frn_b + act_sho_b + act_pet_b +
health_w + health_b +
loc_cntrl_int_m_w + loc_cntrl_int_m_b
"
fit_life_sat_lmer_age <- with(d_long_100_mim_mice, exp = lmerTest::lmer(model_life_sat_lmer_age))
fit_life_sat_lmer_age <- summary(pool(fit_life_sat_lmer_age), conf.int = TRUE)
print_res(fit_life_sat_lmer_age) %>%
filter(grepl(".*:.*", term))
term <fct> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
soc_med_read_w:age_genGen Z | 0.00884 | -0.036 | 0.053 | .693 |
soc_med_read_w:age_genGen Y | 0.00773 | -0.035 | 0.050 | .719 |
soc_med_read_w:age_genBoomer | 0.01602 | -0.028 | 0.060 | .478 |
soc_med_read_w:age_genSilent | 0.02280 | -0.105 | 0.151 | .723 |
age_genGen Z:soc_med_like_share_w | -0.00851 | -0.060 | 0.043 | .742 |
age_genGen Y:soc_med_like_share_w | 0.00593 | -0.050 | 0.061 | .832 |
age_genBoomer:soc_med_like_share_w | 0.00946 | -0.053 | 0.071 | .762 |
age_genSilent:soc_med_like_share_w | 0.00503 | -0.149 | 0.159 | .949 |
age_genGen Z:soc_med_post_w | -0.02306 | -0.087 | 0.041 | .477 |
age_genGen Y:soc_med_post_w | -0.01906 | -0.088 | 0.050 | .584 |
Interaction effects are insignificant, showing that effects don’t differ across generations.
model_aff_pos_lmer_age <- "
aff_pos_m ~
(1 | id) + (1 | wave) +
soc_med_read_w * age_gen + soc_med_like_share_w * age_gen + soc_med_post_w * age_gen +
soc_med_fb_w * age_gen + soc_med_ig_w * age_gen + soc_med_wa_w * age_gen + soc_med_yt_w * age_gen + soc_med_tw_w * age_gen +
soc_med_read_b + soc_med_like_share_b + soc_med_post_b +
soc_med_fb_b + soc_med_ig_b + soc_med_wa_b + soc_med_yt_b + soc_med_tw_b +
male + born_aus + born_aus_prnts + edu_fac + employment_fac +
res_vienna + acc_bal + acc_gar + home_sqm +
corona_pos_b + corona_pos_w +
work_h_b + work_h_w +
work_homeoff_b + work_homeoff_w +
hh_income_b + hh_income_w +
hh_adults + hh_child18 + hh_child17 + hh_child14 + hh_child5 + hh_child2 +
hh_oldfam + hh_outfam + hh_partner +
home_owner +
risk_prop_b + risk_prop_w +
act_wrk_w + act_spo_w + act_frn_w + act_sho_w + act_pet_w +
act_wrk_b + act_spo_b + act_frn_b + act_sho_b + act_pet_b +
health_w + health_b +
loc_cntrl_int_m_w + loc_cntrl_int_m_b
"
fit_aff_pos_lmer_age <- with(d_long_100_mim_mice, exp = lmerTest::lmer(model_aff_pos_lmer_age))
fit_aff_pos_lmer_age <- summary(pool(fit_aff_pos_lmer_age), conf.int = TRUE)
print_res(fit_aff_pos_lmer_age) %>%
filter(grepl(".*:.*", term))
term <fct> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
soc_med_read_w:age_genGen Z | -0.004463 | -0.0239 | 0.015 | .647 |
soc_med_read_w:age_genGen Y | -0.001532 | -0.0204 | 0.017 | .872 |
soc_med_read_w:age_genBoomer | 0.010337 | -0.0095 | 0.030 | .303 |
soc_med_read_w:age_genSilent | 0.001103 | -0.0520 | 0.054 | .967 |
age_genGen Z:soc_med_like_share_w | 0.002181 | -0.0188 | 0.023 | .837 |
age_genGen Y:soc_med_like_share_w | 0.002438 | -0.0206 | 0.026 | .834 |
age_genBoomer:soc_med_like_share_w | 0.004641 | -0.0225 | 0.032 | .734 |
age_genSilent:soc_med_like_share_w | 0.008997 | -0.0560 | 0.074 | .784 |
age_genGen Z:soc_med_post_w | 0.001817 | -0.0227 | 0.026 | .884 |
age_genGen Y:soc_med_post_w | 0.000081 | -0.0273 | 0.028 | .995 |
Interaction effects are insignificant, showing that effects don’t differ across generations.
model_aff_neg_lmer_age <- "
aff_neg_m ~
(1 | id) + (1 | wave) +
soc_med_read_w * age_gen + soc_med_like_share_w * age_gen + soc_med_post_w * age_gen +
soc_med_fb_w * age_gen + soc_med_ig_w * age_gen + soc_med_wa_w * age_gen + soc_med_yt_w * age_gen + soc_med_tw_w * age_gen +
soc_med_read_b + soc_med_like_share_b + soc_med_post_b +
soc_med_fb_b + soc_med_ig_b + soc_med_wa_b + soc_med_yt_b + soc_med_tw_b +
male + born_aus + born_aus_prnts + edu_fac + employment_fac +
res_vienna + acc_bal + acc_gar + home_sqm +
corona_pos_b + corona_pos_w +
work_h_b + work_h_w +
work_homeoff_b + work_homeoff_w +
hh_income_b + hh_income_w +
hh_adults + hh_child18 + hh_child17 + hh_child14 + hh_child5 + hh_child2 +
hh_oldfam + hh_outfam + hh_partner +
home_owner +
risk_prop_b + risk_prop_w +
act_wrk_w + act_spo_w + act_frn_w + act_sho_w + act_pet_w +
act_wrk_b + act_spo_b + act_frn_b + act_sho_b + act_pet_b +
health_w + health_b +
loc_cntrl_int_m_w + loc_cntrl_int_m_b
"
fit_aff_neg_lmer_age <- with(d_long_100_mim_mice, exp = lmerTest::lmer(model_aff_neg_lmer_age))
fit_aff_neg_lmer_age <- summary(pool(fit_aff_neg_lmer_age), conf.int = TRUE)
fit_aff_neg_lmer_age_tab <- print_res(fit_aff_neg_lmer_age)
fit_aff_neg_lmer_age_tab %>%
filter(grepl(".*:.*", term))
term <fct> | estimate <dbl> | 2.5 % <dbl> | 97.5 % <dbl> | p.value <chr> |
---|---|---|---|---|
soc_med_read_w:age_genGen Z | -0.005447 | -0.02085 | 0.0100 | .481 |
soc_med_read_w:age_genGen Y | -0.003802 | -0.01759 | 0.0100 | .584 |
soc_med_read_w:age_genBoomer | -0.000348 | -0.01450 | 0.0138 | .961 |
soc_med_read_w:age_genSilent | 0.000419 | -0.03340 | 0.0342 | .980 |
age_genGen Z:soc_med_like_share_w | 0.005835 | -0.01285 | 0.0245 | .534 |
age_genGen Y:soc_med_like_share_w | 0.002629 | -0.01457 | 0.0198 | .761 |
age_genBoomer:soc_med_like_share_w | -0.006416 | -0.02398 | 0.0111 | .471 |
age_genSilent:soc_med_like_share_w | -0.004978 | -0.04700 | 0.0370 | .815 |
age_genGen Z:soc_med_post_w | 0.037257 | 0.01451 | 0.0600 | .002 |
age_genGen Y:soc_med_post_w | 0.020564 | -0.00066 | 0.0418 | .057 |
Interaction effects are insignificant, showing that effects don’t differ across generations. However, there’s one exception: Gen Z differs significantly from Gen X in terms of negative affect experienced when posting more than usual COVID-19 related content.
save.image("data/workspace_3.RData")